
Measure Theory Muchang Bahng Fall 2022

Measure Theory

Muchang Bahng

Spring 2024

Contents
1 Measures and Sigma Algebras 4

1.1 Outer Measures, Construction of Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . 7

2 Measurable Functions and Integration 11
2.1 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Simple Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Monotone Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Riemann vs Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1/ 16



Measure Theory Muchang Bahng Fall 2022

In math, we are first taught to solve simple equations like x2 − 2x + 4 = 0 for a certain number x, but in
real world applications, we must now solve for some function f satisfying an equation

L(f) = 0 (1)

where L is some operator on functions. This is usually difficult, and many times a solution does not exist.
However, we can find approximate solutions, say

L(f) = 1/2

L(f) = 1/4

L(f) = 1/8

. . . = . . .

and approximate the solution as
f = lim

n→∞
fn (2)

Given that this limit exists, we can usually define f pointwise using a point-wise limit

f(x) = lim
n→∞

fn(x) for all x (3)

but the function in total is very ugly and not Riemann integrable. The classic non-Riemann integrable
function is the

f(x) = χR\Q(x) :=

{
1 if x ∈ R \Q
0 ifx ∈ Q

(4)

Since Q is countable, we can enumerate Q = {qn}∞n=1 and define the sequence of functions

fn = 1− χ{qj}n
j=1

(x) (5)

that start off with the constant function 1 and then "removes" points in Q, setting their image to 0. It is
clear that since we are removing points, every function in the sequence has an integral (from 0 to 1) of 1,
and therefore the integral of f should also be 1.∫ 1

0

fn dx = 1 =⇒
∫ 1

0

f dx =

∫ 1

0

lim
n→∞

fn dx = lim
n→∞

∫ 1

0

fn dx (6)

What is crucial for mathematicians to work with is the capability to take the limit from inside the integral
to outside the integral. The problem is that f is not a Riemann integral function.

Definition 0.1 (Riemann Integrable Function)

Given a function f : [0, 1] −→ R, let us consider some partition of [0, 1] into intervals P =
{I0, I1, . . . , IN}, then, for each I ∈ P , we can take the supremum MI = supx∈I f(x) and infimum
mI = infx∈I f(x) and bound f by the upper and lower Riemann sums.

∑
I∈P

mI |I| ≤
∫ 1

0

f dx ≤
∑
I∈P

MI |I| (7)

where |I| is the length of interval I. If we take all possible partitions, the bound should still hold.

m = sup
P

{∑
I∈P

mI |I|
}
≤

∫ 1

0

f dx ≤ inf
P

{∑
I∈P

MI |I|
}
= M (8)

and if the lower bound is equal to the upper bound m = M , then the integral is this number and f
is considered Riemann integrable.
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Now since Q is dense in R, for every interval I in every partition P will have mI = 0 and MI = 1 for
the Riemann function, meaning that the lower bound will always be 0 and the upper bound will always
be 1. So,

∫ 1

0
χR\Q(x) can take on any value in [0, 1], which isn’t helpful. The fact that we can’t integrate

this really simple function is a problem. For nice functions, we can partition it so that the base of each
Riemann rectangle is a nice interval, while the base of the Riemann function is an "interval with holes." The
problem really boils down to measuring what the "length" of this set is. So the problem with the Riemann
integral isn’t the integral itself, but the fact that we can’t give a meaningful size to the set R \ Q. Now
mathematicians in the 19th century thought that as long as we solve this problem, we should be good to go,
but Banach and Tarski proved that there exists sets that cannot be measured with their famous paradox,
which says that you can take any set P , disassemble it into a finite set of pieces, and rearrange it (under
isometry and translations) so that it has a different size than the original P . So, we have to exclude some
sets that are not measurable. The collection of sets that we can measure is called the σ-algebra.
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1 Measures and Sigma Algebras
Now, given any set X, we can construct its power set 2X . But we can’t naively just give a measure to every
A ∈ 2X , since for certain spaces, this causes nasty contradictions shown through the Banach-Tarski Paradox.

Theorem 1.1 (Banach-Tarski Paradox (Strong Form))

Given any two bounded subsets A and B of Rn where n ≥ 3, both of which have a nonempty
interior, there are partitions of A and B into a finite number of disjoint subsets, A = A1 ∪ . . . ∪ Ak,
B = B1 ∪ . . . ∪Bk, such that Ai and Bi are congruent for every i ∈ [k].

A nice set of subsets of X to work with is the σ-algebra of X.

Definition 1.1 (σ-Algebra)

A σ-algebra on a set X is a collection of subsets of X, denoted A ⊂ 2X that contains ∅, X itself,
is stable under a countable union, and is stable under complementation. This pair (X,A) is called a
measurable space.

Lemma 1.1 (Additional Property of σ-Algebras)

A commonly known property of any σ-algebra A is that it is stable under countable intersections,
too.

A1, A2, . . . ,∈ A =⇒
∞⋂
k=1

Ak ∈ A (9)

Proof.

We can utilize the fact that
∞⋂
k=1

Ak = X \
∞⋃
k=1

Ac
k (10)

A σ-algebra is similar to the topology τ of topological space. Both A and τ require ∅ and X to be in it. The
three differences are that (i) τ does not allow compelmentation, (ii) τ allows any (even uncountable) union
of sets (condition is strengthened), and (iii) τ allows only finite intersection of sets (condition is weakened).
Now in order to construct σ-algebras, the following theorems are useful since they allow us to construct
σ-algebras from other σ-algebras. It turns out that the intersection of σ-algebras is a σ-algebra, but not for
unions.

Theorem 1.2 (Intersection of Sigma Algebras is a Sigma Algebra)

Let {Ak} be a family of σ-algebras of X. Then, ∩Ak is also a σ-algebra of X.

Proof.

Clearly, ∅, X is in ∩Ak. To prove complementation,

A ∈
⋂

Ak =⇒ A ∈ Ak ∀k =⇒ Ac ∈ Ak ∀k =⇒ Ac ∈
⋂

Ak (11)

To prove countable union, let {Aj}j∈J be some countable family of subsets in ∩Ak. Then,

Aj ∈
⋂

Ak ∀j ∈ J =⇒ Aj ∈ Ak ∀k∀j =⇒
⋃

Aj ∈ Ak ∀k =⇒
⋃

Aj ∈
⋂

Ak (12)

4/ 16



Measure Theory Muchang Bahng Fall 2022

This allows us to easily prove the following proposition, which just establishes the existence of σ-algebras.

Proposition 1.1 (Unique Smallest Sigma Algebra)

Let F ⊂ 2X . Then there exists a unique smallest σ-algebra σ(F ) containing F .

Proof.

Let us denote M as the set of all possible σ-algebras B of X. M is nonempty since it contains 2X .
Then, the intersection ⋂

B∈M
B (13)

is the unique smallest σ-algebra.

Now, we can introduce the first nontrivial σ-algebra, called the Borel σ-algebra.

Definition 1.2 (Borel σ-algebra)

The Borel σ-algebra of a topological space (X, τ) is the σ-algebra generated by the topology τ ,
denoted B(X).

Now, how do we measure a size on B(X)? We use measures.

Definition 1.3 (Measure)

Given a measurable space (X,A), a measure is a function µ : A −→ [0,+∞] satisfying
1. Null empty set µ(∅) = 0
2. Countable additivity: For all countable collections {Ak}∞k=1 of pairwise disjoint subsets Ak ∈ A,

µ

( ∞⊔
k=1

Ak

)
=

∞∑
k=1

µ(Ak) (14)

Remember that we are allowed to take countable unions inside our σ-algebra, so this makes
sense.

This immediately implies that given A,B ∈ A, then A ⊂ B =⇒ µ(A) ≤ µ(B). The triplet (X,A, µ)
is called a measure space.

The first condition is important because it allows us to take finite disjoint unions. That is, since µ(A1∪A2) =
µ(A1 ∪A2 ∪ ∅ ∪ . . .), we have

∞∑
k=1

= µ(A1) + µ(A2) (15)

Disjointness is clearly important since if it wasn’t, then µ(A) = µ(A ∪ A) = 2µ(A), which is absurd. Now
our natural measure on the real number line with its Borel σ-algebra (R,B), we want a measure satisfying
µ((a, b)) = b− a and µ([0,∞)) = ∞. Such a measure does exist, and it is called the Lebesgue measure, but
proving its existence is highly nontrivial. Let us first look into some properties of measures, which all seem
natural.

Proposition 1.2 ()

If A1 ⊂ A2 ⊂ A3 ⊂ . . ., then

µ

( ∞⋃
k=1

Ak

)
= lim

k→∞
µ(Ak) (16)
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Proof.

This is the first time we introduce limits. With the fact that µ(Ak) must be nondecreasing, we can
use real analysis and see that it is bounded by ∞, meaning that it must have a limit. But why does
this limit equal to the left hand side? We can see that

µ

( ∞⋃
k=1

Ak

)
= µ(A1) +

∞∑
k=2

µ(Bk) (17)

= µ(A1) + lim
k→∞

∞∑
k=2

µ(Bk) (18)

= lim
k→∞

µ(A1 ∪B2 ∪ . . . Bk) = lim
k→∞

µ(Ak) (19)

where Bk = Ak \Ak−1.

Now a similar theorem, but with a little twist to it.

Proposition 1.3 ()

If A1 ⊃ A2 ⊃ A3 ⊃ . . ., then

µ

( ∞⋂
k=1

Ak

)
= lim

k→∞
µ(Ak) (20)

if µ(A1) < ∞.

Proof.

The µ(A1) < ∞ is a necessary condition, since if we take Ak = [k,∞) on the real number line, then
we have ∩∞

k=1Ak = ∅, but the limit of the measure is ∞. Well we can define Bk = Ak \ Ak+1 and
write ∩∞

k=1Ak = A1 \ ∪∞
k=1Bk, which means that

µ

( ∞⋂
k=1

Ak

)
= µ

(
A1 \

∞⋃
k=1

Bk

)

= µ(A1)− µ

( ∞⋃
k=1

Bk

)

= µ(A1)−
∞∑
k=1

µ(Bk)

= µ(A1)− lim
K→∞

K∑
k=1

µ(Bk)

= lim
K→∞

(
µ(A1)−

K∑
k=1

µ(Bk)

)

= lim
K→∞

µ

(
A1 \

K⋃
k=1

Bk

)
= lim

K→∞
µ(AK)

Now the first line uses the fact that if A ⊂ B, then µ(B \ A) + µ(A) = µ(B), and with the further
assumption that µ(A) < ∞, we can subtract on both sides like we do with regular arithmetic.
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1.1 Outer Measures, Construction of Lebesgue Measure
Now let’s try to construct a measure λ on the Borel σ-algebra B(R) that assigns length, i.e. λ([a, b]) = b−a.
We will do so by constructing outer measures λ∗ : 2R −→ R that acts on the power set of R s.t. λ∗([a, b]) =
b − a. But this turns out to have its own problems and contradictions, so once we construct such a λ∗, we
will "throw away" all the sets that don’t behave nicely under λ∗ and just use its restriction on the Borel
algebra. It turns out that the sets that do behave well under λ∗ is bigger than the Borel algebra, call it Mλ∗ .
So, we have B(R) ⊂ Mλ∗ ⊂ 2R. We will do this in full generality in the following way. We take any space X
and construct an outer measure µ∗ on its power set 2X . Then, we construct the σ-algebra of well-behaved
sets Mµ∗ ⊂ 2X , and define our measure µ on Mµ∗ . When defining our outer measure, the condition that
the outer measure of a disjoint union of subsets is equal to the sum of the outer measure of the subsets is a
bit too restricting, so we use a softer condition.

Definition 1.4 (Outer Measure)

A function µ∗ : 2X −→ [0,∞] is an outer measure if µ∗(∅) = 0, A ⊂ B =⇒ µ∗(A) ≤ µ∗(B), and

µ∗
( ∞⋃

k=1

Ak

)
≤

∞∑
k=1

µ∗(Ak) (21)

This final condition removes the fact that they must be disjoint, and now we have an inequality.

Now to construct our Lebesgue outer measure, let us define the following on R. It’s a hard definition, but a
natural one, since we’re taking all these intervals and trying to make them as snug as possible to define the
outer measure of an arbitrary set.

Definition 1.5 (Lebesgue Outer Measure of R)

Given A ⊂ R, let

CA =
{
{(aj , bj)}∞j=1 | A ⊂

∞⋃
j=1

(aj , bj)
}

(22)

This is more complicated than it looks. Given a set A, we are looking at a family of all collections
of intervals that cover A. Clearly, all coverings in CA must have a length greater than A, and their
length can be easily measured by summing up the intervals

∑∞
j=1(bj − aj). So, we can define the

outer measure of A to be the infimum of these sums.

λ∗(A) = inf
CA

∞∑
j=1

(bj − aj) (23)

We can also generalize this further by introducing a increasing, continuous function F : R → R and
defining the outer measure to be

λ∗(A) = inf
CA

∞∑
j=1

(
F (bj)− F (aj)

)
(24)

Example 1.1 (Rationals have Outer Measure 0)

Let us prove that λ∗(Q) = 0. It is countable so we can enumerate it Q = {qj}∞j=1. This is counterin-
tuitive, because since Q is dense in R, in order to make a covering of Q we sort of have to cover the
entire real line. Visually, this is hard, but it is pretty simple to show that you don’t have to. We pick
ϵ > 0 and define

Ij =
(
qj −

ϵ

2j
, qj +

ϵ

2j
)

(25)
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So,
∞∑
j=1

|Ij | =
∞∑
j=1

ϵ

2j
= 2ϵ (26)

This collection {Ij} is one element of CQ of coverings of the rationals, and taking ϵ as small as we
want, the infimum is 0. This can be done with all countable subsets of R.

Definition 1.6 (Almost Everywhere)

Given a measure space (X,A, µ), a subset A ∈ A is said to be a µ-null set if µ(A) = 0. If some
property holds for all points x ∈ X except on a null set, then we say that the property holds almost
everywhere.

Example 1.2 (Rational Function)

The function f(x) = 1√
|x|

is less than ∞ almost everywhere.

Proposition 1.4 (λ∗ is an Outer Measure)

The first condition is trivial. As for 2, if I have A ⊂ B ⊂ R and have a covering of B, then I also
have a covering of A, and so the infimum corresponding to the covering of B must be greater than
or equal to the infimum of that corresponding to the covering of A. For 3, we want to prove that the
outer measure of the union of Ak’s is less than or equal to the sum of the outer measures of the Ak’s.
We pick ϵ > 0 and have some covering {(akj , bkj )}∞j=1 ∈ CAk . So we have

λ∗(Ak) ≤
∞∑
j=1

bkj − akj (27)

We want the inequality to go the other way around, but we can’t do that. But note that λ∗(Ak)
is the infimum of all coverings {(akj , bkj )}∞j=1 of Ak, and so we can choose a covering that is as close
to λ∗(Ak), and then add a term of ϵ to λ∗(Ak) to make it greater than this covering. This is an
important step of the proof that is used often!

ϵ

2k
+ λ∗(Ak) ≥

∞∑
j=1

bkj − akj (28)

Now,

A =

∞⋃
k=1

Ak ⊂
∞⋃
k=1

∞⋃
j=1

(akj , b
k
j ) (29)

and we can see that {(akj , bkj )}∞j,k=1 ∈ CA is a countable covering of A (since the countable union of
a countable union is countable), implying that

λ∗(A) ≤
∞∑
k=1

∞∑
j=1

(bkj − akj ) ≤
∞∑
k=1

(
λ∗(Ak) +

ϵ

2k

)
= ϵ+

∞∑
k=1

λ∗(Ak) (30)

and so setting ϵ arbitrarily small we have λ∗(A) ≤
∑∞

k=1 λ
∗(Ak).

In Rn, this construction is exactly the same, since we can take rectangular prisms, which we know the
area/volume of, make a countable covering of some arbitrary set A ⊂ Rn, and then find the infimum of the
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volume of this set. But we can’t apply the outer measure on power sets since there exists some sets that do
not behave like how we want it to behave under a measure. For example, there exists disjoint A,B ⊂ (0, 1)
s.t. A ∪B = (0, 1), but λ∗(A) + λ∗(B) > 1.

Definition 1.7 (Carathéodory’s criterion)

Given outer measure µ∗ on X, a set B is µ∗-measurable if

∀A ⊂ X µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc) (31)

Obviously, the LHS ≤ RHS by the third condition of outer measures.

There is not much of an intuition for this definition, but in general it says that no matter how nasty a subset
A is, B should be nice enough that we can cut B into two pieces. Remember that this is a condition on B,
not A.

Example 1.3 ()

Take X = R and have B = (−∞, b]. Then Bc = (b,∞), and B divides R into a right side and a left
side. If we take any subset A ⊂ R, then B is nice enough to divide A into a left and a right side.

Theorem 1.3 ()

If µ∗ is an outer measure on X, Mµ∗ = {all µ∗-measurable sets}, then
1. Mµ∗ is a σ-algebra.
2. µ = µ∗

∣∣
Mµ∗

is a measure.

To recap, we first take a set X, construct an outer measure µ∗ on it. This allows us to define the set of all
µ∗-measurable sets B on X, which create a σ-algebra M, and the restriction of µ∗ onto M is a measure µ.
For R, we can create our Lebesgue outer measure λ∗ on it, which generates the Lebesgue σ-algebra Mλ∗ .
This turns out to be bigger than the Borel σ-algebra B(R), but there is little difference in which one we
choose when we actually integrate.

Theorem 1.4 ()

A set E ⊂ R is Lebesgue measurable implies that it is also Borel measurable.

B(R) ⊂ Mλ∗ ⊂ 2R (32)

Lemma 1.2 ()

If E ⊂ R and λ∗(E) = 0, then E ∈ Mλ∗ , i.e. E is Lebesgue outer-measurable.

Proof.

We must prove that E satisfies the Carathéodory’s criterion. For all E ⊂ R, we know that λ∗(A) ≤
λ∗(A ∩ E) + λ∗(A ∩ Ec) by definition of outer measure. Now, since λ∗(E) = 0 and A ∩ E ⊂ E, this
means that λ∗(A ∩ E) = 0 also. Furthermore, A ∩ Ec ⊂ A, meaning that λ∗(A) ≥ λ∗(A ∩ Ec), and
we get

λ∗(A) ≥ λ∗(A ∩ E) + λ∗(A ∩ Ec) (33)

which proves equality.
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Now there are nice properties that we want Lebesgue measures to have: completeness, regularity, and
translation invariance.

1. Completeness: Given sets A ⊂ B ⊂ C with µ(A) = µ(C) and A,C ∈ A, this implies that B ∈ A. This
basically says that if you a set that is squeezed in between two measurable sets of equal measure, then
the middle set will also be measurable.

2. Regularity: Given sets A ⊂ B ⊂ C, regularity talks about whether I can approximate B well. Must
nice measures have this property.

sup
A compact

µ(A) = µ(B) = inf
C open

µ(C) (34)

3. Translation invariance: Lebesgue measure is translation invariant. µ(x+A) = µ(A) for all x ∈ Rn on
B(Rn).
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2 Measurable Functions and Integration
Now that we’ve discussed measurability of sets, we need to talk about measurability of functions, and then
we can integrate over them.

2.1 Measurable Functions

Definition 2.1 (Measurable Function)

Given a measurable space (X,A), f : (X,A) −→ R is measurable if

f−1(A) ∈ A for all A open (35)

where f−1(A) denotes the preimage of A.

Note that if we take Rn, it can have either its Borel σ-algebra B(Rn) or its Lebesgue σ-algebra Mλ∗ .
Therefore, a function f : Rn −→ R is said to be Lebesgue measurable (Borel measurable) if for every
E ∈ B(R), f−1(E) ∈ Mλ∗ (f−1(E) ∈ B(Rn)). Since B(Rn) ⊂ Mλ∗ , all Borel measurable functions are
Lebesgue measurable. It follows that any continuous function f : Rn −→ R is Borel (and hence Lebesgue
measurable).

There are many ways to prove measurability, which we will list below.

Theorem 2.1 (TFAE)

The following are equivalent.
1. f is measurable
2. f−1(U) ∈ A for all U ∈ B(R
3. f−1((−∞, t)) ∈ A ∀t ∈ R.

This immediately implies that monotonic functions on R are measurable. For example, take f : [a, b] −→ R
that is nondecreasing. Then, we would like to show that the preimage of every half-interval (−∞, t) under
f is in B(R). Well if we assume f(a) ≥ t, then f(x) > t ∀t ∈ [a, b], and so its preimage is ∅. If f(a) < t,
having f(b) < t also leads to the preimage being [a, b] (which is the entire space and is in B(R)), and having
f(b) > t implies that the preimage is [a, f−1(t)].

The following theorem is useful, since we don’t want to manually check measurability of every single new
function we create.

Theorem 2.2 (Sloppy Version)

Given measurable functions f, g, the following standard operations on them create new measurable
functions:

1. f + g is measurable
2. f · g is measurable
3. αf is measurable
4. f/g is measurable on {x | g(x) ̸= 0}
5. f ∨ g := max(f, g) is measurable
6. f ∧ g := min(f, g) is measurable

Theorem 2.3 ()

Given a sequence of measurable functions f1, f2, . . ., we have

lim
k→∞

fk (36)
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is measurable where it exists.

2.2 Simple Functions
Remember that Riemann integration is characterized by the approximation of step functions, which are
the "building blocks" of Riemann integrable functions. To define the Lebesgue integral, we will consider a
generalization of step functions called simple functions. A function will be Lebesgue integrable if it can be
approximated by these simple functions in some appropriate way.

Definition 2.2 (Simple Functions)

For A ⊂ X (any subset, not just in some σ-algebra), the characteristic, or indicator function of
A is the function χA : X −→ R defined

χA(x) =

{
1 if x ∈ A

0 if else
(37)

A function ϕ : R −→ R is called a simple function if it is a finite linear combination of characteristic
functions.

ϕ =

n∑
i=1

aiχAi (38)

Lemma 2.1 (Measurability on Simple Functions)

Now, let (X,A) be a measurable space. Then,

ϕ =

n∑
i=1

aiχAi
: (X,A) −→ R (39)

is measurable if all Ai are measurable, i.e. Ai ∈ A for all i.

Proof.

Let T be an open set in R. Then, for characteristic function χA,

χ−1
A (T ) =


∅ if 0, 1 ̸∈ T

A if 1 ∈ T, 0 ̸∈ T

X \A if 0 ∈ T, 1 ̸∈ T

X if 0, 1 ∈ T

(40)

and so χA must be measurable if A ∈ A (which also by definition implies that Ac = X \ A ∈ A). If
χAi is measurable, then the linear combination of measurable functions is also measurable.

Also observe that the coefficients need not be unique, since we can write

1 · χ[0,1] + 1 · χ[0.5,1] = 1 · χ[0,0.5] + 2 · χ[0.5,1] (41)

If the Ei’s are disjoint, then this decomposition is unique and is called the standard representation of ϕ.
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Example 2.1 (Step Function as Simple Function)

For a, b ∈ R, with a < b, let f : [a, b] −→ R be a step function. That is, there exists a partition
a = x0 < x1 < . . . < xn = b and constants c1, c2, . . . , cn ∈ R s.t. f(x) = ci for all x ∈ (xi−1, xi) and
each i = 1, . . . , n. Then, f is equal to the following simple function, taken over all open intervals and
the points xj at the boundary of each interval.

f =

n∑
i=1

ciχ(xi−1,xi) +

n∑
j=0

f(xj)χ{xj} (42)

If we ignore the behavior of f on the partition points xj ’s, then f agrees almost everywhere with the
simple function

n∑
i=1

ciχ(xi−1,xi) (43)

If the Ai’s above are just intervals in R, then ϕ reduces to a step function. But the entire problem with
intervals is that they are too coarse. We can’t work with them, so we generalize them to all measurable
sets in (X,A). The Riemann integral is built on an approximation scheme of a function, which we usually
want to be continuous to satisfy this approximation, and so, if we want to build an approximation scheme
for Lebesgue integrals, we want a similar scheme, i.e. if we take a sequence of simple measurable functions,
I can get arbitrarily close to any measurable function f . This is exactly what we show below.

Theorem 2.4 ()

If f : (X,A) −→ [0,∞] is measurable, there are simple measurable functions fk : (X,A) −→ [0,∞)
s.t.

fk ≤ fk+1 and f = lim
k→∞

fk (44)

where the inequalities and limits are pointwise.

Proof.

We give a general picture of this proof for a function f : R −→ [0,∞]. We can first divide the codomain
of the graph below into segments of t = 1, 2, . . ., and take the preimage of all these units under f to
get f1. More specifically, At

1 = f−1([t,∞]) for all t. By measurability of f , At
1 is measurable, and we

can assign f1 = χA1
1
+ χA2

1
≤ f .

Doing this again with finer subintervals of the codomain gives us, with f2 = χA1
2
+χA2

2
+χA3

2
+χA4

2
≤ f .
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and in general, we have fk =
∑∞

j=1
1

2k−1χAj
k
. But we said a simple function is a finite sum, and if

∞ is in the range of f , then this becomes a problem. We can quickly fix this by just truncating the
summation at a certain point in the codomain (f1 only considers intervals up to 1, f2 up to 2 and so
on), ultimately giving us

fk =

k2k−1∑
j=1

1

2k−1
χAj

k
(45)

2.3 Lebesgue Integral
Finally, we can learn how to integrate. We require the positiveness condition on f below because our
previous theorem on approximating arbitrary functions with simple measurable functions fk requires that it
be positive, too.

Definition 2.3 (Lebesgue Integral of Positive Simple Functions)

If f =
∑n

k=1 ckχAk
is a positive simple Lebesgue measurable function on measure space (X,A, µ),

then the Lebesgue integral of f is ∫
f dµ =

n∑
k=1

ckµ(Ak) (46)

This Lebesgue integral agrees with the Riemann integral for step functions. Let c1, . . . , cn ∈ [0,∞) and
a = x0 < x1 < . . . < xn = b be a partition. Let f : [a, b] −→ [0,∞] be a step function taking the value ci on
the interval (xi−1, xi) for i = 1, . . . , n. Then the Riemann integral of f is simply∫

f(x) dx =

n∑
i=1

ck|xi − xi−1| (47)

The Lebesgue integral is ∫
f dµ =

n∑
i=1

ciµ((xi−1, xi)) +

n∑
j=0

f(xj)µ({xj})

=

n∑
i=1

ck|xi − xi−1|

which agrees with the Riemann integral. In the Riemann integral, we write dx to indicate the variable that is
being integrated over, but in the Lebesgue integral, we write dµ, the measure which we are integrating over.
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Therefore, there are many possible values that can come out of a Lebesgue integral of a certain function,
while a Riemann integral outputs only one value if exists.

Example 2.2 ()

Consider the simple function (consisting of one characteristic function) χQ∩[0,1]. Q∩[0, 1] is a Lebesgue
measurable set of R, and we have χQ∩[0,1] ≥ 0, so its Lebesgue integral is given by the above definition:∫

R
χQ∩[0,1] dλ = 1 · λ(Q ∩ [0, 1]) = 0 (48)

Definition 2.4 (Lebesgue Integral on Positive Measurable Functions)

If f : (X,A, µ) −→ [0,∞] is measurable, then∫
X

f dµ = sup
{∫

g dµ
∣∣∣ g simple , g ≤ f

}
(49)

Unlike Riemann integration, which looks at both the supremum and infimum of integrals of simple functions,
Lebesgue integration only looks at the supremum, given that f is nonnegative, so for all these f , the Lebesgue
integral always exists. Defining Lebesgue integration for all real-valued functions, requires a simple extension.

Definition 2.5 (Lebesgue Integral)

Given a function f : (X,A, µ) −→ R, we can split f into a positive and negative part:

f = f+ − f− (50)

where f+ = max(f, 0) and f− = max(−f, 0). Then, the Lebesgue integral of f is∫
f dµ =

∫
f+ dµ−

∫
f− dµ (51)

given that at least one of these integrals is finite. If one is infinite and the other is finite, then we can
call it infinite. If we have both infinite integrals, then the integral doesn’t exist. It has the properties:

1. Monotonicity:

g ≤ f =⇒
∫

g dµ ≤
∫

f dµ (52)

2. Scalar Multiplication: ∫
cf dµ = c

∫
f dµ (53)

3. Addition: ∫
f + g dµ =

∫
f dµ+

∫
g dµ (54)

Since |f | = f+ + f−, f is also Lebesgue integrable if∫
|f | dµ < ∞ (55)

since by triangle inequality, we have ∣∣∣∣ ∫ f dµ

∣∣∣∣ ≤ ∫
|f | dµ (56)
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Definition 2.6 ()

The set of all functions f : (X,A, µ) −→ R that are Lebesgue integrable is denoted L1(X,A, µ;R),
or for short L1(X,A, µ).

Theorem 2.5 ()

Suppose f : (R,A, µ) −→ R is 0 almost everywhere. Then f is Lebesgue integrable with∫
R
f dµ = 0 (57)

If g : R −→ R is such that f = g µ-almost everywhere, then∫
R
f dµ =

∫
R
g dµ (58)

2.4 Monotone Convergence Theory
From now on, we will assume that all spaces X are measure spaces (X,A, µ) and all functions f are mea-
surable functions. The huge problem with Riemann integrals is that this theorem doesn’t hold, but it is the
case for Lebesgue integration.

Theorem 2.6 (Monotone Convergene Theorem (MCT))

Given a nondecreasing sequence of measurable functions f1 ≤ f2 ≤ f3 ≤ . . . : X −→ [0,∞], its limit
limk→∞ fk always exists (since fk is nondecreasing), is measurable, and∫

lim
k→∞

fk dµ = lim
k→∞

∫
fk dµ (59)

This allows us to integrate the limit of nice functions fk by integrating these fk first and then finding
what the values converge to.

2.5 Riemann vs Lebesgue Integral

Theorem 2.7 ()

f : R −→ R is Riemann integrable iff it is continuous λ almost everywhere. If so, then f is Lebesgue
measurable and ∫

[a,b]

f dλ =

∫ b

a

f dx (60)

for all a < b ∈ R.

16/ 16


	Measures and Sigma Algebras
	Outer Measures, Construction of Lebesgue Measure

	Measurable Functions and Integration
	Measurable Functions
	Simple Functions
	Lebesgue Integral
	Monotone Convergence Theory
	Riemann vs Lebesgue Integral


