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A multiple-year course in linear algebra at the advanced undergraduate and graduate level. The notes for
this section can be a bit too abstract for someone learning linear algebra for the first time, so I suggest
learning about groups, rings, and fields first.
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1 Vector Spaces and Dual Spaces

Definition 1.1 (Vector Space)

A vector space V over a field F (usually R or C) is a set of vectors that is algebraically closed under
the operations:

1. + : V × V −→ V
2. × : F× V −→ V

It is also an additive abelian group, with additional axioms. That is, given λ, µ ∈ F and v, u ∈ V ,
1. (λ+ µ)v = λv + µv
2. λ(v + u) = λv + λu
3. (λµ)v = λ(µv) = µ(λv)

Definition 1.2 (Vector)

A vector is an element of a vector space.

Proposition 1.1 (No Zero Divisors)

There are no zero divisors of vector space V . That is,

λv = 0 =⇒ λ = 0 or v = 0 (1)

Proof.

λv = 0 =⇒ λv + λv = 0 + λv =⇒ 2λv = λv =⇒ (2λ − λ)v = 0. But λ ̸= 0, so v must equal 0.
This leads to a contradiction.

We now introduce some classic interpretations of vectors.

Example 1.1 (Vectors as N-Tuples)

n-tuples of elements of a field F, that is, in the form

(a1, a2, ..., an) (2)

are elements of a vector field, with vector addition and scalar multiplication defined component-wise.

Example 1.2 (Vectors as Arrows)

The set of all arrows in space, with addition defined by the parallelogram rule and scalar multiplication
defined as the stretching/compressing of the arrow from the origin, forms the vector space of arrows.

We define some more vector spaces that are often used.

Example 1.3 (Polynomials of Finite Degree)

The set of all polynomials of degree strictly less than n with coefficients in F defines a vector space
over F.
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Definition 1.3 (Subspace)

A subset Y of a linear space X is called a subspace if sums and scalar multiples of elements of Y
belong to Y . Note that {0}, X are subspaces of X.

Definition 1.4 (Homomorphism, Linear Map)

Given vector spaces U, V over the same field F, a mapping f : V −→ U that has properties

f(v1 + v2) = f(v1) + f(v2), f(cv) = cf(v), (c ∈ F) (3)

is called a homomorphism. The set of all homomorphisms from V to U is denoted Hom(V,U). If f
is bijective, then f is called an isomorphism, and U is said to be isomorphic to V , denoted U ≃ V .
Elements of Hom(U,U), denoted End(U), are called endomorphisms of U , and an endomorphism
of U that is also an isomorphism is called an automorphism. The set of all automorphisms of U is
denoted Aut(U).

1.1 Basis and Dimension

Definition 1.5 (Linear Combination)

A linear combination of j vectors v1, v2, ..., vj of a linear space is a vector of the form

c1v1 + c2v2 + c3v3 + ...+ cjvj , c1, ..., cj ∈ F (4)

Definition 1.6 (Span)

The span of a collection of vectors v1, v2, ..., vj ∈ V is the set

span{v1, v2, ..., vj} ≡ {c1v1 + c2v2 + c3v3 + ...+ cjvj | c1, ..., cj ∈ F} (5)

That is, span{v1, v2, ..., vj} is the smallest subspace of V that contains all v1, ..., vj .

It clearly follows that v1, ..., vn span the whole space V if every vector in V can be expressed as a linear
combination of the vi’s.

Definition 1.7 (Linear Independence)

Vectors v1, ..., vj are linearly independent if

c1v1 + c2v2 + c3v3 + ...+ cjvj = 0 =⇒ c1, ..., cj = 0 (6)

They are linearly dependent if there exists nonzero c1, ..., cj such that the equality holds true,
which is equivalent to saying that there is at least one vector vi, 1 ≤ i ≤ j, such that it can be
represented as a linear combination of all the other vectors.

Definition 1.8 (Basis)

A set of linearly independent vectors v1, ..., vn that span vector space V is called a basis of V . These
vectors vi are called basis vectors. Note that this basis is not unique; it is actually highly un-unique.

5/ 110



Linear Algebra Muchang Bahng Spring 2020

Example 1.4 (Standard Basis)

The basis ei of Fn are the vectors with every element equal to 0 except for the ith element, which is
equal to 1.

Proposition 1.2 ()

Every possible basis of a vector space V has the same number of vectors.

Proposition 1.3 ()

Any maximal linearly independent subset {e1, e2, ..., ek} of a set S is a basis of spanS.

Definition 1.9 (Dimension)

The number of vectors in a basis of vector space V is called the dimension of V , denoted dimV .

Theorem 1.1 (Isomorphism to Fn)

Every n-dimensional vector space V over F is isomorphic to Fn, the set of n-tuples of elements in F.

Corollary 1.1 (Isomorphism Between n-Dimensional Vector Spaces)

Vector spaces of the same field are isomorphic if and only if their dimensions are the same.

Example 1.5 ()

The field of complex numbers C, regarded as a vector space over R, has dimension 2. The algebra of
quaternions H has dimension 4.

Definition 1.10 (Hyperplane)

A (n− 1)-dimensional subspace of an n-dimensional space is called a hyperplane.

Definition 1.11 (Sum of Subspaces)

The sum of subspaces U1, U2, ..., Un ⊂ V , denoted

U1 + U2 + U3 + ...+ Un (7)

is called the sum of the subspaces U1, ..., Un. It is the set of all vectors that can be expressed as the
sum of vectors in each of its respective space. That is,

n∑
i=1

Ui ≡
{ n∑
i=1

ui | ui ∈ Ui
}

(8)
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Definition 1.12 (Direct Sum of Spaces)

Given subspaces V1, V2, ..., Vn ⊂ V where the intersection between two Vi’s are pairwise disjoint, the
direct sum of the subspaces is the set of vectors that can be expressed uniquely as the sum of vectors
in each of its respective spaces. That is,

n⊕
i=1

Vi ≡
{ n∑
i=1

vi | vi ∈ Vi
}

(9)

V1 ⊕ V2 ⊕ ...⊕ Vn is also a vector space.

The crucial difference between the sum and the direct sum is that the direct sum requires the subspaces to
be disjoint except for at the origin, which allows the expression of each vector in V1 ⊕ ...⊕ Vn to be unique.
It is also worth noting that the Cartesian product of vector spaces is merely just the set of tuples of vectors
that are in each respective space and is not a vector space (since addition and multiplication is not defined
on that new set). If we define the operations component-wise, then

n∏
i=1

Vi =

n∑
i=1

Vi (10)

Note that we can also define the direct sum of spaces U and V by their basis. That is, given that the basis
for U is {ei}ni=1 and the basis for V is {fj}nj=1, the basis for U ⊕ V is

{(e1, 0), (e2, 0), ..., (en, 0), (0, f1), ..., (0, fm)} (11)

Proposition 1.4 ()

The dimension of the direct sum of vector spaces is

dim

n⊕
i=1

Vi =

n∑
i=1

dimVi (12)

Proof.

This follows from the basis construction of the direct sum of Vi’s.

Definition 1.13 (Congruence Relations on Vector Spaces)

Given vector space X and subspace Y we say that two vectors x1 and x2 are congruent modulo
Y , denoted

x1 ≡ x2 (mod Y ) (13)

if x2−x1 ∈ Y . This congruence is a relation, meaning that it is symmetric, reflective, and transitive
(elaborated in the abstract algebra chapter). The congruence classes {y} is the set of all vectors
that are congruent modulo Y to y.

Definition 1.14 (Quotient Vector Space)

The quotient space modulo Y , denoted X/Y , is the set of all congruence classes modulo Y . We
can define addition and scalar multiplication on this set as such

{x}+ {y} = {x+ y} (14)
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Proposition 1.5 (Decomposition into Subspace and Quotient Space)

Given vector space X, Y a subspace of X. Then,

X ≃ Y ⊕ X

Y
(15)

Vector spaces over one field can be interpreted as a vector space over another field. This is most common
when interpreting complex vector spaces as real ones. For example, given a complex vector space Z with
basis {z1, z2, ..., zn}, every vector can be expressed as

z =

n∑
j=1

cjzj , cj ∈ C (16)

We can set cj = aj + bji uniquely, with a, b ∈ R, and rewrite

z =

n∑
j=1

ajzj + bj(izj) (17)

=⇒ {zj} ∪ {izj} forms a basis of Z as a real vector space.

1.2 Dual Spaces

Definition 1.15 (Linear Map)

A linear map is a homomorphism between vector spaces. That is, a linear map f : X −→ Y has
the properties

∀u, v ∈ X f(u+ v) = f(u) + f(v)

∀u ∈ X, c ∈ F f(cu) = cf(u)

Definition 1.16 (Dual Space)

Given a vector space V over F, the dual vector space V ∗ is the set of all linear maps that, given a
vector in V , outputs a scalar in F. That is,

V ∗ ≡ {l linear | l : V −→ F} (18)

or equivalently,
V ∗ ≡ Hom(V,F) (19)

The addition and scalar multiplication of V ∗ is defined pointwise. That is, given l,m ∈ V ∗,

(l +m)(x) = l(x) +m(x), (cl)(x) = cl(x) (20)

Theorem 1.2 (Dimensions of Dual of Finite-Dimensional Vector Spaces)

The dimension of the dual space is equal to that of the original space.

dimV = n =⇒ dimV ∗ = n (21)

While we initially view elements of V as "things" and elements of V ∗ as linear functions, this thought is
actually erroneous. Given l ∈ V ∗, we see that

l : V −→ F (22)
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But since both V and V ∗ are vector spaces, we can also see that given x ∈ V , x is also a linear function

x : V ∗ −→ F, where x(l) ≡ l(x) (23)

But this means that x is an element of V ∗∗ the dual of V ! This statement is elaborated with the following
theorem.

Theorem 1.3 (Canonical Isomorphisms of Double Duals)

V ∗∗ is naturally, or canonically, isomorphic to vector space V . However, V is not naturally
isomorphic to V ∗.

Proof.

What we mean by natural is that we do not need to select a basis in either vector space to define the
isomorphism. We fix a vector l ∈ V ∗, and given x ∈ V, ϕ ∈ V ∗∗, we define

ϕ(l) ≡ l(x) (24)

This defines a one-to-one correspondence between V and V ∗∗. On the contrary, there is no way to
define an isomorphism between V and V ∗ without further structure on V .

It is important to be aware of this duality between elements x ∈ V and l ∈ V ∗, and thus we should interpret
x ∈ V as a linear function of V ∗ and l ∈ V ∗ as a linear function of V .

Definition 1.17 (Dual Basis)

Given a basis {e1, e2, ..., en} of V , the dual basis {f1, f2, ..., fn} of V ∗ has vectors satisfying

fj(ei) = δij =

{
0 i ̸= j

1 i = j
(25)

where δij is called the Kronecker delta function.

Definition 1.18 (Annihilator)

Let Y be a subspace of X. Then the set of functions in X∗ that vanish on Y , that is, satisfy

l(y) = 0 for all y ∈ Y (26)

is called the annihilator of Y , denoted Y 0. If Y = X, then it is easy to see that Y 0 is trivial.

Theorem 1.4 ()

Given subspace Y of X
Y 0 ≃ (X/Y )∗ (27)

Proof.

The isomorphism is defined as such. Given l ∈ Y 0, we define L ∈ (Y/X)∗ as

L{x} ≡ l(x) (28)
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Corollary 1.2 ()

dimY 0 + dimY = dimX (29)

Corollary 1.3 ()

Y 00 = Y (30)

Theorem 1.5 (Quadrature Formula)

Let l be an interval on R containing t1, t2, ..., tn n distinct points. Then, given any polynomial p with
degree < n, there exist n real numbers c1, c2, ..., cn such that∫

l

p(t)dt = c1p(t1) + c2p(t2) + ...+ cnp(tn) (31)

called the quadrature formula suffices. That is, the integral of any polynomial over l can be expressed
as a linear combination of the polynomials evaluated at n distinct points in l.

Proof.

The space of all polynomials with degree < n is an n-dimensional vector space, denote it V . We
define the basis of the dual space V ∗ as

ϕi(p) ≡ p(ti), i = 1, 2, ..., n (32)

with addition and scalar multiplication defined

(ϕ+ γ)(p) ≡ ϕ(p) + γ(p)

(cϕ)(p) ≡ cϕ(p)

We can see that the ϕ’s are indeed linear since, given p, q ∈ R[t]

ϕi(p+ q) = (p+ q)(ti) = p(ti) + q(ti) = ϕi(p) + ϕi(q)

ϕi(cp) = (cp)(ti) = cp(ti) = cϕi(p)

We claim that all the phii’s are linearly independent. Assume that

n∑
i=1

ciϕi(p) =

n∑
i=1

cip(ti) = 0 (33)

Since the ϕ’s must be linearly independent for every polynomial p, set it equal to

qk(t) ≡
∏
j ̸=k

(t− tj), k = 1, 2, ..., n (34)

p = qk must imply that all ϕi(p) = 0 for all i ̸= k, which implies that ck = 0 in the linear combination.
Repeating this for k = 1, 2, ..., n results in all ci = 0, implying that the ϕi’s form a basis of V ∗. Clearly,
the function of definite integration over l is a linear mapping from V −→ R, meaning that it is in V ∗.
Therefore, it can be expressed as a linear combination of ϕi’s.
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2 Linear Maps
Remember that a linear transformation is just a homomorphism between vector spaces. That is, given linear
transformation T : U −→ V ,

T ∈ Hom(U, V ) (35)

R2

u

T

R2

T (u)

Figure 1: We can visualize all linear transformations as "transforming" the axes as shown below.

Definition 2.1 (Image)

The image, or range of T : U −→ V is the image of U under T , denoted ImT .

ImT ≡ {T (u) | u ∈ U} ⊂ V (36)

The kernel or nullspace of T is the subset of U that is mapped onto 0, denoted kerT .

kerT ≡ {u ∈ U | T (u) = 0} (37)

Example 2.1 ()

Let U1 be a subspace of U and given the quotient map

π : U −→ U/U1 (38)

Then,
kerπ = U1, Imπ = U/U1 (39)

Note that a quotient map is always surjective.

Theorem 2.1 (Rank Nullity Theorem)

Let T : U −→ V be linear. Then,

dimkerT + dim ImT = dimU (40)

This theorem is quite intuitive, if we visualize the map.
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R3 R2

ker(T )

T

x

y

−2 −1 1 2

−2

−1

1

2

Figure 2: We just have to realize that given a linear transformation mapping from a n-dimensional V to a
m-dimensional U , every vector in V will either get mapped to 0 ∈ U or will get mapped to a nonzero vector
in U . In this case, the kernel will get mapped to 0 and everything else is (not always, but in this case) R2.

Proposition 2.1 ()

Hom(U, V ) is the vector space of linear mappings, with addition and scalar multiplication defined

(S + T )(x) ≡ S(x) + T (x)

(cT )(x) ≡ cT (x)

Definition 2.2 (Composition)

The composition of linear functions, denoted with ◦, is defined

(S ◦ T )(x) ≡ S
(
T (x)

)
(41)

Given T ∈ Hom(U, V ) and S ∈ Hom(V,W ), then S ◦ T ∈ Hom(U,W ). For simplicity, we also denote
the composition as

S ◦ T ≡ ST (42)

Proposition 2.2 (Composition is Distributive)

Composition is (right and left) distributive with respect to the addition of linear maps. That is,

(R+ S) ◦ T = R ◦ T + S ◦ T
T ◦ (R+ S) = T ◦R+ T ◦ S

Definition 2.3 (Algebra)

An algebra A is a vector space with the additional operation of vector multiplication. That is, A is
closed under

◦ : A×A −→ A (43)

An algebra is associative if multiplication is associative. That is, given R,S, T ∈ A

R ◦ (S ◦ T ) = (R ◦ S) ◦ T (44)

Note that multiplication is not necessarily commutative.
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Proposition 2.3 ()

End(V ) is an associative, noncommutative algebra.

Example 2.2 ()

A rotation around any axis or a flip across any hyperplane is an element of End(Rn).

Definition 2.4 (Projection)

A projection mapping is a linear mapping P where

P = P 2 (45)

Example 2.3 ()

Let P be an orthogonal projection mapping onto a subspace Y ofX. ImP = Y , and kerP = Y ⊥ or the
span of vectors in X that are "orthogonal" to Y . Note that we haven’t actually endowed a structure
onto X to even define orthogonality yet, so this definition is purely visual and not mathematically
rigorous.

Example 2.4 ()

Reflections, projections, shears, and rotations are all linear maps. Differentiation and integration are
also examples of linear mappings.

Linear maps over vector spaces over different fields are generally not well defined since the definition of
homomorphisms do not cover the fields in which vector spaces are associated with.

Theorem 2.2 ()

Given A : V −→ U a linear mapping between vector spaces and b ∈ U , all solutions to the equation
Ax = b is in a+ kerA, that is, of the form

x = a+ y, y ∈ kerA (46)

where x = a is one solution.

Corollary 2.1 ()

A linear map A is injective if and only if kerA = 0.

Definition 2.5 (Rank)

The rank of a linear map A is the dimension of its image.
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2.1 Factorization of Linear Maps

Definition 2.6 (Restriction)

Let φ : U −→ V be a linear mapping and let U1 ⊂ U, V1 ⊂ V be subspaces. Such that

φu ∈ V for all u ∈ U (47)

Then, the linear mapping
φ1 : U1 −→ V1, φ1u = φu, u ∈ U1 (48)

is called the restriction of φ to U1, V1. It suffices the identity

φ ◦ iU = iV ◦ φ1 (49)

where iU : U1 −→ U, iV : V1 −→ V are canonical injections. Equivalently, we say that the diagram
below is commutative.

U V

U1 V1

φ

iU

φ1

iV

We can also define
φ1 ≡ i−1

v φiU (50)

The construction of the restriction is an enormously helpful tool for many proofs and very useful for factoring
linear mappings.

Definition 2.7 (Induced Mapping of Quotients)

Given φ : U −→ V with quotient maps

πU : U −→ U/U1, πV : V −→ V/V1 (51)

the induced mapping of the quotient spaces is the unique mapping φ̄ : U/U1 −→ V/V1 such
that

φ̄ ◦ πU = πV ◦ φ (52)

or equivalently, the following diagram commutes.

U V

U/U1 F/F1

φ

πU πV

φ̄

Theorem 2.3 ()

Every linear mapping can be written as the composition of a surjective mapping followed by an
injective mapping. That is, every A can be factored into

A = Ainj ◦Asurj (53)
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Proof.

We can induce a quotient mapping to construct a factoring of a linear mapping. We can define the
unique mapping

φ̄ : U/ kerU −→ F (54)

such that, φ = φ̄ ◦ πU , or that
U V

U/ kerφ

φ

πU

φ̄

commutes. Clearly, φ̄ is injective since if it were not, φ̄πUx = 0 =⇒ φx = 0 =⇒ x ∈ kerφ =⇒
πUx = 0. This also means that the restriction of φ̄ to U/ kerφ

¯̄φ : U/ kerφ −→ Imφ (55)

is a linear isomorphism. Thus, for any φ, it can be written as φ̄ ◦ πU , with φ̄ injective and πU
surjective.

Proposition 2.4 ()

Given E1, E2 subspaces of E. Then,

E1

E1 ∩ E2
≃ E1 + E2

E2
(56)

In fact, they are naturally isomorphic.

Proof.

E1 + E2 can be decomposed to E′
1 ⊕ (E1 ∩ E2) ⊕ E′

2, where E′
1 consists of the subspace of vectors

x that can only be expressed as x = x1, x1 ∈ E1 and E′
2 are vectors that can only be expressed as

x = x2, x2 ∈ E2. Define the projection mapping

proj : E1 + E2 −→ E′
1 (57)

Since E1 = E′
1 ⊕ (E1 ∩ E2), we can define the natural isomorphism

κ : E′
1 −→

E1

E1 ∩ E2
, κx = {x} (58)

We now define the mapping φ : E′
1 −→ (E1 + E2)/E2 such that

π = φproj (59)

given by the diagram
E1 + E2

E1+E2

E2

E′
1

E1

E1∩E2

proj

π

φ

κ

Such a φ exists because proj is surjective and can thus be inverted. We now claim that φ is an
isomorphism. ker proj = kerπ = E2 =⇒ κ is injective. Given x = x1 + y + x2 ∈ E1 + E2 such that
x1 ∈ E′

1, y ∈ E1 ∩ E2, x2 ∈ E′
2,

π(x) = π(x1 + y + x2) = π(x1) = φproj(x1) = φ(x1) (60)
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meaning that for every vector v ∈ (E1 + E2)/E2, it can be expressed as v = π(x) = φ(x1), meaning
that there exists a x1 ∈ E′

1 mapping to v under φ ⇐⇒ φ is surjective. So, φ is an isomorphism
=⇒ φκ−1 is an isomorphism.

Corollary 2.2 ()

In the special case when E1 ⊕ E2 = E, then the proposition states that

E1 ≃
E

E2
(61)

Let f1, f2, ..., fn be any n linear functionals of U . Define the subspace F ⊂ E as

F ≡
n⋂
i=1

ker fi (62)

and define linear map
ϕ : U −→ Fn, ϕ(x) ≡ (f1(x), f2(x), ..., fn(x)) (63)

=⇒ kerϕ = F . So, ϕ : U −→ Fn defines the isomorphism

ϕ̄ : U/F −→ Imϕ (64)

Proposition 2.5 ()

Given linear mappings ϕ : E −→ F , ψ : E −→ G such that

kerϕ ⊆ kerψ (65)

Then there exists a map κ such that
ψ = κϕ (66)

or equivalently, such that the diagram below commutes.

E F

G

ϕ

ψ
κ

Now, we introduce the concept of exact sequences which is useful in the factoring of linear maps. Note that
exact sequences are used in group theory to factor transformation groups.

Definition 2.8 ()

A sequence of linear mappings
F

φ−→ E
ψ−→ G (67)

is exact at E if
Imφ = kerψ (68)

Notice that if we have an exact sequence
0
φ−→ E

ψ−→ G (69)

then, 0 = Imφ = kerψ =⇒ ψ is injective. If we have exact sequence

F
φ−→ E

ψ−→ 0 (70)
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then, Imφ = kerψ = E =⇒ φ is surjective.

Definition 2.9 ()

A short exact sequence is a sequence of the form

0 −→ F
φ−→ E

ψ−→ G −→ 0 (71)

such that it is exact at F,E, and G. It is clear that the first and last maps are the zero maps. With
this definition, we can easily prove that

1. φ is injective
2. ψ is surjective
3. E/ ImF ≃ G

Example 2.5 ()

The sequence
0 −→ E1

i−→ E
π−→ E/E1 −→ 0 (72)

is exact, where i denotes the canonical injection and π the canonical projection. This example is the
only example of an exact sequence between vector spaces up to isomorphism.

Definition 2.10 ()

A commutative diagram of the form

0 F1 E1 G1 0

0 F2 E2 G2 0

α

φ1

β

ψ1

γ

φ2 ψ2

where both horizontal sequences are short exact sequences and α, β, γ are homomorphisms between
linear spaces is a homomorphism of exact sequences. If α, β, γ are linear isomorphisms, then
this is an isomorphism of exact sequences.

Proposition 2.6 ()

A short exact sequence of vector spaces

0 −→ F
φ−→ E

ψ−→ G −→ 0 (73)

is split if it essentially presents E as the direct sum of groups F and G. That is, there exists an
isomorphism of exact sequences.

0 F E G 0

0 F F ⊕G G 0

α

φ1

β

ψ1

γ

φ2 ψ2

or equivalently, there exists an isomorphism between E and F ⊕G.
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Definition 2.11 ()

Given a short exact sequence
0 −→ F

φ−→ E
ψ−→ G −→ 0 (74)

if there exists a map κ : G −→ E, such that ψ ◦ κ = I, then the sequence is said to be a split short
exact sequence, written

0 −→ F
φ−→ E

ψ,κ←−→ G −→ 0 (75)

Proposition 2.7 ()

Every short exact sequence can be split.

Proof.

It will be proved later that ψ is surjective =⇒ ψ is left invertible.

Definition 2.12 (Stable Subspaces)

Given φ : E −→ E, a subspace E1 ⊂ E is called stable

x ∈ E1 =⇒ φx ∈ E1 (76)

That is, the restriction of φ to E1, denoted

φ : E1 −→ E1 (77)

is well-defined. Clearly, Imφ and kerφ is stable, and the induced map

φ̄ : E/E1 −→ E/E1 (78)

is a linear endomorphism of E/E1.

We end this subsection by defining the induced linear map from the direct sum of spaces.

Definition 2.13 ()

Given linear maps Ai ∈ End(Vi) for i = 1, 2, ..., n, the induced linear map

n⊕
i=1

Ai :

n⊕
i=1

Vi −→
n⊕
i=1

Vi (79)

is defined

(

n⊕
i=1

Ai)(

n⊕
i=1

xi) ≡
n⊕
i=1

Aixi (80)

2.2 Invertibility and Transpose
We now introduce the concepts of left and right invertibility of linear mappings.
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Theorem 2.4 (Left/Right-Invertibility)

A linear mapping T : U −→ V , with dimU = n, dimV = m, is left-invertible. That is, there exists
linear S such that

ST = I (81)

if and only if T is injective ⇐⇒ rank(T ) = n. Linear T is right-invertible, that is, there exists
linear S such that

TS = I (82)

if and only if T is surjective ⇐⇒ rank(T ) = m.

Proof.

We will only prove the case for left-invertibility. Right invertibility follows analogously.
1. (←) T is injective =⇒ rank(T ) = dimU = dim ImT . Let (ImT )′ exist such that

ImT ⊕ (ImT )′ = V (83)

We define the isomorphism
T̃ : V −→ ImT (84)

and then define S. Given that v = w + w′ ∈ V , with w ∈ ImT,w′ ∈ (ImT )′,

S : V −→ U, S(v) ≡ T̃−1(v) (85)

=⇒ ST (u) = T̃−1T (u) = u ⇐⇒ ST = I.
2. (→) We prove the contrapositive. T is not injective =⇒ dimkerT > 0 =⇒ there exists 2

linearly independent vectors x, y ∈ U such that

Tx = Ty (86)

Assume that a left inverse S exists. Then

x = STx = STy = y =⇒ x = y (87)

leading to a contradiction =⇒ the left-inverse does not exist.

Definition 2.14 (Inverse)

The inverse of a linear map A, denoted A−1 is a unique linear map satisfying

AA−1 = A−1A = I (88)

where I is the identity map.

Corollary 2.3 ()

A linear map is invertible if and only if it is an isomorphism.

We finally end this section by defining the transpose of a linear mapping.
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Definition 2.15 (Transpose)

Given a linear mapping A : U −→ V , let there exist a certain φ ∈ V ∗. Then, there exists a
corresponding l ∈ U∗ such that

l ≡ φA (89)

This mapping AT : V ∗ −→ U∗ that assigns every φ to a corresponding l is called the transpose of
A. Note that the transpose is canonically formed when defining any linear map. We do not need any
additional structure on U or V to define AT .

U V

F

A

l=φA
φ

It is worth mentioning that AT maps every element in the annihilator V 0 to an element in U0, but not
necessarily the other way around.

Theorem 2.5 ()

(ImA)0 = kerAT or equivalently, ImA = (kerAT )0 (90)
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3 Metrics, Norms, and Inner Products
Given a vector space V , we can induce different structures on it to allow us to conduct different measurements
on it. For example, the endowment of the basis structure on V allows us to represent vector as an n-tuple
of scalars. Some structures may induce other structures, such as the inner product inducing a norm or a
metric inducing a norm. We will begin by defining these structures. It must be further noted that in order
to induce such structures on V , its base field F must be ordered. We will treat F = C for the following
definitions.

Definition 3.1 (Metric)

A metric on a vector space V over field C is a mapping

d : V × V −→ R (91)

satisfying three properties
1. d(x, y) = d(y, x)
2. d(x, y) ≥ 0, with d(x, y) = 0 ⇐⇒ x = y
3. d(x, y) + d(y, z) ≥ d(x, z)

A metric allows us to define some notion of distance in V . A vector space V with a metric is called
a metric space, denoted (V, d).

Definition 3.2 (Norm)

A norm on a vector space V over field C is a mapping

ρ : V −→ R (92)

satisfying three properties
1. ρ(x) ≥ 0, with ρ(x) = 0 ⇐⇒ x = 0
2. For a ∈ C, ρ(ax) = |a|ρ(x)
3. ρ(x+ y) ≤ ρ(x) + ρ(y)

A norm allows us to define some notion of a magnitude or length on each vector in V . A vector space
V with a norm is called a normed space, denoted (V, ρ).

Example 3.1 (Absolute Value)

The absolute value function | · | : C −→ R+ is an example of a norm on the 1 dimensional space C.

Example 3.2 (Euclidean Norm, L2-Norm)

The Euclidean norm of a vector x ≡ (x1, x2, ..., xn)
T ∈ Rn is defined

||x||2 ≡
( n∑
i=1

x2i

) 1
2

(93)

This is the most commonly used norm in Rn.
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Example 3.3 (Taxicab Norm, Manhattan Norm)

The Taxicab norm of x ≡ (x1, x2, ..., xn)
T ∈ Rn is defined

||x||1 ≡
n∑
i=1

|xi| (94)

Example 3.4 (Infinity Norm, L∞-Norm)

The Infinity norm of vector x ≡ (x1, x2, ..., xn)
T ∈ Rn is defined

||x||∞ ≡ max {|x1|, |x2|, ..., |xn|} (95)

Example 3.5 (p-norm, Lp-Norm)

Let p ≥ 1 be a real number. The p-norm of a vector

x ≡ (x1, x2, ..., xn)
T ∈ Rn (96)

is defined

||x||p ≡
( n∑
i=1

xpi

) 1
p

(97)

For 0 < p < 1, this function could be of some use, but it is not considered a norm since it violates
the triangle inequality. When p = 1 and p = 2, the norm is the Taxicab norm and Euclidean norm,
respectively, and

lim
p→∞

|| · ||p = || · ||∞ (98)

Definition 3.3 (Seminorm)

A seminorm, or a pseudo-norm, has the same properties except that ρ(x) = 0 does not necessarily
imply that x = 0. That is, nonzero vectors can have norms of 0.

Theorem 3.1 (Norm Induces Metric)

Every norm induces a metric in the following way

d(x, y) ≡ ρ(x− y) (99)

However, a metric does not necessarily induce a norm because the definition

ρ(x) ≡ d(x, 0) (100)

is not guaranteed to have all properties of the norm.

Definition 3.4 (Inner Product)

An inner product on a vector space V over field C is a mapping

(·, ·) : V × V −→ R (101)

satisfying three properties
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1. First Argument Linearity: (λx+ µy, z) = λ(x, z) + µ(y, z)
2. Conjugate symmetry: (x, y) = ¯(y, x)
3. (x, y) ≥ 0, with (x, y) = 0 ⇐⇒ x = y

An inner product allows us to define some notion of an angle between two vectors in V . A vector
space V with an inner product is called an inner product space. Note that when the field is C, the
inner product is sesqui-linear, that is, linear with respect to the first argument and skew linear
with respect to the second. When R, it is bilinear.

The inner product of a vector space V over R is an element of V ∗ ⊗ V ∗. This concept of the metric tensor
occurs when studying Riemannian manifolds in general relativity.

Definition 3.5 (Inner Product Induces Norm)

An inner product induces a norm in the following way

||x|| ≡
√
(x, x) (102)

Theorem 3.2 (Schwarz Inequality)

For all x, y ∈ V ,
|(x, y)| ≤ ||x||||y|| (103)

Example 3.6 (Dot Product)

Given vectors x, y ∈ Rn,

x · y ≡


x1
x2
...
xn

 ·

y1
y2
...
yn

 ≡
n∑
i=1

xiyi (104)

Example 3.7 (Integral Product)

Let C0[a, b] be the space of all continuous real-valued functions defined over the interval [a, b] ⊂ R.
Given f, g ∈ C0[a, b],

(f, g) ≡
∫ b

a

f(x)g(x)dx (105)

is an inner product on C0[a, b].

Theorem 3.3 (Pythagorean Theorem)

||x||2 + ||y||2 = ||x+ y||2 (106)

Theorem 3.4 ()

||x|| = max
||y||=1

(x, y) (107)
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Definition 3.6 (Orthogonal Vectors)

Two vectors x, y of an inner product space are said to be orthogonal if

(x, y) = 0 (108)

Note that the definition of orthogonality is dependent on the definition of the inner product. If the inner
product is defined differently, then orthogonality will be defined differently. In the case when the inner
product is defined to be the dot product, orthogonality is defined to be the "normal" perpendicularity
between vectors. We can further define subspaces to be orthogonal.

Definition 3.7 (Orthogonal Subspaces)

Two subspaces Y,Z of inner product space Z are said to be orthogonal to each other if

(y, z) = 0 for every y ∈ Y, z ∈ Z (109)

Definition 3.8 (Orthogonal Complement)

Given a subspace Y of inner product space X, the orthogonal complement of Y , denoted Y ⊥, is
defined

{x ∈ X | (x, y) = 0 ∀y ∈ Y } (110)

which is the set of all vectors in X orthogonal to every vector in Y . Clearly, Y ⊕ Y ⊥ = X.

The concept of orthogonality also allows us to define orthogonal projections onto a vector or subspace.

Definition 3.9 (Orthogonal Projectjion)

Let x ∈ X and let Y be a subspace of X. Then x can be decomposed into the form x = y + z, y ∈
Y, z ∈ Y ⊥. The orthogonal projection of x onto Y is then defined as

projY (x) = y (111)

Orthogonal projections are linear transformations.

Theorem 3.5 ()

Given that x ∈ Rn is projected onto a 1-dimensional subspace Y . The orthogonal projection of x
onto Y can be computed with the formula

projY (x) =
x · y
||y||2

y (112)

where y is an arbitrary vector in Y and · is the dot product in Rn. Furthermore, for a k-dimensional
subspace Y , we can calculate the projection by first adding up the projections of x onto a set of basis
vectors of Y and then adding them up. That is, given basis r1, r2, ..., rk of Y ,

projY (x) =
k∑
i=1

projri(x) =
k∑
i=1

x · ri
||ri||2

ri (113)
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Theorem 3.6 (Orthonormal Basis in Hilbert Space)

Every inner product space has a basis consisting of vectors that are pairwise orthogonal, called an
orthogonal basis. Furthermore, each vector in the orthogonal basis can be scaled to have magnitude
1, forming an orthonormal basis.

Proof.

The algorithm used to construct an orthonormal basis is called Grahm-Schmidt. We start off with
any basis, not necessarily orthonormal, of X, denoted {x1, x2, ..., xn}. We first assign

x1 = l1 (114)

Then we take x2 and find the orthogonal component (with respect to l1) with the equation

l2 = x2 − projl1(x2) (115)

This creates an orthogonal basis for span{x1, x2}. Then we take x3 and find the orthogonal component
(with respect to span{l1, l2}.

l3 = x3 − projl1(x3)− projl2(x3) (116)

This creates an orthogonal basis for span{x1, x2, x3}. We repeat this process until we complete the
basis of X, using the general equation

lk = xk −
k−1∑
i=1

projlk(xk) = xk −
k−1∑
i=1

xk · lk
||lk||2

lk, k = 1, 2, ..., n (117)

Finally, we take these orthogonal vectors and normalize them to magnitude 1. Note that this algorithm
does not produce a unique orthonormal basis. Rather, it is highly un-unique.

Given that we have an orthonormal basis {ri}ki=1 of subspace Y in Rn, we can more simply define

projY (x) =
k∑
i=1

(x · ri)ri (118)

Theorem 3.7 ()

The inner product endowed on V induces a natural isomorphism between V and V ∗.

Proof.

We fix y ∈ V and simply define the isomorphism to be.

l(y) ≡ (x, y) (119)

which defines a bijection between x ∈ V and l ∈ V ∗.

Note that given vector spaces U, V , the set of all linear mappings A : U −→ V also forms a vector space.
More specifically, it is a rank (1,1) tensor product space. This means that we can define similar Euclidean
structures on them. The norm of a matrix is worth mentioning. Note that the structures and concepts of
metrics, norms, inner products, distances, magnitudes, orthogonality, and basis are not intrinsic properties
of the vector space. So, we will not assume the existence of these structures unless otherwise stated or
explicitly implied.
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4 Matrices

4.1 Representations of Linear Maps
We now describe the construction of the matrix realization of a linear map from V −→ U . In order to do
this, we must define a basis for each V and U . If V = U , then we usually define the same basis for both the
domain and codomain.

Let the basis for U be {u1, u2, ..., un} and the basis of V be {v1, v2, ..., vm}. In fact, the assignment of this
specific basis is a linear map in of itself. That is,

i : U −→ Fn,i(uα) = eα

j : V −→ Fm,j(vβ) = eβ

However, we do not usually include this transformation in the notation. We just denote i(u) as u and j(v)
as v. Every vector u ∈ U can then be represented as a linear combination

u =

n∑
j=1

cjuj (120)

By linearity of the mapping A : U −→ V ,

Au = A

( n∑
j=1

cjuj

)
=

n∑
j=1

cjAuj (121)

This means that A can be completely, uniquely determined by defining how it maps the n basis vectors
uj ∈ U , that is, by defining the values

Au1, Au2, ..., Aun−1, Aun (122)

Each Auj will be an element of V , which means that Auj can be decomposed into the linear combination of
vi’s. That is,

Auj =

m∑
i=1

aijvi, j = 1, 2, ..., n (123)

We are done. Given the basis of the domain and codomain, the elements aij are precisely the entries of the
m× n matrix (1 ≤ i ≤ m, 1 ≤ j ≤ n).

v = Au ⇐⇒


b1
b2
...
bm

 =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



c1
c2
c3
...
cn

 (124)

It is important to note that the matrix is not A in of itself. In the most rigorous sense, the matrix A is
really just equal to the composition of mappings j−1Ai, but for simplicity it is just written as A. It is just
one representation of a linear map given the two bases of the domain and codomain. Furthermore, as soon
as one writes down a matrix to represent a linear map, they are automatically assuming some choice of basis
given by i and j.

Definition 4.1 ()

The algebra of n×n matrices over field F, denoted Mat(n,F), is defined with regular matrix addition
and multiplication.

Furthermore, we can define the mapping between linear operators T : Fn −→ Fm and m×n matrices (given
that there is a basis for both Fn,Fm.
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Definition 4.2 ()

The linear mapping between the algebras

ρ : Hom(Fn,Fm) −→ Mat(m× n,F) (125)

is a multiplicative group homomorphism. This mapping that assigns abstract group elements of linear
mappings to matrices is called a representation.

Theorem 4.1 ()

Mat(n,F) ≃ End(Fn)

Proof.

A matrix is completely determined by the basis mapping i. By definition, a linear mapping over F is
a basis mapping if and only if it is an element of End(Fn).

Note that the composition operation in the algebra of linear operators is realized as the operation of matrix
multiplication. These are two distinct operations that are related only through the basis mappings i and j.

Example 4.1 ()

Let α : R2 −→ R2 be the linear transformation of the counterclockwise rotation by θ and β : R2 −→ R2

be the counterclockwise rotation of ϕ. Then the matrix representation of α ◦ β is(
cos θ − sin θ
sin θ cos θ

)(
cosϕ − sinϕ
sinϕ cosϕ

)
(126)

=

(
cos θ cosϕ− sin θ sinϕ − sinϕ cos θ − cosϕ sin θ
sin θ cosϕ+ cos θ sinϕ − sin θ sinϕ+ cos θ cosϕ

)
(127)

But the counterclockwise rotation by θ and then ϕ is really just a counterclockwise rotation by θ+ϕ,
which has the matrix representation(

cos (θ + ϕ) − sin (θ + ϕ)
sin (θ + ϕ) cos (θ + ϕ)

)
(128)

Since both matrices must be equivalent, this produces the trigonometric identities for angle addition.

sin (θ + ϕ) = sin θ cosϕ+ cos θ sinϕ

cos (θ + ϕ) = cos θ cosϕ− sin θ sinϕ

Theorem 4.2 ()

Given mappings Ai ∈ End(Vi) for i = 1, 2, ..., n, the matrix representation of the induced linear
mapping A1 ⊕A2 ⊕ ...⊕An is the block matrix

A1

A2

. . .
An

 :

n⊕
i=1

Vi −→
n⊕
i=1

Vi (129)
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4.2 Change of Basis

Definition 4.3 (Active, Passive Transformation)

A linear transformation A that maps every vector from U to a vector in V is called an active
transformation. However, a passive transformation, or a change of basis transformation,
linearly transforms the set of basis vectors to another set of basis vectors within the same space. That
is, a passive transformation takes the components of a vector v with respect to basis {e1, e2, ..., en}
and merely represents v with respect to another set of basis {f1, f2, ..., fn}.

It is obvious that a passive transformation in V is an element of End(V ). But note that an element of
End(V ) could be interpreted both as a passive and active transformation. Usually, the context will make it
clear whether we are interpreting a transformation as passive or active. We now provide the construction of
the change of basis.

Suppose e1, e2, ..., en is a basis for vector space V and f1, f2, ..., fn is another basis for V . So, every basis
vector fi can be presented as a linear combination of the old basis vectors.

fj =

n∑
i=1

sijei for all i, j (130)

A general vector x ∈ V will transform as such

x =
∑
j

yjfj for y1, y2, ... ∈ F

=
∑
i,j

yjsijei

=
∑
i

(∑
j

sijyj

)
ei

=
∑
i

xiei =⇒ xi =
∑
j

sijyj

(131)

Similarly to the process of how we constructed matrix representations of linear operators, this process makes
it clear that sij are the entries of the n× n matrix representation of the passive mapping S. The final line
of the equation above can be expressed, in terms of matrices, as

x1
x2
...
...
xn

 =

 S



y1
y2
...
...
yn

 (132)

This is a change of basis, since both the coefficients xi and yi represent the same vector x in V , but through
a different basis determined by S. Note that S must be an invertible matrix since we are mapping bases to
bases. So, given that x = Sy, if Ax = b is a matrix equation, then

Ax = b =⇒ ASy = Sb′ =⇒ S−1ASy = b′ (133)

where b′ is the set of new coefficients for the vector with respect to the basis induced by S. This leads to the
concept of matrix similarities. We once again note that whenever we create a matrix as an m × n entry of
numbers, we are intuitively fixing a basis (not necessarily orthonormal, even) for the vectors that the matrix
is transforming on. For example, the matrix A in y′ = Ax′ transforms the vector x′ with respect to the basis
which x′ is in, i.e. the basis e′1, e′2, ..., e′n. This transformation is not the same if it were to act on the vector
x, which is determined by the basis e1, e2, ..., en. Therefore, we must also "change" the matrix A acting on
x′ in order to account for the change in basis from x′ to x. This change is

A→ B = SAS−1 (134)
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where matrix A represents the transformation with respect to basis formed by the column vectors of S, and
B represents the same transformation with respect to the basis formed by the column vectors of S−1.

Definition 4.4 (Similar Matrices)

Two matrices A and B are similar if and only if there exists an invertible matrix S such that
B = SAS−1. A and B both represent the same transformation T but merely in different bases. Matrix
similarity is a relation that partitions the n2-dimensional matrix algebra Mat(n,R) into similarity
classes.

4.3 Solving Systems of Equations

Definition 4.5 (Linear System of Equations)

Fix a field F. A linear equation with variables x1, x2, ..., xn is in the form

a1x1 + a2x2 + a3x3 + ...+ anxn = b (135)

where the coefficients ai and the free term b belong to F. If b = 0, then (3) is called a homoge-
neous equation and if b ̸= 0, then it is called a inhomogeneous equation.

A system of m linear equations with n variables has the following general form

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

.............................................. = ....

am1x1 + am2x2 + ...+ amnxn = bm

By matrix multiplication, this system is equal to the matrix equation Ax = b.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1
x2
x3
...
xn

 =


b1
b2
...
bm

 (136)

That is, given a linear transformation A : Fn −→ Fm and a vector b ∈ Fm, we must find the preimage of
b under A. Clearly, x is a solution of this matrix equation if and only if it is a solution of the system of
equations.

We can interpret this matrix equation in two ways. First, we introduce the hyperplane interpertation. The
solution to each linear equation of n variables represents an affine hyperplane in Fn. Therefore, the solutions
to the system of m linear equations is simply the intersection of the m affine hyperplanes of dimension n− 1
within Rn. That is, x is a solution of Ax = b if and only if

x ∈
m⋂
i=1

{
(x1, x2, ..., xn) |

n∑
j=1

aijxj = bi

}
(137)

The column space interpretation presents Ax = b in this equivalent form.

x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ . . .+ xn


a1n
a2n
...

amn

 =


b1
b2
...
bm

 (138)
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That is, the solutions x1, x2, ..., xn are precisely the coefficients of the linear combination of the column
vectors of A that add up to vector b. Equivalently, it is the realization of vector b with respect to the
coordinate system of the column vectors of A. Note that the column space need not be a basis of Fm. It
does not need to be linearly independent nor does it need to span Fn.

Definition 4.6 (Coefficient Matrix)

The matrix A under the system is called the coefficient matrix and the matrix

Ã ≡

 | | ... | |
a1 a2 ... an b
| | ... | |

 ≡

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm

 (139)

is called the extended matrix.

Definition 4.7 ()

A system of equations is called compatible if it has at least one solution and incompatible other-
wise.

Definition 4.8 (Elementary Transformation)

An elementary transformation of a system of linear equation is one of the following three types
of transformations

1. adding an equation multiplied by a number to another later equation
2. interchanging two equations
3. multiplying an equation by a nonzero number

Definition 4.9 (Elementary Row Transformation)

An elementary row transformation of a matrix is one of the following three types of transforma-
tions

1. adding a row multiplied by a number to another later row
2. interchanging two rows
3. multiplying a row by a nonzero number

Clearly, these two definitions are equivalent since every elementary transformation of a system has a corre-
sponding row transformation in its extended matrix. Given the ith row of a matrix, a "later" row means the
jth row, where j > i. Defining property (i) to add to a later row does not actually restrict where we can
add rows to, since property (ii) allows us to add any scalar multiple of any row to any other row. We define
it this way for future convenience in defining the LUP Decomposition.

Definition 4.10 ()

The elementary transformations on a m × n matrix A is equivalent to left matrix multiplication by
the following m×m matrices. Due to the following difficulty in presenting these matrices in a general
form, we present them in the specific 4×4 case and hope that the reader can extrapolate this process
to general matrices.

1. Adding row i multiplied by scalar α to row j (where j > i) is denoted E1
α×i+j . The matrix is
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the identity matrix with α in the (j, i) position.

E1
2×1+2 =


1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

 , E1
−3×2+4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −3 0 1

 (140)

2. Interchanging the ith and jth row is denoted by matrix E2
ij . Note that these are permutation

matrices, or more speficially, transpositions.

E2
23 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , E2
24 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (141)

3. Multiplying the ith row by a scalar α is denoted by matrix E3
α×i.

E3
3×3 =


1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 , E3
7×1 =


7 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (142)

Theorem 4.3 ()

Each elementary matrix is invertible and their inverses are also elementary matrices. More specifically,
1. (E1

α×i+j)
−1 = E1

−α×i+j (same matrix but α changed to -α)
2. (E2

ij)
−1 = E2

ij (same matrix)
3. (E3

α×i)
−1 = E3

(1/α)×i (same matrix but α changed to 1/α)

Elementary column operations of are equivalent to right multiplication of matrices.

Definition 4.11 (Pivot)

The pivot of a row (a1, a2, ..., an) is its first nonzero element. If this element is ak, then k is the
index of the pivot.

Definition 4.12 (Echelon Form)

A matrix is in Echelon form, or row Echelon form, if
1. the indices of the pivots of its nonzero rows form a strictly increasing sequence, like steps
2. zero rows, if they exist, are at the bottom

Thus, a matrix in Echelon form is in form

a1j1 ∗ . . . . . . ∗
0 a2j2 ∗ . . . ∗

0 0
. . . . . . ∗

0 0 0 arjr
...

0 0 . . . 0 0

 (143)

where ∗’s represent arbitrary numbers, aiji ’s are nonzero (with indices ji, and the entries to the left
of below them are 0. Property (i) also states that j1 < j2 < ... < jr. Let us denote the Echelon form
of matrix A as ref(A).
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Theorem 4.4 ()

Every matrix can be reduced to step form by elementary row transformations.

Proof.

The relevant algorithm used will not be shown here, but we will mention that this procedure is called
Gauss Elimination, or row reduction.

The computational efficiency of Gauss Elimination is well known. Solving a system of n equations with
n variables with this algorithm requires approximately 2n3/3 operations, meaning that it has arithmetic
complexity of O(n3). However, for matrices of large order, multiple problems can occur.

The algorithm generally does not have memory problems if the field is finite or if the coefficients are floating-
point numbers. However, if the coefficients are integers or rational numbers, the intermediate entries of
the algorithm can grow exponentially large, so bit complexity is exponential. However, there is a variant
of Gaussian elimination, called the Bareiss algorithm, that avoids this problem, but has bit complexity of
O(n5). Another problem is numerical instability, caused by the possibility of dividing by numbers very close
to 0. Any such number would have its existing error amplified. Gaussian elimination algorithm is generally
known to be stable for positive-definite matrices.

Under the column space interpretation, Gaussian Elimination is really just an algorithm that performs a
change of basis in steps. Each elementary operation simultaneously changes all of the vectors of the column
space in such a way that eventually, this set of vectors will be "nice-looking" with a lot of zero entries. Under
the hyperplane interpretation, it is a bit harder to visualize, but it is sufficient to say that each elementary
operation either "stretches/compresses" (iii) a hyperplane or it "rotates" (i) the hyperplane around the axis
where the solution exists. Either way, the intersection between the hyperplane and the set of solutions do
not change.

Definition 4.13 (Step Form)

A system of linear equations is said to be in step form if its extended matrix is in Echelon form.

Definition 4.14 ()

A matrix is in reduced row echelon form, denoted rref(A), if
1. it is in row echelon form
2. the pivots are all equal to 1
3. each column containing a pivot has zeros in all other entries

Theorem 4.5 ()

Every matrix can be reduced to reduced row echelon form by elementary row operations.

Proof.

We will briefly describe the method to do this. We first reduce matrix A to step form. Then, we
perform the algorithm known as back substitution, where we start with the bottom row and use
elementary operations to cancel out terms in upper rows.
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Definition 4.15 ()

A system of linear equations is said to be solved if its extended matrix is in reduced row echelon
form.

Definition 4.16 ()

A matrix is called lower triangular if aij = 0 for i < j. It is called upper triangular if aij = 0
for i > j. A square matrix is diagonal if aij = 0 for i ̸= j.

Theorem 4.6 ()

Elementary operations on either a system of linear equations or its extended matrix does not change
its solutions.

Proof.

It is easy to see this is true when performing the computations with the three transformations. We
can prove this more abstractly (tbd): Given the system Ax = b with x ∈ Fn, b ∈ Fm. We see that
A ∈ Mat(m×n,F) =⇒ Ã ∈ Mat(m× (n+1),F). Each elementary row transformation on Ã, denote
it E, is a bijective mapping. Let us define the mapping

sol : Mat
(
m× (n+ 1),F

)
−→ 2F

n

, sol
(
A b

)
≡ {x ∈ Fn | Ax = b} (144)

where 2F
n

is the set of all subsets of Fn. By matrix multiplication, we see that

E
(
A b

)
=
(
EA Eb

)
(145)

Since E is bijective, it is invertible. So,

sol
(
E
(
A b

) )
= sol

(
EA Eb

)
(146)

= {x | EAx = Eb} (147)
= {x | Ax = b} (148)

= sol
(
A b

)
(149)

Note the importance of this theorem. This result is the foundation behind the applications of Jordan
Elimination.

Definition 4.17 ()

A linear system can have either have no possible solutions (overdetermined), one unique solution, or
multiple solutions (underdetermined) (infinite solutions if charF = 0). We can say with probability
1 that given a random m× n matrix A with random m-dimensional vector b, the system Ax = b has

1. 0 solutions if m > n, since there are more equations than variables
2. 1 solution if m = n with the same number of equations and variables
3. Infinite solutions if m < n since there are more variables than equations

Definition 4.18 ()

The variables corresponding to the indices of the pivots are called the pivot variables. The rest of
the variables are called free variables

Because of theorem 3.3, we can determine whether a system has 0, 1, or multiple solutions by looking at the
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extended matrix’s Echelon form. The case for 0 solutions is easy.

Theorem 4.7 ()

The system Ax = b has 0 solutions if and only if ref(Ã) contains a row in the form(
0 0 ... 0 c

)
, c ̸= 0 (150)

Proof.

The existence of this row is equivalent to the linear equation

0x1 + 0x2 + ...+ 0xn = c, c ̸= 0 (151)

which is absurd and cannot have any solution. Under the hyperplane interpretation, we can visualize
all the hyperplanes failing to have a common point.

Corollary 4.1 ()

Given m × n matrix A, if m > n and the row vectors of A are all linearly independent, then the
system Ax = b has 0 solutions.

Theorem 4.8 ()

The system Ax = b has 1 solution if and only if ref(A) is diagonal.

Proof.

ref(A) being diagonal implies that there exists at least one solution and also implies the absence of
any free variables.

Theorem 4.9 ()

The system Ax = b has multiple solutions if and only if ref(A) has free variables.

Proof.

Clear.

Definition 4.19 (Rank)

The number of pivots in ref(A) is called the rank of A, denoted rk(A).

Theorem 4.10 ()

Let A be a m× n matrix. Then rk(A) ≤ min{m,n}.

Proof.

By definition, the number of pivots cannot exceed the number of variables nor can it exceed the
number of equations.
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Definition 4.20 ()

A n × n matrix A is called nonsingular if and only if rk(A) = n. It is singular if and only if
rk(A) < n. Clearly, rk(A) ̸> n.

4.4 Four Fundamental Spaces
We will begin to bring over the general concepts of linear transformations and state them within the realm
of matrices. We will start with the concept of dual vectors.

It is customary to interpret vectors in the abstract sense as a column of n numbers. Given that vectors are
column vectors, it is sometimes useful (but not entirely comprehensive) to interpret covectors as row vectors.
That is, given a vector v and covector l, l linearly maps v to a field element by left matrix multiplication.

l(v) =
(
l1 l2 ... ln

)
v1
v2
...
vn

 =

n∑
i=1

livi (152)

Definition 4.21 (Transpose of a Matrix)

The transpose of matrix A, denoted AT , is the matrix with entries (aT )ij = aij . That is, it is A,
"flipped over."

We illustrate why this definition of a transpose is equivalent to the abstract definition to the transpose of a
linear map. Given a linear map A : U −→ V with dimU = n, dimV = m, we can fix a basis on both U and
V to define its matrix A. The abstract definition states that

AT : V ∗ −→ U∗, l ≡ φA (153)

Treating l and φ as row vectors, we can see that the m×n matrix A maps the 1×m covector φ to the 1×n
covector l. Note that this linear mapping is realized through right multiplication of A on φ. It is customary
to present linear maps as left multiplication, so by "flipping" (i.e. taking the matrix transpose) of all the
elements in the equation, we get

lT ≡ ATφT (154)

which presents the mapping in the more usual way of left matrix multiplication. Note that lT and φT are
still covectors. Just because they are now represented as column vectors, it does not mean that they are
not covectors, which is why we shouldn’t be too dependent on the row vector interpretation of dual vectors
mentioned above.

Continuing the previous point, note that the way we represent vectors and linear transformation has all
been arbitrarily chosen. There is nothing innate about the way we express these transformation as matrix
multiplication. This last example especially shows us that the entire definition of the matrix transpose
(rooting from the abstract definition) is dependent on our initial choice to represent linear mappings as left
matrix multiplication and to represent all vectors as column vectors.

Theorem 4.11 (Properties of the Transpose)

Given that A,B : U −→ V is linear, c a constant
1. (AT )T = A.
2. (A+B)T = AT +BT , (cA)T = cAT .
3. (AB)T = BTAT .
4. If A is invertible, (A−1)T = (AT )−1 and A invertible =⇒ AT invertible.
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5. x · y = xT y. Furthermore,

Ax · y = (Ax)T y = xTAT y = x ·AT y (155)

Definition 4.22 ()

Matrix A is a symmetric matrix if A = AT . A is skew-symmetric, or anti-symmetric, if
AT = −A.

Now we are ready to describe the four fundamental spaces of a matrix A: the column space, row space,
nullspace, and left nullspace. All four of these spaces are subspaces, but we will not check them here.

Definition 4.23 (Column Space)

The column space of matrix A, denoted C(A), is the span of its column vectors. That is,

C(A) = span{a1, a2, ..., an} (156)

We will denote the column vectors with lowercase ai’s.

Definition 4.24 (Row Space)

The row space of matrix A, denoted R(A), is the span of its row vectors. That is,

R(A) = span{A1, A2, ..., Am} (157)

We will denote the row vectors with uppercase Ai’s.

Definition 4.25 (Null Space)

The kernel of linear transformation is called the nullspace of its associated matrix, denoted Null(A).

Definition 4.26 ()

The left nullspace of matrix A is the nullspace of AT . It is denoted Null(AT ).

Theorem 4.12 ()

By the column space interpretation, it is clear that

C(A) = Im A (158)

We state the matrix analogue of Theorem 2.5.

Theorem 4.13 ()

A vector is a solution to the system of equation Ax = b if and only if it is of the form

a+ Null (A) (159)

where a is one solution.
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Theorem 4.14 ()

Let A : Fn −→ Fm be a m × n matrix with rank k. Assuming that Fn and Fm are inner product
spaces,

Null(A) = R(A)⊥ ⇐⇒ Null(A)⊥ = R(A) (160)

Null(AT ) = C(A)⊥ ⇐⇒ Null(AT )⊥ = C(A) (161)

That is, Null(A) and R(A) are orthogonal complements in Fn, with dimR(A) = k and dimNull(A) =
n−k. Null(AT ) and C(A) are orthogonal complements in Fm, with dimC(A) = k and dimNull(AT ) =
m− k.

Corollary 4.2 ()

The solution to the homogeneous system Ax = 0 is precisely Null(A).

Definition 4.27 ()

The homogeneous system Ax = 0 always has a trivial solution x = 0.

Example 4.2 ()

Given a system of linear equations

x+ 3y − 2z = 5

3x+ 5y + 6z = 7

2x+ 4y + 3z = 8

We put it into extended matrix form A and perform Gauss Elimination to get rref(A).1 3 −2 5
3 5 6 7
2 4 3 8

→
1 3 −2 5
0 1 −3 2
0 0 1 2

→
1 0 0 −15
0 1 0 8
0 0 1 2

 (162)

So, rref(A) has the solution (−15, 8, 2) and it is unique because there are no free variables.

This leads to the following theorem.

Theorem 4.15 ()

The set of n linear equations with n variables can be expressed in the form of Ax = b, where A is an
n× n matrix.

Ax = b has a unique solution ⇐⇒ A is nonsingular ⇐⇒ rk (A) = n (163)

Proof.

A is nonsingular is equivalent to saying that rref(A) = In, where In is the n×n identity matrix. This
clearly means that rref(Ã) will always reveal unique solutions.
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Theorem 4.16 ()

n× n matrix A is invertible if and only if it is nonsingular.

Proof.

A is nonsingular ⇐⇒ Ax = b will always have a unique solution ⇐⇒ A is an isomorphism from
Fn to itself ⇐⇒ by definition, A is invertible.

The realization of an endomorphism of Fn in matrix form is a n× n matrix. The realization of an automor-
phism of Fn in matrix form is an n× n nonsingular matrix. This set is actually a multiplicative, nonabelian
group denoted GLn(F) and is one example of a Lie Group.

Theorem 4.17 ()

There are k free variables in A if and only if dimNull(A) = k.

Proof.

We do not give a rigorous proof but we outline one. Each free variable corresponds to a free vector
in the row echelon form of A that are all linearly independent. Since the span of these free vectors is
equal to Null(A), the k vectors form a basis of A =⇒ by definition, dimNull(A) = k.

Theorem 4.18 ()

rk(A) = dim Im A = dimC(A) (164)

Proof.

Let A be a m×n matrix over F. Then, let rk(A) = k, which implies that there are n−k free variables
=⇒ dim Null(A) = n− k. By rank nullity,

dim ImA = n− dimNull(A) = n− (n− k) = k = rkA (165)

This theorem establishes the consistency in definition between the rank of an abstract mapping mentioned
in chapter 2 and the rank of its matrix representation. We can in fact establish strong claims on top of this.

Theorem 4.19 ()

dimC(A) = dimR(A) (166)

Proof.

Let A be a m× n matrix of rank r. There are r pivots and a pivot in each nonzero row of ref(A), so
dimR(A) = r. The previous theorem says r = dimC(A).

Corollary 4.3 ()

C(A) ≃ R(A) (167)
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Proof.

While this is a direct result of the dimensions of the two subspaces being equal, it is worthwhile to
mention this alternative proof. We will prove that the linear mapping A is the isomorphism itself.
Let rk(A) = r and let {v1, v2, ..., vr} be a basis for R(A). Then, the set {Av1, Av2, ..., Avr} are r
vectors in C(A). They are linearly independent because

r∑
i=1

ciAvi = A

r∑
i=1

civi = 0 =⇒
r∑
i=1

civi ∈ Null(A), but
r∑
i=1

civi ∈ R(A)

=⇒
r∑
i=1

∈ Null(A) ∩R(A) = {0}

Since dimC(A) = r, {Avi} must form a basis of C(A). Therefore, A is a bijection between vector
spaces and is thus an isomorphism.

Corollary 4.4 ()

rk(A) = rk(AT ) (168)

Theorem 4.20 ()

The product of square lower triangular matrices is a lower triangular matrix. The product of square
upper triangular matrices is an upper triangular matrix.

4.5 LU Decomposition

Theorem 4.21 (LU Decompositions)

If a m × n matrix A can be reduced to row echelon form using only elementary row operations E1,
it can be decomposed into the product of a lower triangular m ×m matrix L with diagonal entries
equal to 1 and an upper triangular m× n matrix U .

A = LU (169)

This is called LU decomposition, or LU factorization.

Proof.

We reduce A to its echelon form ref(A) by successively multiplying elementary matrices Eγi repre-
senting elementary operation (i). After a finite amount of steps r, we will reduce it to ref(A).

ref(A) = EγrEγr−1 ...Eγ2Eγ1A =

( r−1∏
i=0

Eγr−i

)
A (170)

Since each Eγi is invertible, we multiply the product of the inverses of the elementary matrices of
operation (i), which are also elementary matrices of operation (i).

(Eγ1)−1(Eγ2)−1...(Eγr )−1ref(A) =

( r∏
j=1

(Eγj )−1

)( r−1∏
i=1

Eγr−i

)
A = A (171)

Since each (Eγj )−1 is an elementary row operation, it is lower diagonal, and by theorem 3.16, their
product is also lower triangular. It is easy to prove that if the diagonal entries are furthermore equal
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to 1, then the product has diagonal entries equal to 1. Finally, it is clear that every matrix in row
echelon form is upper triangular, and we are done.

A =

( r∏
j=1

(Eγj )−1

)
ref(A) = LU (172)

Note that the existence of the LU decomposition for a general m × n matrix is not guaranteed. It will not
exist if we must switch rows in matrix A in order to reduce it to its echelon form. It does not matter whether
we need to use elementary operation (ii) or not. Only the necessity of elementary operation (iii) to reduce
the matrix determines the existence of the LU decomposition. The decomposition is also unique.

Finding the LU decomposition of a matrix is useful for solving systems of linear equations. Given a system
in the form of Ax = b, if we know the LU decomposition of A, we can rewrite the system as

LUx = b (173)

Setting y = Ux, we can easily solve the system Ly = b using forward substitution and then we can solve the
system Ux = y using back substitution. Therefore, knowing this decomposition beforehand greatly aids in
computing the solutions to the linear system. But computing L and U in order to solve this system takes as
much effort as solving the system using Gauss Elimination in the first place.

It is imperative to mention a similar decomposition for n× n matrices, known as LUP decomposition.

Definition 4.28 ()

An n × n permutation matrix is a matrix of 0s and 1s with exactly one 1 in each row and column.
The set of all n × n permutation matrices form a multiplicative matrix group of order n!. We can
also view this group as the matrix representation of the symmetric group Sn.

Example 4.3 ()

The set of all 2× 2 permutation matrices is

S2 =

{(
1 0
0 1

)
,

(
1 0
0 1

)}
(174)

and the set of all 3× 3 permutation matrices is

S3 =

{
I3,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
0 1 0
1 0 0

 ,

0 0 1
1 0 0
0 1 0

} (175)

Theorem 4.22 ()

Every n× n matrix A can be decomposed into the form A = PLU , where L is lower triangular, U is
upper triangular, and P is a permutation matrix.

Proof.

We can modify the Gauss Elimination algorithm to do all the row interchanges in the beginning. The
permutation matrices form a group, so the product of all the initial row changes is a permutation
matrix. Call it P ′. The previous theorem states that we can do LU decomposition on P ′A.

P ′A = LU =⇒ A = P ′−1LU = PLU (176)
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Since P ′−1 is also in the symmetric group of permutations, we can denote it as P .

Corollary 4.5 ()

Every n× n matrix A can be decomposed into the form LUP . That is, in the form

A = LUP =



1 0 0 . . . 0
∗ 1 0 . . . 0

∗ ∗ 1 . . .
...

...
...

...
. . . 0

∗ ∗ ... ∗ 1





u11 ∗ ∗ . . . ∗
0 u22 ∗ . . . ∗

0 0 u33 . . .
...

...
...

...
. . . ∗

0 0 . . . 0 unn



 P

 (177)

Proof.

We decompose AT = P0L0U0, where P0 is a permutation matrix, L0 lower triangular, U0 upper
triangular. This implies that

A = ATT = UT0 L
T
0 P

T
0 = LUP (178)

since UT0 is lower triangular and LT0 is upper triangular. Note that L is unique, but U is not unique,
so this decomposition is not unique.

This decomposition can also be used to solve matrix equations

AX = B (179)

Since this equation can be expressed in the form

A

 | |
x1 ... xn
| |

 =

 | |
Ax1 ... Axn
| |

 =

 | |
b1 ... bn
| |

 (180)

solving this matrix is equivalent to solving the system of systems of linear equations

Ax1 = b1, Ax2 = b2, ..., Axn = bn (181)

i.e. by solving one column at a time. This method can also be used to solve

AX = I (182)

to find X = A−1. Equivalently, we can left multiply elementary matrices to reduce A to rref(A).

EγrEγr−1 ...Eγ2Eγ1AX = rref(A)X = EγrEγr−1 ...Eγ2Eγ1I =

r−1∏
i=0

Eγr−i (183)

If rref(A) = I, then

A−1 =

r−1∏
i=0

Eγr−i (184)

and if rref(A) ̸= I, then A−1 does not exist. This is in fact precisely the method of finding the inverse where
we do Gauss Elimination on the extended matrix |

A | I
|

 −→
 |

I | A−1

|

 (185)

41/ 110



Linear Algebra Muchang Bahng Spring 2020

4.6 Strassen Algorithm
When computing the product two n×n matrices A and B to another n×n matrix C, since each entry of C is
the product of a row of A with a column of B, and since C has n2 entries, we need n3 scalar multiplications to
compute (as well as n3−n2 additions). In order words, the computing efficiency of the algorithm is at O(n3).
However, there are faster algorithms than this. This is algorithm is known as the Strassen Algorithm
(however, there do exist faster algorithms).

Theorem 4.23 (Strassen Algorithm)

Let A,B be 2× 2 matrices such that AB = C. That is, component-wise,(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)
(186)

where for i, j = 1, 2,
cij = ai1b1j + ai2 + b2j (187)

Then, let us define

P1 = (a11 + a22)(b11 + b22)

P2 = (a21 + a22)b11

P3 = a11(b12 − b22)
P4 = a22(b21 − b11
P5 = (a11 + a12)b22

P6 = (a21 − a11)(b11 + b12)

P7 = (a12 − a22)(b21 + b22)

Then, the theorem states that we the entries of C are

c11 = P1 + P4 − P5 + P7

c12 = P3 + P5

c21 = P2 + P4

c22 = P1 + P3 − P2 + P6

This algorithm for multiplying 2× 2 matrices requires 7 scalar multiplications, while regular multiplication
requires 8. Using block multiplication, we can use this algorithm to calculate any matrix of order 2k. That
is, to calculate 2k × 2k matrices, we have to perform seven multiplications of blocks of size 2k−1× 2k−1, and
doing this recursively, it reduces it down to

7k = 2k log2 7 = nlog2 7 (188)

where n is the order of the matrices being multiplied.

Additionally, the number of scalar additions or subtractions needed is bounded by

6× 7k = 6× 2k log2 7 = 6nlog2 7 (189)

Since log2 7 ≈ 2.807 < 3, this algorithm does indeed have more computational efficiency. Note that matrices
whose order is not a power of 2 can be turned into one by adjoining a suitable number of 1s on the diagonal.

Theorem 4.24 (Conjecture)

For any positive number ε, there is an algorithm that computes the product of two n × n matrices
with computational efficiency of O(n2+ε).
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5 Determinants and Trace
The definition of the determinant is given first and then shown that it has the corresponding properties. We
will work backward and construct the determinant from its properties.

Definition 5.1 (Determinant)

The determinant of a n× n matrix A, with column vectors a1, a2, ..., an, is a function

det : Mat(n,F) −→ F (190)

with the following three properties
1. The determinant of the identity matrix is 1.

det (I) ≡ det (e1, e2, ..., en) = 1 (191)

2. Interchanging two columns ai and aj of A once changes the sign of detA.

det (a1, ..., ai, ..., aj , ..., an) = − det (a1, ..., aj , ..., ai, ..., an) (192)

3. It is a multilinear function of the n column vectors.

det (a1, ..., λai + µa′i, ...an) = λ det (a1, ..., ai, ...an) + µdet (a1, ..., a
′
i, ...an) (193)

R2

T

R2

Figure 3: An important way to visualize determinants is by using the linear map visualization introduced before.
That is, the determinant is the area of the transformed shaded unit square.

Proposition 5.1 ()

The column vectors of A are linearly dependent if and only if detA = 0.

Proof.

By linearity, it is sufficient to prove that if two column vectors ai and aj of a matrix A are equal,
then detA = 0. This can be easily seen by property (ii) of determinants.
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Theorem 5.1 ()

det

(∏
i

Ai

)
=
∏
i

detAi (194)

Theorem 5.2 ()

A matrix is invertible if and only if its determinant is nonzero.

Proof.

A matrix is invertible ⇐⇒ it is nonsingular ⇐⇒ its columns are linearly independent ⇐⇒ its
determinant is nonzero, by the previous proposition.

Corollary 5.1 ()

Given n× n matrix A,

det (A−1) =
1

detA
(195)

Theorem 5.3 ()

The determinants of similar matrices are equal.

Proof.

Let A and B be similar matrices. Then, there exists an S such that A = S−1BS and

det (A) = det (S−1BS = det (S−1) det (B) det (S) = detB (196)

This theorem implies that the determinant is an intrinsic property of a linear transformation, so it is invariant
under a change of basis. That is, choosing different matrix representations of a linear transformation does
not change the determinant.

Corollary 5.2 ()

det (A) = det (AT ) (197)

Proof.

A is similar to AT , which will be proven in chapter 6.

Proposition 5.2 ()

The properties of the determinant combined with the previous corollary implies that
1. Adding a scalar multiple of a row/column to another row/column doesn’t affect the determinant.
2. Interchanging two rows/columns switches the sign of the determinant.
3. Multiplying a row/column by α multiplies the determinant by α.
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Theorem 5.4 ()

Let A be an n× n matrix whose first column is e1

A =


1 ∗ ∗ ∗
0
. . . A11

0

 (198)

where A11 is the (n− 1)× (n− 1) submatrix of A with entries aij , i, j > 1. Given this,

detA = detA11 (199)

Proof.

Using column reduction, we can see that

detA = det


1 0 0 0
0
. . . A11

0

 (200)

it is clear that the right hand side is equal to detA11 since it behaves exactly like detA11 with respect
to the three properties.

Corollary 5.3 ()

Let A be an upper or a lower triangular matrix. Then the determinant of A is the product of its
diagonal entries. That is,

detA =
∏
i

aii (201)

Proof.

We apply the previous theorem recursively to satisfy when A is upper triangular. Since det (A) =
det (AT ), this fact can be applied to lower triangular matrices too.

It is once again verified that the three elementary row (and column) operations affect the determinant in the
way stated in Proposition 5.5. To elaborate, since E1, E2, and E3 are all lower triangular, we can compute
their determinants easily

detE1
α×i+j = 1

detE2
ij = −1

detE3
α×i = α

and multiplying matrix A by elementary matrices E1, E2, and E3 multiplies the determinant by 1,−1, and
α, respectively.

We can describe the determinant visually. Given a linear mapping A : V −→ V , we can fix any basis
{e1, e2, ..., en} on V . Note that these basis vectors do not need to be orthogonal, nor are they restricted to
any magnitude. The set of vectors { n∑

i=1

ciei | 0 ≤ ci ≤ 1, i = 1, 2, ..., n
}

(202)
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forms an n-dimensional parallelepiped in V . Let the volume of this parallelepiped be U . Let W be the
volume of the parallelepiped { n∑

i=1

ciAei | 0 < ci < 1, i = 1, 2, ..., n
}

(203)

which is formed by the transformed basis vectors {Ae1, Ae2, ..., Aen}. We can view this latter shape as the
image of the first parallelepiped under transformation A. Then,

detA =W/V (204)

That is, the ratio of the transformed parallelepiped to the original parallelepiped is the determinant. This is
consistent with the properties of the determinant. For example, if A is not isomorphic, then the parallelepiped
will get "squished" into a lower-dimensional parallelepiped with volume 0. The fact that we use a ratio
between the original and transformed parallelepiped allows this value to be invariant under the basis that
we use.

Computationally, finding the LUP decomposition of a matrix A is the best known algorithm to compute the
determinant of a general n× n matrix. That is,

detA = detLdetU detP = ±detU = ±
∏
i

uii (205)

since detL = 1 and detP = ±1.

There are other methods to compute the determinant. First, we state the simple but useful formula.

Proposition 5.3 ()

det

(
a b
c d

)
= ad− bc (206)

Definition 5.2 ()

Given an n×n matrix A, the (ij)th minor of A, denoted Aij , is the determinant of the (n−1)×(n−1)
matrix formed by removing the ith row and j th column from A.

Theorem 5.5 (Laplace Expansion)

Let A be an n× n matrix and j any index between 1 and n. Then

detA =
∑
i

(−1)i+jaijAij (207)

that is, the alternating sums of the ijth minors multiplied by the ijth entries in the jth column of
A. This can be done by choosing an arbitrary ith row, which leads to the alternative formula

detA =
∑
j

(−1)i+jaijAij (208)

Theorem 5.6 (Cramer’s Rule)

Given a system of linear equations in the form Ax = b where A is an n× n matrix, the solutions of
this system can be expressed with the formulas

xi =
detAi
detA

(209)
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where detAi is the matrix formed by replacing ai, the ith column of A, by the column vector b.

Albeit very computationally heavy, determinants can also be used to calculate the inverse of a matrix.

Theorem 5.7 ()

The inverse matrix A−1 of an invertible matrix A has the form

(A−1)ij = (−1)i+j detAij
detA

(210)

Definition 5.3 ()

The trace of a square matrix A, denoted TrA, is the sum of its diagonal entries.

Tr(A) =
∑
i

aii (211)

Proposition 5.4 ()

Tr(λA+ αB) = λTr(A) + αTr(B) (212)

Proof.

Obvious if we look at the entries of A and B and see that it is bilinear.

Theorem 5.8 (Cyclic Property of the Trace)

Tr

( n∏
i=1

Ai

)
= Tr

(
An

n−1∏
i=1

Ai

)
(213)

Proof.

We first prove when m = 2. Given that the subscripts ij denote that (i, j)th element of a matrix,
observe that

(AB)ij =
∑
k

AikBkj =⇒ (AB)ii =
∑
K

AikBki

=⇒ Tr(AB) =
∑
i

∑
k

AikBki

=
∑
k

∑
i

BkiBik = Tr(BA)

Similarly, for m = 3

(ABC)ij =
∑
k,l

AikBklClj =⇒ Tr(ABC) =
∑
i,k,l

AikBklCli

=
∑
i,k,l

CliAikBkl = Tr(CAB)

And so we can generalize for m.
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Corollary 5.4 ()

The trace is invariant under a change of basis. That is, the trace is an intrinsic property of a linear
transformation since it does not change depending on how it is represented.

Proof.

Given that A is similar to B.

Tr(B) = Tr(SAS−1) = Tr(S−1SA) = Tr(A) (214)

Theorem 5.9 ()

Let A be a n× n skew-symmetric matrix over C (or any field of characteristic ̸= 2). If n is odd,

detA = 0 (215)

Proof.

detA = detAT = det−A = (−1)n detA =⇒ detA = 0 (216)

We can actually conclude something even futher about antisymmetric matrices.

Theorem 5.10 ()

The determinant of an antisymmetric matrix A of even order is the square of a homogeneous poly-
nomial of degree n/2 in the entries of A. That is,

detA = P 2 (217)

The polynomial P is called the Pfaffian.

Definition 5.4 ()

A Vandermonde matrix is a square matrix whose columns form a geometric progression. That is,
let a1, a2, ..., an be n scalars. Then, V (a1, a2, ..., an) is the n× n matrix

1 1 . . . 1 1
a1 a2 . . . an−1 an
...

...
. . .

...
...

an−2
1 an−2

2 . . . an−2
n−1 an−2

n

an−1
1 an−1

2 . . . an−1
n−1 an−1

n

 (218)

Theorem 5.11 ()

The determinant of a Vandermonde matrix is

detV (a1, a2, ..., an) =
∏
j>i

(aj − ai) (219)

A symmetry in the multivariable expression of a determinant can also reveal a symmetry in the matrix.
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Example 5.1 (2019 Putnam A1)

The symmetric polynomial
f(x, y, z) = x3 + y3 + z3 − 3xyz (220)

can be expressed as the determinant of the 3× 3 matrix

det

x y z
z x y
y z x

 (221)

5.1 Matrices in Block Form

Theorem 5.12 ()

Given 2× 2 block matrices

X =

(
A1 B1

C1 D1

)
, Y =

(
A2 B2

C2 D2

)
(222)

We can compute XY similarly to regular matrix multiplication, treating the blocks as entries.

XY =

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)
=

(
A1A2 +B1C2 A1B2 +B1D2

C1A2 +D1C2 C1B2 +D1D2

)
(223)

Furthermore, this process can be done in general for any m × n block matrix X and n × p block
matrix Y .

Theorem 5.13 ()

Given that IN , A,B are n× n matrices, define the (2n)× (2n) matrix

X =

(
I 0
A B

)
(224)

Then
detX = detB (225)

Proof.

We can perform Gauss elimination to reduce X without affecting the determinant.

det

(
I 0
A B

)
= det

(
I 0
0 B

)
= detB (226)

since it satisfies the correct properties for detB.

Corollary 5.5 ()

det

(
A 0
C D

)
= detAdetD (227)
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Proof.

det

(
A 0
C D

)
= det

(
A 0
C I

)(
I 0
0 D

)
= det

(
A 0
C I

)
det

(
I 0
0 D

)
(228)

However,

det

(
A B
C D

)
̸= detAdetD − detB detC (229)

Rather, we introduce the following theorem

Theorem 5.14 ()

det

(
A B
C D

)
= det (A) det (D − CA−1B) (230)

= det (D) det (A−BD−1C) (231)

Proof. (
A B
C D

)
=

(
A 0
C I

)(
I A−1B
0 D − CA−1B

)
(232)

by similarity, equation (6) is equal to equation (7).

Definition 5.5 (Block Diagonal Matrix)

A block diagonal matrix is a square matrix in block form such that the diagonal blocks are square
matrices and all off-diagonal blocks are zero matrices.

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ak

 (233)

Theorem 5.15 ()

Given a matrix A in block diagonal form, with diagonal blocks A1, A2, ..., Ak,

detA =

k∏
i=1

Ai, TrA =

k∑
i=1

TrAi (234)

Furthermore, A is invertible if and only if all the Ai’s are invertible, and

A−1 =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ak

 =


A−1

1 0 . . . 0
0 A−1

2 . . . 0
...

...
. . .

...
0 0 . . . A−1

k

 (235)
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Proof.

The results are obvious when performing block multiplication or Gauss Elimination.

5.2 Dodgson Condensation
We already know that the LUP decomposition is an algorithm used to compute the determinant of a general
n× n matrix. We will introduce another, called Dodgson condensation. The algorithm can be described
in the following steps.

1. Let A be a given n× n matrix. Arrange A so that no zeros occur in its interior (this can be done by
any combination of elementary row or column operations that would not change the determinant).

2. Create an (n − 1) × (n − 1) matrix B consisting of the determinants of every 2 × 2 submatrix of A.
Explicitly,

B = det

(
ai,j ai,j+1

ai+1,j ai+1,j+1

)
(236)

3. With this (n− 1)× (n− 1) matrix B, perform step 2 to obtain an (n− 2)× (n− 2) matrix C. Divide
each term in C by the corresponding term in the interior of A.

Ci,j = det

(
bi,j bi,j+1

bi+1,j bi+1,j+1

)/
ai+1,j+1 (237)

4. Let A = B and B = C. Repeat step 3 as necessary until the 1 × 1 matrix is found, which is the
determinant.

The reason that we do not want 0s in A is because then in doing step 3 we may divide by 0.

Example 5.2 ()

Let us find

det


−2 −1 −1 −4
−1 −2 −1 −6
−1 −1 2 4
2 1 −3 −8

 (238)

All of the interior elements are nonzero, so there is no need to rearrange the matrix. We calculate
−2 −1 −1 −4
−1 −2 −1 −6
−1 −1 2 4
2 1 −3 −8

→
 3 −1 2
−1 −5 8
1 1 −4

→ (
−16 2
4 12

)
(239)

With this 2× 2 matrix, we must divide each term by the interior of the original A.(
−16/− 2 2/− 1
4/− 1 12/2

)
=

(
8 −2
−4 6

)
(240)

Calculating this determinant gives 40, and dividing by the interior of the 3 × 3 matrix (−5) gives
detA = 40/− 5 = −8.

5.3 Matrix Calculus
There is nothing special about matrix calculus on its own, since matrices are themselves vectors; they can
be sufficiently analyzed using vector calculus. Regardless, we will emphasize a few points. Let

A : R −→ Mat(m× n,R) (241)
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be a matrix valued differential function. That is, the m×n component functions of A is differentiable. Then,
just like in calculus, we introduce differentiation rules.

d

dx

(
A(t) +B(t)

)
=

d

dt
A(t) +

d

dt
B(t)

d

dx

(
cA(t)

)
= c

d

dt
A(t)

The scalar multiplication can actually be extended. By linearity (of matrix multiplication), we can say that
if A is independent of t, then

d

dx
AB(x) = A

d

dx
B(x) (242)

The linearity of the derivative allows us to state more rules. Given that v : Rn −→ R is a scalar valued
function and l ∈ (Rn)∗, then

d

dx
l
(
v(x)

)
= l

(
d

dx
v(x)

)
(243)

This result can be extended to when v is replaced by matrix valued function A and l is replaced by ϕ :
Mat(m× n,R) −→ R.

d

dx
ϕ
(
A(x)

)
= ϕ

(
d

dx
A(x)

)
(244)

Since the trace is a linear operator, we have the following theorem.

Theorem 5.16 ()

Given a linear function A : R −→ Mat(n,R) with paramater x,

d

dx
TrA = Tr

(
d

dx
A

)
(245)

Note that A in here really means A(x).

The product rule of matrix calculus is similar.

d

dx
AB =

(
d

dx
A

)
·B +A ·

(
d

dx
B

)
(246)

It is also noting that the derivative of the inner product of two vector valued functions v, w : R −→ Rn is

d

dx

(
v(x), w(x)

)
=
( d
dx
v(x), w(x)

)
+
(
v(x),

d

dx
w(x)

)
(247)

Definition 5.6 ()

A matrix valued function A is invertible at a point x ∈ R if there exists a function, denoted A−1

such that
A(x)A−1(x) = A−1(x)A(x) = I (248)

where I is the identity matrix. If there exists such A−1 for all values x ∈ R, then A is said to be
invertible.

Theorem 5.17 ()

Let A be a matrix valued function, differentiable and invertible. Then, the function A−1 is also
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differentiable and
d

dx
A−1 = −A−1

(
d

dx
A

)
A−1 (249)

Proof.

We derive this using the product rule.

0 =
d

dx
I =

d

dx

(
A(x)A−1(x)

)
= A(x)

(
d

dx
A−1(x)

)
+

(
d

dx
A(x)

)
A−1(x)

=⇒ d

dx
A−1(x) = −A−1(x)

(
d

dx
A(x)

)
A−1(x)

Note that the chain rule is a rule of differentiaion that applies for scalar valued functions. That is, given
f : V −→ R and g : R −→ V (V vector space),

d

dx
f ◦ g(x) = f ′

(
g(x)

)
· d
dx
g(x) (250)

The · operation in the right hand side is the operation of multiplication in the field R. But given f :
Mat(n,R) −→ R and AR −→ Mat(n,R), multiplication within the algebra of matrices are inherently different
than component-wise operations, so the chain rule does not apply (it would apply if matrix multiplication
was defined component-wise).

Example 5.3 ()

Let f(A) ≡ A2, and let A be a matrix valued function. Then,

d

dx
f ◦A(x) = d

dx

(
A(t)

)2
=

(
d

dx
A(x)

)
·A(x) +A(x) ·

(
d

dx
A(x)

)
̸= 2A(x) · d

dx
A(x)

since matrix multiplication is in general not commutative.

Proposition 5.5 ()

d

dx
Ak = A′Ak−1 +AA′Ak−2 + ...+Ak−2A′A+Ak−1A′ (251)

Proof.

We inductively apply the product rule

d

dx
Ak = A′Ak−1 +A

d

dx
Ak−1 (252)

Corollary 5.6 ()

Given any polynomial p with A a differentiable, square matrix valued function, if A and A′ commute,
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then
d

dx
p(A) = p′(A)A′ (253)

Proof.

We can completely define differentiation over the vector space of polynomials with the formula

d

dx
Ak = kAk−1A′ ∀k ∈ N (254)

Corollary 5.7 ()

Given polynomial p with A a differentiable, square matrix valued function,

d

dx
Tr p(A) = Tr

(
p′(A) ·A′) (255)

Proof.

Use the cyclic trace property.

Definition 5.7 ()

The exponential map is defined

exp : Mat(n,C) −→ Mat(n,C) (256)

where

eA = I +A+
1

2!
A2 +

1

3!
A3 + ... =

∞∑
k=0

1

k!
Ak (257)

where A0 ≡ I. This can clearly be extended to when A is a square, matrix valued function.

This final theorem establishes the connection between the determinant and trace.

Theorem 5.18 ()

Given a differentiable square matrix valued function A such that A is invertible for a certain x ∈ R,
then

d

dx
log detA = Tr

(
A−1 d

dx
A

)
(258)

Where the log mapping is the inverse of the exponential mapping of matrices.

Definition 5.8 ()

The commutator in the algebra of n× n matrices is defined as

[A,B] = AB −BA (259)
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Theorem 5.19 ()

If A and B are commuting square matrices, then

eA+B = eA eB (260)

In general, the solution C to the equation

eA eB = eC (261)

is given by the Baker-Campbell-Hausdorff formula, defined

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + . . . (262)

consisting of terms involving higher commutators of A and B. The full series is much too complicated
to write, so we ask the reader to be satisfied with what is shown.

Corollary 5.8 ()

Tr log eA eB = TrA+TrB (263)
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6 Spectral Theory

6.1 Spectral Theory of General Mappings

Definition 6.1 ()

Let A : V −→ V be a linear transformation over F. If there exists a vector v ∈ V such that

Av = λv, λ ∈ F

then a is called an eigenvalue of A, and v is an eigenvector of A. Clearly, if a basis is realized for
V and A is represented as a matrix, v would have a basis representation. However, the value of λ is
invariant. The set of all eigenvalues

λ(A) ≡ {λ1, λ2, ..., λk}

is called the spectrum of A.

For a given eigenvalue λ and its corresponding eigenvector v, it is clear that by linearity, every vector in
span v is an eigenvector, too.

Now that we have defined eigenvalues and eigenvectors, we first provide a visual description of these terms.
Given a linear transformation A : V −→ V , we can visualize a certain basis of V such that all the linear
transformation A does on that basis is merely extend or contract the basis vectors.

Definition 6.2 ()

Given a n× n matrix A, the characteristic polynomial of A, denoted pA(t), is defined

pA(t) ≡ det (A− tI)

The mapping A 7→ pA(t) can be thought of as a mapping from Mat(n,F) −→ F[t], where Mat(n,F) is
the algebra of n×n matrices over field F, and F[t] is the polynomial algebra over F. pA(t) is invariant
under matrix similarity.

The motivation for defining such a polynomial is that it allows us to compute the eigenvalues of A.

Definition 6.3 ()

The characteristic equation of A is defined by equating pA(t) = 0.

Proposition 6.1 ()

The solutions of the characteristic equation of A (i.e. the roots of pA(t)) is precisely the spectrum of
A.

Proof.

(→) Let there be a t = λ such that pA(λ) = 0 ⇐⇒ det (A− λI) = 0 which is equivalent to saying
that ker(A−λI) is nontrivial. There must exist a v ∈ ker(A−λI), meaning that (A−λI)v = 0 ⇐⇒
Av = λv. By definition, λ is an eigenvalue of A.
(←) This reasoning can be extended in the opposite direction.

56/ 110



Linear Algebra Muchang Bahng Spring 2020

Theorem 6.1 ()

Eigenvectors of a linear transformation A corresponding to different eigenvalues are linearly indepen-
dent, but not necessarily orthogonal. It follows that if the characteristic polynomial of a n×n matrix
A has n distinct roots, then A has n linearly independent eigenvectors.

Proof.

Simple, by contradiction.

Example 6.1 ()

It is clear that the Fibonacci sequence can be produced with matrix multiplication as such(
an+1

an

)
= An

(
a1
a0

)
=

(
1 1
1 0

)n(
1
1

)
Given that

λ1 =
1 +
√
5

2
, λ2 =

1−
√
5

2

we can diagonalize A into the form

A =

(
1

λ1−λ2

λ2

λ2−λ1
1

λ2−λ1

λ1

λ1−λ2

)(
λ1 0
0 λ2

)(
λ1 λ2
1 1

)
=⇒ An = S−1

(
λn1 0
0 λn2

)
S

which implies that after evaluating, we get

an =
1√
5

((1 +√5
2

)n
−
(1−√5

2

)n)
This is a surprising result since it also says that the expression above is always an integer for all
natural number n.

Definition 6.4 ()

Given a subspace U1 ⊂ U and linear transformation T : U −→ U . We say that U1 is invariant under
T if

u ∈ U1 =⇒ Tu ∈ U1

Theorem 6.2 ()

Let a1, a2, ..., an be the eigenvalues of A. Then∑
i

ai = TrA,
∏
i

ai = detA

Proof.

The mapping A 7→ det (A− xI) is a mapping from the set of n×n matrices to the polynomial algebra
F[x]. Direct application of the Viete’s formulas in F[x] produces the statement and this result can be
extended to the rest of the formulas.
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Theorem 6.3 (Spectral Mapping Theorem)

Let q be any polynomial, A a square matrix with an eigenvalue a. Then:
i) q(a) is an eigenvalue of q(A).
ii) Every eigenvalue q(A) is of the form q(a), where a is an eigenvalue of A.

Proof.

i) Let h be an eigenvector of A with corresponding eigenvalue a.

Ah = ah =⇒ A2h = Aah = aAh = a2h

=⇒ Anh = anh

=⇒ q(A)h = q(a)h

=⇒ q(a) is an eigenvalue of q(A)

ii) Let p be the eigenvalue of q(A) ⇐⇒ det
(
q(A)− pI

)
= 0. We expand:

q(s)− p = c
∏(

s− ri
)
, ri ∈ C

Replacing the variable s with A, we have

q(A)− pI = c
∏(

A− riI
)

Since det
(
q(A)− pI

)
= 0, at least one ri, say rk exists such that det

(
A− rkI

)
= 0 ⇐⇒ rk is an

eigenvalue of A. Since q(rj)− p = 0, p = q(rj) is an eigenvalue of q(A).

The following theorem is an equivalent version of the spectral mapping theorem.

Theorem 6.4 ()

Let A be a n×nmatrix and let f be a polynomial. If the chracteristic polynomial of A has factorization

pA(t) =

n∏
i=1

(t− λi)

then the characteristic polynomial of the matrix f(A) is given by

pf(a)(t) =

n∏
i=1

(t− f(λi))

We can actually create a bound on the spectrum of a square matrix.

Theorem 6.5 (Gershgorin Circle Theorem)

Let A ∈ Mat(n,C) with entries aij . Let Ri =
∑
i̸=j |aij | be the sum of the absolute values of the

non-diagonal entries of the ith row, and let D(aii, Ri) ⊂ C be a closed disk with radius Ri centered
at aii in the complex plane, called a Gershgorin Disk. Then every eigenvalue of A lies within the
union of all n Gershgorin Disks. That is,

λj(A) ∈
n⋃
i=1

D(aii, Ri) ⊂ C, for all j
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Proof.

Let λ be an eigenvalue of A with its eigenvector v = (vj). Scale v by multiplying it by ±1/max {|vj |}j
to get a vector x with its maximal entry xi = 1 and |xj | ≤ 1, j ̸= i. Then,

Ax = λx =⇒
∑
j

aijxj = λxi = λ =⇒
∑
j ̸=i

aijxj + aii = λ

Applying the triangle inequality,

|λ− aii| =
∣∣∣∣∑
j ̸=i

aijxj

∣∣∣∣ ≤∑
j ̸=i

|aij ||xj | ≤
∑
j ̸=i

|aij | = Ri

Corollary 6.1 ()

The eigenvalues of A must also lie within the Gershgorin discs Cj corresponding to the columns of A.

Proof.

This is a direct result from the fact that A is similar to AT . Alternatively, we can apply the same
process in the proof above to AT .

If one observes that the off-diagonal entries of A are small in absolute value, it can be concluded that the
diagonal entries are "close" to the true eigenvalues of A. A is diagonal if and only if the Gershgorin disks
are points.

Theorem 6.6 (Cayley Hamilton)

Every matrix A satisfies its own characteristic equation. That is,

pA(A) = 0

6.2 Eigendecompositions and Jordan Normal Form
However, the entire concept of matrices are not fully grasped with just eigenvectors. If it were, then linear
algebra would be a much simpler matter. To extend our toolkit, we must introduce generalized eigenvectors.
From here, we will assume that our field is over C. We use the fact that the field is over C because it
allows us to claim that the characteristic polynomial in C[t] can be factored into linear components, by the
fundamental theorem of algebra.

Definition 6.5 ()

A genuine eigenvector of A satisfies (A − aI)h = 0. A generalized eigenvector f satisfies (A −
aI)df = 0 for some d ≥ 1.

To provide a visual intuition of how generalized eigenvectors transform under A, observe that

(A− aI)h = 0 and (A− aI)2f = 0 =⇒ (A− aI)f = h (264)
=⇒ Af = af + h, Ah = ah (265)

=⇒ A2f = aAf +Ah = a2f + 2ah (266)

=⇒ ANf = ANf +NaN−1h (267)
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This implies that the generalized eigenvector is first scaled by a factor of a, similar to a genuine eigenvector,
but then a factor of the genuine eigenvector is then added to the scaled generalized one. Note that in higher
dimensions of N , a greater multiple of h must be added after scaling f .

This means that given an eigenvalue λ, there is always at least one genuine eigenvalue associated with λ.
Furthermore, there may be additional generalized eigenvectors also corresponding to λ. This leads to the
following definition

Definition 6.6 ()

The subspace formed by the span of the generalized (and genuine) eigenvectors of λ form what is
called the eigenspace associated with λ, denoted E(λ).

We can measure the characteristics of the eigenspaces with the following definitions.

Definition 6.7 ()

The algebraic multiplicity of an eigenvalue λ is the dimension of its eigenspace. It is precisely

dimE(λ)

In order to compute the algebraic multiplicity of λi in A, we find the maximal value of di such that
(t− λ)di divides pA(t). With this, we can define

E(λ) = ker (A− λiI)di

Theorem 6.7 ()

Given A : V −→ V with eigenspaces E(λ1), E(λ2), ..., E(λk),

E(λ1)⊕ E(λ2)⊕ ...⊕ E(λk) = V

That is, every vector v ∈ V can be uniquely expressed as the sum

v = h1 + h2 + ...+ hk, hi ∈ E(λi)

this is called the eigenbasis of V .

Proof.

The definition of algebraic multiplicity implies that each eigenspace is disjoint except at 0 and that
their dimensions sum to dimV .

Definition 6.8 ()

The geometric multiplicity of an eigenvalue λ of a linear transformation A is the dimension of the
span of genuine eigenvectors in its eigenspace. It is precisely

dimker (A− λI)

Note that since the span of genuine eigenvectors is a subspace of E(λ), the geometric multiplicity is
always less than or equal to the algebraic multiplicity.

Now we are ready to introduce the eigendecomposition of a linear mapping A.
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Theorem 6.8 ()

Given a linear mapping A with its eigenvalues λ1, . . . , λk and associated eigenspaces E(λ1), . . . , E(λk),
A maps each eigenspace to itself. That is,

A
(
E(λi)

)
⊂ E(λi), i = 1, 2, ..., k

Corollary 6.2 (Jordan Normal Form)

Every linear mapping A : V −→ V can be decomposed into the sum of the linear mappings of each
eigenspace E(λi). That is, it can be expressed in the form

A :
∏
i

E(λi) −→
∏
i

E(λi)

which we can define, given hi ∈ E(λi),

A(v) = A

(∑
i

hi

)
=
∑
i

A(hi), A(hi) ∈ E(λi)

The process of eigendecomposition for a linear mapping A is really just a clever change of basis for the
n × n matrix representation of A over C, where the new basis is now the set of genuine and generalized
eigenvectors. The new matrix formed by performing the change of basis on matrix A is called the Jordan
Normal Form, or Jordan Canonical Form, of A. We will now describe the construction of the JNF of
an arbitrary n× n matrix.

It is actually simple. Let the eigenvalues of the matrix A be λ1, λ2, ..., λk, with its associated eigenspaces
E(λi). Let the algebraic multiplicity of eigenspace E(λi) be algi. Then, every n× n matrix over C has the
block form

J =


A1 0 0 0
0 A2 0 0
0 0 ... 0
0 0 0 Ak


where each block Ai represents the transformation in E(λi). This means that each Ai must be an algi×algi
submatrix. The definition of the generalized eigenvectors shown in equation (11) shows that each block must
be of form

Ai =


λi 1 0 ... 0
0 λi 1 ... 0
0 0 λi ... 0
... ... ... ... 1
0 0 ... 0 λi


With λi’s in the main diagonal and 1’s in the superdiagonal of Ai. The first column of A refers to the
transformation of the genuine eigenvector, while the other columns refers to the transformation of the
generalized eigenvectors, where λi refers to the scaling of the dth generalized eigenvector and the 1 refers
to the adding of the (d − 1)th generalized eigenvector to the scaled dth vector. If there are no generalized
eigenvectors in an eigenspace E(λi), then Ai is a 1×1 matrix (λi). Observe that this form is consistent with
our previous theorems, especially the fact that A maps distinct eigenspaces to themselves.

Finally, the change of basis is represented through the matrix multiplication.

J = P−1AP, P =

 | | | |
f1 f2 ... fn
| | | |


where fi is the genuine/generalized eigenvectors corresponding to the transformation represented in the ith
column of J . The Jordan Normal Form of a matrix is unique up to the permutations of its diagonal blocks.
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Notice that the Jordan Normal Form must be an n× n matrices over C, not R. However, given a matrix A
over R, we can construct a similar block diagonal form over R. Since A is real =⇒ pA(t) ∈ R[t], µ ∈ C is a
root of pA implies that µ̄ is also a root. This means that in the case where µ = a ± bi is a pair of complex
eigenvectors with eigenvectors z and z̄. The associated 2× 2 Jordan block will be of form(

a −b
b a

)
with the associated column vectors in P being

v1 =
z + z̄

2
, v2 =

i(z − z̄)
2

Notice that z ∈ Cn is a complex eigenvector belonging to complex eigenvalue µ, and we make the best
"approximations" of z, z̄ and µ, µ̄ with the new real vectors v1 and v2. Note that the Jordan block states
that

A(v1) = av1 + bv2, A(v2) = −bv1 + av2

which is true since

A(v1) = A
(z + z̄

2

)
=

1

2

(
A(z) +A(z̄)

)
=

1

2

(
(a+ bi)z + (a− bi)z̄

)
=

1

2

(
(a)(z + z̄) + (bi)(z − z̄)

)
= a

z + z̄

2
+ b

i(z − z̄
2

= av1 + bv2

and

A(v2) = A
( i(z − z̄)

2

)
=
i

2

(
A(z)−A(z̄)

)
=
i

2

(
(a+ bi)z − (a− bi)z̄

)
=
i

2

(
(a)(z − z̄) + (bi)(z + z̄)

)
= a

i(z − z̄)
2

− bz + z̄

2
= av2 − bv1

It suffices to only modify this case for 2 × 2 blocks because all complex eigenvalues of real matrices must
come in conjugate pairs (but this is not necessarily true for complex matrices, which have characteristic
polynomials in C[t]).

Corollary 6.3 ()

The following 2 × 2 Jordan block of the form shown below can be turned into the complex Jordan
block and vice versa. (

cos θ − sin θ
sin θ cos θ

)
←→
(
eiθ 0
0 e−iθ

)

However, there could be bigger Jordan blocks of generalized eigenspaces corresponding to conjugate pairs.
Observe the following JNF, with columns (from left to right) corresponding to the transformations h1 (gen-
uine), k1 (generalized), h2 (genuine), and k2 generalized).

eiθ 1
eiθ

e−iθ 1
ei−θ


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Using the corollary shown above, we can modify the eigenvalues and eigenvectors into real values and
construct the simplest "real form" (assuming i ̸= 0, π) of the matrix

cos θ − sin θ 1 0
sin θ cos θ 0 1
0 0 cos θ − sin θ
0 0 sin θ cos θ


where the columns (from left left to right) now correspond to transformation of real eigenvectors

h1 + h2
2

,
i(h1 − h2)

2
,
k1 + k2

2
,
i(k1 − k2)

2

Therefore, we can state that the linear transformation represented by the two matrices in their respective
bases are equivalent.

Example 6.2 (Rotation Around Vector)

n⃗

Figure 4: The linear operator that rotates around a vector v by an angle θ has an eigendecomposition of the
span of v as shown (with eigenvalue 1) and the 2-dimensional plane (having two complex eigenvalues).

Definition 6.9 ()

A matrix is diagonalizable if we can perform a change of basis on it to create a diagonal matrix.

Theorem 6.9 ()

A matrix is diagonalizable if and only if its algebraic multiplicities is equal to its geometric multiplic-
ities. That is, if the matrix only has genuine eigenvectors. This is also equivalent to saying that all
of A’s eigenspaces have dimension 1.

It is clear that since eigendecompositions are intrinsic to linear mappings, the JNF of similar matrices are
the same. That is, the eigenvalues and the dimensions of the eigenspaces are invariant under a change of
basis.

Proposition 6.2 ()

Two matrices are similar if and only if their eigendecompositions are the same. That is, if they have
the same eigenvalues and the dimensions of the corresponding eigenspaces are the same.
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Proof.

(→) A ∼ B =⇒ A = S−1BS = S−1P−1JPS = (PS)−1J(PS) =⇒ JNF of A and B are the same.
(←) A and B have same JNF =⇒ A = P−1JP,B = Q−1JQ =⇒ J = QBQ−1 =⇒ A =
P−1QBQ−1P = (Q−1P )−1B(Q−1P ) =⇒ A ∼ B.

Theorem 6.10 ()

A ∼ AT .

Proof.

By the proposition above, it is sufficient to prove that A and AT have the same eigendecomposition.
Since (A− λI)T = AT − λI, det (A− λI) = 0 ⇐⇒ det (A− λI)T = det (AT − λI) =⇒ A and AT

have the same eigenvalues. Similarly,
(
(A− λI)d

)T
= (AT − λI)d =⇒ the eigenspaces of A and AT

have the same dimension.
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7 Further Properties of Linear Mappings

7.1 Adjoint Operators

Definition 7.1 (Adjoint Operator)

Let A : U −→ V be a linear mapping between inner product spaces, with the inner product in U and
V denoted (·, ·)U and (·, ·)V , respectively. We can fix any v ∈ V and define the linear function l ∈ U∗

l(·) =
(
A(·), v

)
V

(268)

Since U is naturally isomorphic to U∗, we can define

l(·) ≡ (·, u′) (269)

to get (
·, u′
)
U
≡
(
A(·), v

)
V

(270)

By combining (8), which defines an isomorphism between U∗ and V , and (9), the natural isomorphism
between U and U∗, equation (10) takes the composition of these to define an isomorphism from V to
U . This isomorphism is called the adjoint of A.

A† : V −→ U,
(
· , A†v

)
U
=
(
A(·), v

)
V

(271)

By definition, given any v ∈ V , A†v is defined so that the equality

(u,A†v) = (Au, v) (272)

holds for all values of u ∈ U .

It is important to note that the adjoint is not the same as the transpose since the transpose is a mapping
between the dual spaces. Furthermore, the transpose is canonically defined upon defining the linear trans-
formation A : U −→ V , while defining the adjoint requires the additional structure of an isomorphism from
U to U∗ and from V to V ∗. There are two ways to define these isomorphisms.

First, we can define dot products on both U and V and define the natural isomorphism

i : U −→ U∗, i(u) ≡ (u, ·) ∈ U∗

j : V −→ V ∗, j(v) ≡ (v, ·) ∈ V ∗

This canonically creates the mapping
i−1AT j : V −→ U (273)

which we define as the adjoint A†. This method using natural isomorphisms is precisely how we have
defined the adjoint above. There is a second way, however. We can fix orthonomal bases on U and V
and then assign them their respective dual spaces (satisfying the Kronecker delta function). Let the basis
of U be {u1, ..., un}, U∗ be {u′1, ..., u′n}, V be {v1, ..., vm}, and V ∗ be {v′1, ..., v′m}. Now we can define the
isomorphisms

i′ : U −→ U∗, i′(u) ≡ c1u′1 + ...+ cnu
′
n

j′ : V −→ V ∗, j′(v) ≡ k1v′1 + ...+ kmv
′
m

and then define the adjoint as
A† ≡ i′−1AT j′ (274)
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Let us compare these two definitions. Given a vector u = a1u1 + ...+ anun, ũ = b1u1 + ...bnun ∈ U ,

i(u)(ũ) ≡ (u, ũ) =
( n∑
α=1

aαuα,

n∑
β=1

bβuβ

)
=
∑
α,β

aαbβδ
α
β =

n∑
γ=1

aγbγ

i′(u)(ũ) ≡
( n∑
i=1

aiu
′
i

)( n∑
j=1

bjuj

)
=
∑
i,j

aibju
′
i(uj) =

∑
i,j

aibjδ
i
j =

n∑
k=1

akbk

Similarly for vector v = g1v1 + ...gnvn, ṽ = h1v1 + ...+ hnvn ∈ V ,

i(v)(ṽ) ≡ (v, ṽ) =
( n∑
α=1

gαvα,

n∑
β=1

hβvβ

)
=
∑
α,β

gαhβδ
α
β =

n∑
γ=1

gγhγ

i′(v)(ṽ) ≡
( n∑
i=1

giu
′
i

)( n∑
j=1

hjvj

)
=
∑
i,j

gihjv
′
i(vj) =

∑
i,j

gihjδ
i
j =

n∑
k=1

gkhk

Therefore, i = i′ and j = j′, meaning that the two derivations of the adjoint A = i−1AT j = i−1′AT j′ are
exactly the same! We must note that the basis endowed on both U and V must be orthonormal for it to
"mimic" the inner product. The derivation of the adjoint in these two equivalent methods may help the
reader further understand that the adjoint A† is really just a composition of fundamental linear functions
j : V −→ V ∗, AT : V ∗ −→ U∗, and i−1 : U∗ −→ U that are all canonically created as soon as A : U −→ V

is created, along with the inner product spaces U and V .
U V

U∗ V ∗

A

i j

AT

However, it is hard to grasp a visual intuition of adjoint operators in general. Note that the properties of
the transpose indicate that given A : Rn −→ Rm with the standard orthonormal basis and dot product,
the matrix representation of A† is just AT . If A is a matrix over C, then A† is AH ≡ ĀT , the Hermitian
transpose, or conjugate transpose, of A.

Note that this definition of the adjoint of linear operators is completely unrelated to the definition of an
adjoint of a matrix!

We now describe one common application of adjoints.

Theorem 7.1 ()

Let A ∈ Mat(m × n,R) with m > n. This means that the system of equations Ax = p is an
overdetermined system and will have no solutions with probability 1. However, we can find the
best-fit solution of the system. That is, the vector x that minimizes ∥Ax− p∥2 is the solution z of

A†Az = A†p (275)

z is therefore, the "closest approximation" of the solution of Ax = p that lives in Rn.

The QR decomposition is often used to simplify these linear least squares problems into a more manageable
equation.

Theorem 7.2 (QR Decomposition)

Any real m× n matrix A mapping Rn −→ Rm may be decomposed as

A = QR (276)

where Q is a m × n matrix with column vectors that are pairwise orthonormal and R is an upper
triangular square matrix. Q having pairwise orthonormal columns =⇒ QTQ = I, so we can simplify
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the normal equation

ATAx = AT b =⇒ (QR)T (QR)x = RTQTQRx = RTRx = RTQT b

=⇒ Rx = QT b

=⇒ x = R−1QT b

Theorem 7.3 ()

Let PY be the orthogonal projection onto Y . Then,
1. PY = P 2

Y .
2. PY = P †

Y .

Theorem 7.4 (Properties of the Adjoint)

Let A,B : X −→ U, C : U −→ V be linear mappings. Then,
1. (A+B)† = A† +B†

2. (CA)† = A†C†

3. (A−1)† = (A†)−1 if A is bijective
4. (A†)† = A

Definition 7.2 ()

Linear mapping A is self adjoint if and only if A = A†. If M is any linear mapping, then its
self-adjoint part is

Mδ =
M +M†

2
(277)

Theorem 7.5 (Spectral Theorem)

A n-dimensional self-adjoint map H over C has real eigenvalues and an orthonormal basis of genuine
eigenvectors. That is, its eigendecomposition consists of n pairwise orthogonal eigenspaces.

Corollary 7.1 ()

Given a real self-adjoint matrix H, there exists a real invertible matrix M such that M†HM = D,
with D diagonal and the column vectors form an orthonormal basis.
So, given self-adjoint H : X −→ X, the whole space can be written as the direct sum of pairwise
orthogonal eigenspaces.

X =

n⊕
i=1

E(λi) (278)

which implies that every x ∈ X can be written uniquely as

x = x1 + x2 + ...+ xn, xi ∈ E(λi) (279)

Definition 7.3 ()

Given that Pj is the orthogonal projection onto the jth eigenspace E(λj), that is

Pj(x) = xj ∈ E(λj), (Pj also self adjoint) (280)
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the spectral resolution of self-adjoint mapping H is the decomposition into the form

H =
∑
j

λjPj =⇒ Hx =

(∑
j

λjPj

)
x =

∑
j

λjxj (281)

The resolution of the identity is
I =

∑
j

Pj (282)

Proposition 7.1 ()

Given the spectral resolution of self-adjoint H,

H =
∑
j

λjPj =⇒ H2 =
∑
j

λ2jPj (283)

Note that the spectral resolution of a self adjoint mapping is precisely the eigendecomposition of the mapping
into its 1-dimensional eigenspaces. It is merely a simpler form of the eigendecomposition in the specific case
when the linear mapping is self-adjoint.

Theorem 7.6 ()

Let H,K be self-adjoint mappings such that HK = KH. Then H and K have the same spectral
resolution, i.e. they have the same eigendecomposition.

H =
∑
j

ajPj , K =
∑
j

bjPj (284)

Proof.

x ∈ E(a)Hx = ax =⇒ KHx = aKx =⇒ HKx = aKx =⇒ Kx ∈ E(a). Similarly, we can do this
with K to find x ∈ E(a) =⇒ Hx ∈ E(a), meaning that K and H have the same eigendecompositions
(though their eigenvalues are not necessarily equal).

Definition 7.4 (Anti-Self-Adjoint)

Map A is anti-self adjoint if A† = −A. Conjugate symmetry implies that

A† = A ⇐⇒ (iA)† = −(iA) (285)

So, given an anti-self adjoint map A, we can apply the spectral resolution to iA.

Theorem 7.7 ()

Given anti-self adjoint A : Cn −→ Cn,
1. eigenvalues of A are purely imaginary
2. we can choose an orthonormal basis of eigenvectors of A

Proof.

This easily follows from the Spectral Theorem.
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Definition 7.5 (Normal Maps)

N : X −→ X is a normal mapping if N†N = NN†. Self-adjoint, anti-self adjoint, and unitary
matrices are all normal. Surprisingly, the set of normal matrices are not closed under addition nor
multiplication, so they do not form a group.

Theorem 7.8 ()

A map N is normal if and only if it has an orthonormal basis of eigenvectors, i.e. it is unitarily
diagonalizable. That is,

N = U†DU (286)

Proof.

(→) Let

H =
1

2
(N +N†), A =

1

2
(N −N†) (287)

N†N = NN† =⇒ AH = HA, where H is self adjoint, A is anti-self adjoint, and N = H +A,N† =
H − A. Since AH = HA, they have the same spectral resolution of orthonormal eigenspaces, which
also forms the same spectral resolution for N = H +A.
(←) A = U†DU =⇒ A†A = (U†DU)(U†D̄U) = U†DD̄U = AA†.

7.2 Lie Groups and the Exponential Map

Definition 7.6 (General Linear Group)

Aut(V ) of vector space V also forms a group under composition. We denote it GL(V ). The group
of automorphisms of Rn and Cn is denoted GL(Rn) and GL(Cn), respectively. The group of all
invertible n × n matrices over R and C is denoted GLn(R) and GLn(C). GLn(R) is also denoted
GL(n,R), and similarly for GL(n,C).

Proposition 7.2 ()

Given that V is a real vector space,

GL(V ) ≃ GL(Rn) ≃ GLn(R) (288)

since GLn(R) are representations of linear operators. Similarly, if V is a complex vector space,

GL(V ) ≃ GL(Cn) ≃ GLn(C) (289)

Definition 7.7 (Special Linear Group)

The group of all real n×n matrices that have determinant 1 is called the special linear group, de-
noted SLn(R). It is a subgroup of GLn(R). The group of all complex n×n matrices with determinant
1 is denoted SLn(C). It is a subgroup of GLn(C).
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Definition 7.8 (Isometry)

An isometry M of metric space (X, d) is a mapping that preserves all distances. That is, for all
x, y ∈ X,

d(x, y) = d(Mx,My) (290)

The set of all isometries, denoted Isom(X), is a group that is generated by all translations, rotations,
and reflections.

Since linear maps always preserve the origin, we will focus on origin-preserving isometries, which is a subgroup
called the orthogonal group.

Definition 7.9 (Orthogonal Group)

The orthogonal group of a real Euclidean space of dimension n, denoted O(n), is the group of all
origin-preserving isometries of the space consisting of rotations and reflections. The matrix represen-
tation of this group is the set of real n× n matrices where the column vectors form an orthonormal
basis. Note that the determinant of every element of O(n) is ±1.

Definition 7.10 (Orthogonal Matrix)

An orthogonal matrix is the matrix representation of an element in O(n). It is the real n × n
matrix where all the column vectors are pairwise orthogonal and all have magnitude 1.

Proposition 7.3 ()

The rows of an orthogonal matrix are also pairwise orthonormal.

Proposition 7.4 ()

Given an orthogonal matrix M ,
MT =M−1 (291)

Definition 7.11 (Special Orthogonal Group)

The special orthogonal group of a real Euclidean space of dimension n, denoted SO(n), is the
group of all isometries that preserve the handedness of the space consisting only of rotations. It is
a subgroup of O(n). The matrix representation of this group is the set of real n× n matrices where
the column vectors are pairwise orthonormal and the determinant = 1.

We extend this concept to complex Euclidean spaces.

Definition 7.12 (Unitary Group)

The unitary group of degree n is the group of all complex n× n matrices where the columns are
pairwise orthogonal. It is denoted U(n).

Example 7.1 ()

U(1) is the set of complex numbers with norm 1.
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Definition 7.13 (Special Unitary Group)

The special unitary group of degree n is the group of all complex n × n matrices where the
columns are pairwise orthogonal and determinant = 1. It is denoted SU(n).

The groups mentioned in this section are examples of Lie Groups. Lie groups in general will not be defined
in here, since they require knowledge of smooth manifolds and differential geometry. In order to analyze
these abstract groups, we use the exponential map e ∈ End( Mat(n,F) to reduce these Lie groups to Lie
algebras.

7.3 Singular Values, Norms of Linear Mappings
Since the algebra of linear operators is itself a vector space, we can also define structures on it, too. We
focus on matrix norms.

Definition 7.14 (Operator Norm)

Let A : X −→ U be linear. Then, we define

∥A∥ = sup
∥x∥=1

∥Ax∥ (292)

Note that ∥Ax∥ is measure with respect to the norm of U and ∥x∥ the norm of X.

There is a very nice visualization of this.

Rn

A

Rm

Figure 5: The norm of A is the length of the major axis of the ellipsoid. Given that dimX = n, imagine the
n-dimensional unit ball in X being transformed under A. The image of the ball should be an ellipsoid (of dimension
≤ m) in U .

Theorem 7.9 ()

∥Az∥ ≤ ∥A∥∥z∥ for all z ∈ X (293)
∥A∥ = sup

∥x∥,∥v∥=1

(Ax, v) (294)
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Proof.

∥Az∥ ≤ sup ∥Az∥ = sup
∣∣∣∣∣∣A z

∥z∥

∣∣∣∣∣∣ = ∥A∥∥z∥
∥u∥ ≡ max

∥v∥=1
(u, v) =⇒ ∥Ax∥ ≡ max

∥v∥=1
(Ax, v) =⇒ ∥A∥ ≡ sup

∥x∥,∥v∥=1

(Ax, v)

Theorem 7.10 (Properties of Matrix Norm)

Let there exist any k ∈ F, with any A,B : X −→ U , C : U −→ V . Then,
1. ∥kA∥ = |k|∥A∥
2. ∥A+B∥ ≤ ∥A∥+ ∥B∥
3. ∥CA∥ ≤ ∥C∥∥A∥
4. ∥A∥ = ∥A†∥

Definition 7.15 (Spectral Radius)

The spectral radius of A is defined

r(A) ≡ max
i
|ai|, ai are eigenvalues (295)

Proposition 7.5 ()

A simple lower and upper bound of ∥A∥ can be defined

r(A) ≤ ∥A∥ ≤
(∑

i,j

a2ij

) 1
2

(296)

Matrix norms have extremely useful applications in determining the existence of invereses.

Theorem 7.11 ()

Let A be invertible and
∥A−B∥ < 1

∥A−1∥
(297)

in the sense that B is "close" to A. Then B is invertible.

We now proceed to another crucial decomposition, called the singular value decomposition. While the JNF
allows us to choose the most convenient choice of basis for a square matrix, the Singular Value Decomposition
(SVD) allows us to decompose general m× n matrices.

Theorem 7.12 (Singular Value Decomposition)

Any linear mapping M from an n-dimensional inner product space to a m-dimensional inner product
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space can be decomposed into

M = UΣV † =

 | | | |
y1 y2 . . . ym
| | | |




σ1 0
. . .

...
σp 0

. . .
...

0 . . . 0 . . . 0




— x1 —
— x2 —

—
... —

— xn —

 (298)

where U ∈ U(m), V ∈ U(n) and Σ has diagonal elements with nonnegative real entries. Also, p =
rank(M) ≤ min {n,m}. This form is known as the singular value decomposition. The columns
of U , denoted yi, are called the left singular vectors and the columns of V (i.e. the rows of V †),
denoted xi, are called the right singular vectors. The diagonal entries of Σ are called the singular
values. The SVD is unique up to the order of singular values, but it is generally constructed so that
σ1 ≥ σ2 ≥ . . . ≥ σp.

To provide a brief, yet unrigorous, justificiation of why the SVD exists, we look at the linear mapping
M : X −→ Y , with dimX = n, dimY = m. If M is injective (⇐⇒ m ≥ n), given the basis {ei} for X, we
can complete the linearly independent set {Mei}ni=1 to a basis in Y and represent M as the mapping

Σinj =

 In

0 . . . 0

 (299)

If M is surjective ( ⇐⇒ m ≤ n), then given basis {fi}mi=1 of Y , we can choose a basis {ej}nj=1 of X such
that M(ei) = fi(i = 1, 2, . . . ,m), and M(ei) = 0 when i > m. This produces the matrix

Σsurj =

 0

Im
...
0

 (300)

We now present the following theorem without proof.

Theorem 7.13 ()

Any map M : X −→ Y can be written as a surjective map followed by an injective map.

This theorem implies that any map, when given the right choice of basis, can be written as

ΣinjΣsurj =


... 0

Ip ... 0
... ...

... ... ... ... 0
0 0 ... 0 0

 =


1 0

... ...
1 0

... ...
0 ... 0 ... 0

 (301)

where rk(M) = p = the number of 1’s in ΣinjΣsurj . As for choosing the proper set basis for X and Y , we
can find these passive transformations in the unitary groups U(n) and U(m).

We now present a geometric description of the singular value decomposition. Think of the unit n-ball being
rotated and flipped (V † applied) under the unitary transformation. Then, it is stretched along its othogonal
axes to result in an ellipsoid living in an m-dimensional space. The factor of stretching and compressing the
axes are precisely the singular values. Finally, this ellipsoid is rotated and flipped (U applied) back to its
original basis.
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Theorem 7.14 ()

Geometrically, we can see that the largest singular value is the matrix norm, also called the operator
norm.

∥M∥ = σ1 (302)

Theorem 7.15 (Properties of Singular Values)

Given linear mapping A from a n-dimensional inner product space to m-dimensional inner product
space,

1. σi(A) = σi(A
T ) = σi(A

†) = σi(Ā)
2. ∀ U ∈ U(m), V ∈ U(n), σi(A) = σi(UAV )
3. Relation to eigenvalues

σ2
i (A) = λi(A

†A) = λi(AA
†) (303)

We now present the (not the best) process of computing SVD of small matrices by hand. Given matrix
M , M = UΣV † =⇒ M†M = V Σ2V †. The eigenvalues of M†M are σ2

i with corresponding eigenvectors
being the columns of V , which can all be found by putting M†M into JNF. We repeat this process for
MM† = UΣ2U† to find the eigenvectors that make up the column vectors of U .

Theorem 7.16 ()

Let A : X −→ Y , with dimX = n, dimY = m, and let k ≤ min {m,n}, with A = UΣV †. Then,
amongst all rank k m× n matrices B, the matrix A(k) minimizes

∥A−B∥2, A(k) = UΣ(k)V † (304)

and Σ(k) is Σ with σk+1 = σk+2 = ... = 0. Therefore, to see how "close" B is to A, we can compare
the singular values of A and B, given that they both have the same unitary matrices U and V .

The singular value decomposition has many applications in high dimensional data analysis and data com-
pression. For example, in a set of m data points in Rn that each lie in the rows of matrix A, if the singular
values of A suddenly drops (e.g. 120, 118, 107, 98, 2, 1, 0.3, ...) then we can determine that the points
"almost" lie in a subspace in Rn. Knowing this allows us to compress high dimensional data to A(k), which
is a more manageable form. This is especially useful in the data compression of electronic images, where
each pixel is treated as a single number to form a matrix.

It can also be used to define the "pseudo-inverse" of a matrix that may not be invertible.

Definition 7.16 (Pseudo-Inverse)

Given matrix M = UΣV † in SVD, we define the pseudo-inverse M+ = V Σ+U†, where Σ+ is Σ
with entries σ−1

i , or 0 if σi = 0. For example,

Σ =

3 0 0
0 2 0
0 0 0

 =⇒ Σ+ =

1/3 0 0
0 1/2 0
0 0 0

 (305)

=⇒ M+M = V Σ+ΣV †. If M is square and all σi ̸= 0, then M†M = V V † =⇒ M†M = I =⇒
M+ =M−1.

By computing the SVD of M , where σp ̸= 0, p = rkM = rkΣ, we can automatically compute the 4
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fundamental spaces.

M = UΣV † =


|
|

U | U ′

|
|



σ1 0

σ2 0
... ...

σp 0
0 0 ... 0 0




V †

— — — — —
V †′

 (306)

1. ImM = C(U)

2. kerM = R(V †′) = C(V ′)

3. kerM† = C(U ′)

4. ImM† = C(V ) = R(V †)

One of the main differences between the JNF and SVD of a matrix A lies in how they are affected by
perturbations in the elements of A. For example, take the small change

A =

(
1 1
0 1

)
−→ A′ =

(
1 1
0 1.00001

)
(307)

The SVD of A′ will "change" continuously for changes in the elements of A, but the JNF of A is completely
different from the JNF of A′. More specifically, the JNF of A is A itself, but the JNF os A′ is now diago-
nalizable, meaning that the 2-dimensional eigenspace E(1) "breaks up" into two 1-dimensional eigenspaces
from small perturbations.

Definition 7.17 (Frobenius Norm)

The Frobenius norm of a m× n matrix A is defined

∥A∥F ≡
√
Tr (A†A) =

√
TrΣ2 =

(∑
i,j

a2ij

) 1
2

(308)

By Singular Value Decomposition, we can reduce its calculations to

∥A∥F =

√∑
i

σ2
i (309)

where σi’s are the singular values. Clearly,

∥A∥2 ≤ ∥M∥F (310)

In quantum mechanics, the Frobenius norm is also called the Hilbert Schmidt norm in the context
of infinite dimensional Hilbert spaces.

We end by defining two more common decompositions of square matrices.

Theorem 7.17 (Schur Decomposition)

Every n× n matrix A over C can be decomposed into

A = QTQ† (311)

where Q ∈ U(n) and T is upper triangular.
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Proof.

This is an obvious result of the Grahm-Schmidt algorithm.

Theorem 7.18 (Polar Decomposition)

Every complex n× n matrix A can be factored into the form

A = UP (312)

where U ∈ U(n) and P is a positive semidefinite self-adjoint matrix. If A is a real matrix, then
U ∈ O(n).

Proof.

We take the SVD to get
A =WΣV † (313)

and we can assign
U =WV †, P = V ΣV † (314)

Since V,W are unitary, this confirms that P is positive definite and self-adjoint along with U being
unitary. Thus, the existence of the SVD implies the existence of the polar decomposition.

7.4 Positive Definite Matrices

Definition 7.18 (Positive-Semidefinite)

A self-adjoint linear mapping H from a real or complex Euclidean space onto itself is positive
definite if

(x,Hx) > 0 for all x ̸= 0 (315)

H is called positive semidefinite if
(x,Hx) ≥ 0 (316)

Theorem 7.19 (Polar Decomposition)

Given a Euclidean space En and any linear endomorphism f of En, there are two positive definite
self-adjoint linear maps h1, h2 ∈ End(En) and g ∈ O(n) such that

f = g ◦ h1 = h2 ◦ g (317)

That is, such that f can be decomposed into the following as shown in this commutative diagram.

En En

En En

h2

g
f

h1

g

Theorem 7.20 (Properties of Positive Definite Matrices)

Here we state basic properties.
1. I is positive definite.
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2. Positive mappings form a subspace in the space of linear mappings.

M,N positive =⇒ M +N is positive
M positive =⇒ aM is positive for alla ∈ F

3. H positive and Q invertible =⇒ Q†HQ positive.

Theorem 7.21 ()

H is positive definite if and only if all of its eigenvalues are positive. Furthermore, every positive
mapping is invertible.

Theorem 7.22 ()

Every positive mapping M has a unique positive square root. That is, there exists a unique positive
mapping N such that

N2 =M (318)

We denote N as
√
M .

Definition 7.19 ()

Given that M,N are positive definite mappings.

M > N ⇐⇒ M −N > 0, that is, M is positive (319)

Theorem 7.23 ()

If M,N are positive definite mappings

M > N =⇒ M−1 < N−1 (320)

Proposition 7.6 ()

In Rn endowed with the dot product, a n× n matrix A is positive definite if and only if

(x,Ay) = xTAy > 0 (321)

for every x, y ∈ Rn. A is positive semi-definite if and only if

(x,Ay) = xTAy ≥ 0 (322)

The following is a useful fact regarding inner products of Rn.

Proposition 7.7 ()

The set of all inner products that can be defined on Rn is bijective to the set of positive-definite
symmetric n × n matrices A (which is itself bijective to the set of all positive-definite mappings).
That is, every inner product of Rn can be defined

(x, y) ≡ xTAy (323)

Note that when A = In, the inner product is the regular dot product.
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7.5 Stochastic Matrices, Markov Chains

Definition 7.20 (Entrywise Positive)

A real n × n matrix P is entrywise positive if all entries are positive real numbers. We similarly
define entrywise positive vectors having components as positive real numbers. With this notion of
positiveness. We can define

A > B ⇐⇒ A−B > 0 ⇐⇒ (A−B)ij > 0 ∀i, j (324)

Note that this definition of positive matrices is not the same as positive-definite matrices!

Theorem 7.24 (Perron’s Theorem)

Every entrywise positive matrix P has a real dominant eigenvalue, denoted λ(P ) ∈ R satisfying
1. λ(P ) > 0, and the associated eigenvector h > 0
2. λ(P ) is a simple eigenvalue
3. every other eigenvalue κ satisfies: |κ| < λ(P )
4. there is no other eigenvector ≥ 0, i.e. all other eigenvectors have at least 1 negative entry.

Definition 7.21 (Stochastic Matrix)

A stochastic matrix is a matrix A where the elements of each column ai sum up to 1. A is doubly
stochastic if A and AT are stochastic.

Theorem 7.25 ()

Let S > 0 be a positive stochastic matrix. Then, λ(S) = 1. Furthermore, given any nonnegative
vector x ≥ 0,

lim
N→∞

SNx = ch (325)

where h is the dominant eigenvector and c is some positive constant.

A common application of this theorem likes in probability and statistics. Since nonnegative stochastic
matrices can be used to represent discrete-time Markov Chains, with the dominant eigenvector representing
the stationary distribution π.

Another application lies within defining Google’s Page Rank Algorithm. Upon representing a page as a
node, if there is one link that directs the user from page A to page B, we can represent this as an oriented
path from node A to node B. Given that we have n nodes, we can construct a n× n matrix A where

aij ≡
number of paths from node i to node j

number of nonzero entries in jth column
(326)
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A

B

C

D

E

1
2

1
2

1
2

1
3

1
3

1
2

1
2

1
3

1

1
2


0 0 0 1

3 0
1
2 0 1

2
1
3 0

1
2 0 0 0 1

2
0 0 1

2 0 1
2

0 1 0 1
3 0

 (327)

Figure 6: Markov chain graph and corresponding adjacency/transition matrix.

However, the theorem above requires the matrix to be strictly positive, which is often not true for Markov
chains in general. This theorem does not hold true in the following example,

A =


0 0 0 1

3
1
2 0 0 1

3
0 0 0 1

3
1
2 0 0 0

 =⇒ A1000


1
4
1
4
1
4
1
4

 =


0

9/20
11/20

0

 , A1001


1
4
1
4
1
4
1
4

 =


0

11/20
9/20
0

 (328)

That is, ANv oscillates between these two values. Furthermore, given three notes A,B,C as such

A

B

C

1

1

the entries of the adjacency matrix is not well-defined.0 0 ?
0 0 ?
1 1 ?

 (329)

Google CEO Larry Page actually developed a solution by implementing what he called a dampening factor.
Given stochastic matrix Bij = 1

N , he redefined the chain to be

M = αA+ (1− α)B, 0 < α < 1 (330)

It is clear that M is now a strictly positive stochastic matrix. The α is the dampening factor, and its optimal
value is known to be about 0.67. The value of the alpha determines how much of the data is "washed away."
When α = 0, none of the data is lost, and when α = 1, all of the data is lost.

Due to the limitations of Perron’s theorem, we can extend it with the following.

Theorem 7.26 (Frobenius Extension to Perron)

Any n× n matrix F ≥ 0, F ̸= 0 has eigenvalue λ such that
1. λ ≥ 0 and Fh = λh, h ≥ 0
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2. every eigenvalue κ satisfies: |κ| ≤ λ
3. if |κ| = λ, then

κ = e
2πik
m λ, k,m ∈ Z+, m ≤ n (331)

7.6 Duality Theorem
In this section we will denote vector inequalities as entry-wise inequalities.Recall that elements of a vector
space X can be interpreted as column vectors, and elements of the dual of the vector space X∗ can be
interpreted as row vectors. Therefore, value of ϕ at x is denoted

ϕ(x) = ϕ1x1 + ϕ2x2 + ...+ ϕnxn (332)

Furthermore, the dual of X∗ is X itself, and given that Y is a linear subspace of X, the annihilator of Y ⊥

is Y .
X = X∗∗, Y = Y ⊥⊥ (333)

Suppose Y is defined as the linear space spanned by the m vectors y1, y2, ..., ym in X. That is, Y consists of
all vectors y of the form

y =

m∑
j=1

ajyj (334)

It is clear by linearity that ϕ belongs to Y ⊥ if and only if

ϕ(yj) = 0, j = 1, 2, ...,m (335)

That is, a vector y can be written as a linear combination of m given vectors yj if and only if every ϕ that
annihilates the m vectors a also annihilates 0. Now, we state a theorem that allows us to check if a vector y
can be written as a nonnegative linear combinations of the yjs.

Theorem 7.27 ()

A vector y can be written as a linear combination of given vectors yj with nonnegative coefficients if
and only if every ζ ∈ X∗ that satisfies

ζ(yj) ≥ 0, j = 1, 2, ...,m (336)

also satisfies
ζ(y) ≥ 0 (337)

Proof.

The proof is not the easiest to construct rigorously, but it can be visualized easily.

Corollary 7.2 ()

Given a n×m matrix Y , a vector y with n components can be written in the form

y = Y p, p ≥ 0 (338)

if and only if every row vector ζ that satisfies

ζY ≥ 0 (339)

also satisfies
ζy ≥ 0 (340)
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Theorem 7.28 ()

Given an n×m matrix Y and a column vector y with n components, the inequality

y ≥ Y p, p ≥ 0 (341)

is satisfied if and only if every ζ that satisfies

ζY ≥ 0, ζ ≥ 0 (342)

also satisfies
ζy ≥ 0 (343)

Theorem 7.29 (Duality Theorem)

Let Y be a given n×m matrix, y a given column vector with n components, and γ a given row vector
with m components. Let

S = sup
p
{γp} (344)

for all column vectors p with m components satisfying y ≥ Y p, p ≥ 0. A well-defined such p is called
supremum admissible. Additionally, let

s = inf
ζ
{ζy} (345)

for all row vectors ζ with n components satisfying γ ≤ ζY, ζ ≥ 0. A well-defined such ζ is called
infimum admissible. Given that admissible vectors p and ζ exist, then S and s are finite and

S = s (346)

7.7 Alternating Sign Matrices
We now describe a generalization of permutation matrices. While these kinds of matrices haven’t been
studied deeply, its applications lie in measuring the computational complexity of the Dodgson Condensation
method for computing matrix determinants. The set of alternating sign matrices also forms a bijection with
combinatorial objects, such as plane partitions, aztec diamonds, ice models, etc.

Definition 7.22 ()

A matrix with elements 0,−1, 1 where nonzero entries must alternate in the following pattern:
1,−1, 1, ...,−1, 1 (i.e. begin and end with 1) is called an alternating sign matrix. This means
that every row and column must add up to 1.

Example 7.2 ()

The following are alternating sign matrices.
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

 ,

0 1 0
1 −1 1
0 1 0



As with permutation matrices, we would like to calculate how many n × n alternating sign matrices there

81/ 110



Linear Algebra Muchang Bahng Spring 2020

are for a given n. Let the set of all n× n alternating sign matices be denoted

ASM(n) (347)

Proposition 7.8 (Alternating Sign Matrix Conjecture (Proved))

The number of n× n alternating sign matrices is the following.

card ASM(n) =

n−1∏
k=0

(3k + 1)!

(n+ k)!
(348)

We now define a bijection between ASMs and another type of n× n matrix. Given A ∈ ASM(n), we define
f : ASM(n) −→ Mat(n, {0, 1}) such that

(
f(A)

)
ij
=

n∑
k=i

(a)kj (349)

Basically, we leave the bottom row untouched and for each element on upper rows, we sum that element
with all of the elements strictly below it. For example,

0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

 7→

1 1 1 1
1 0 1 1
0 1 1 0
0 0 1 0


Theorem 7.30 ()

The set of matrices Im(f) ⊂ Mat(n, {0, 1}) is bijective to the set of n × n 6-vertex (or Ice-type)
models, which are used to model crystal lattices for hydrogen bonds.
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8 Numerical Methods in Solving Linear Systems
In this section, we will concern ourselves with a system of equations with only one solution, represented by
the matrix equation

Ax = b

where A is an invertible square matrix, b some given vector, and x the vector of unknowns to be determined.

An algorithm for solving the system takes as inputs the matrix A and vector b and outputs some approx-
imation to the solution x. However, with billions of arithmetic operations on top of each other, the errors
can accumulate. Algorithms for which this does not happen are said to be arithmetically stable.

The use of finite digit arithmetic places an absolute limitation on the accuracy with which the solution can
be determined. To demonstrate this, let us imagine a change δb being made in the vector b, which causes a
corresponding change in x, denoted δx.

A(x+ δx) = b+ δb =⇒ Aδx = δb

To compare the changes in x with the changes in b, we define the following variable.

Definition 8.1 ()

The relative change in x with the relative change in b is the quantity

|δx|
|x|

/
|δb|
|b|

where the norm is convenient for the problem (usually a numerical approximation of the Euclidean
norm for floating point numbers). We will assume the use of the Euclidean norm from now on. We
can rewrite the value as the expression below with the following upper bound, denoted by κ(A), called
the condition number.

|b|
|x|
|δx|
|δb|

=
|Ax|
|x|
|A−1δb|
|δb|

≤ |A||A−1| ≡ κ(A)

where |A| is the matrix norm of A. A high value of this relative change would mean that small
perturbations in b would cause large changes in x.

Note that κ(A) ≥ 1. Notice also that the higher the condition number κ(A), the harder it is to solve the
equation Ax = b, and κ(A) =∞ when A is not invertible. For a k-digit floating point arithmetic, the relative
error in b can be as large as 10−k, meaning that the relative error in x can be as large as 10−kκ(A).

Let β be the largest absolute value of the eigenvalues of A and α as the smallest absolute value of the
eigenvalues of A. Then

β ≤ |A|, 1
α
≤ |A−1| =⇒ |β|

|α|
≤ κ(A)

Definition 8.2 ()

An algorithm that generates an exact solution after a finite number of arithmetic steps is called a
direct method (e.g. Gauss Elimination). An algorithm that generates successive approximations that
converge onto the solution is called an iterative method.

The methods mentioned in this section will be iterative.
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Definition 8.3 ()

Let {xn} be the sequence of approxmations generated by such an algorithm. The deviation of xn
from the true value x is caelled the error at the nth stage, denoted by en.

en ≡ xn − x

The amount by which the nth approximation fails to satisfy the equation Ax = b is called the nth
residual, denoted by rn.

rn ≡ Axn − b

Error and residual are related by the equation.

rn = Aen

Note that since we do not know x, the error cannot be calculated, but the residuals can be. We further
restrict our scope to solving linear systems in which A is real, positive, and self-adjoint. Clearly, we already
know that |A| = β, and since A is positive, we can conclude that

|A−1| = 1

α

which implies that

κ(A) =
β

α

8.1 Method of Steepest Descent
Assume that n× n matrix A is self-adjoint.

Theorem 8.1 ()

The solution of Ax = b minimizes the functional

E(y) ≡ 1

2
(y,Ay)− (y, b)

where (·, ·) is the Euclidean dot product. That is, the solution x is

x = min
{
E(y)

}
= min

{1
2
(y,Ay)− (y, b)

}
Proof.

Add to E(y) a constant, that is a term independent of y to define a new function F .

F (y) ≡ E(y) +
1

2
(x, b)

Then, by self adjointness of A, we can express F (y) as

F (y) =
1

2
(y,Ay)− (y, b) +

1

2
(x, b)

=
1

2
(y,Ay)− 1

2
(y,Ax) +

1

2
(Ax, x)− 1

2
(Ay, x)

=
1

2

(
y,A(y − x)

)
+

1

2

(
A(x− y), x

)
=

1

2

(
y − x,A(y − x)

)
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Since F (x) = 0 and F (x) ≥ 0 (since it is an inner product with repsect to y − x), F (y), and also
E(y), takes a minimum at y = x.

Now to actually compute the value of x, we us the method of steepest descent. Note that E : Rm −→ R, so
we can utilize ordinary calculus on it. The gradient of E can be computed by the formula

gradE(y) = Ay − b

So, if our nth approximation is xn, then the (n+ 1)st approximation, xn+1, is calculated as

xn+1 = xn − s(Axn − b)

where s is the step length in the direction −gradE. By calculating the residual rn = Axn−b, we can rewrite
the above to

xn+1 = xn − srn
Rather than keeping s constant, we can actually determine an optimal value of s at the nth step, denoted
sn, which minimizes E(xn+1). This quadratic minimum problem is easily solved, since

E(xn+1) =
1

2

(
xn − srn, A(xn − srn)

)
−
(
xn − srn, b

)
= E(xn)− s(rn, rn) +

1

2
s2(rnArn)

By taking the derivative and computing the value of s where E(xn+1) = 0, we see that the minimum is
reached when

s = sn ≡
(rn, rn)

(rn, Arn)

Theorem 8.2 ()

The sequence of approximations {xn}, with s optimized to be sn, converges to the solution of Ax = b.

The error bound for this algorithm is

||en||2 ≤
2

α

(
1− 1

κ(A)

)n
F (x0)

which shows that the error en tends to 0 in Rm. However, this algorithm has a very slow rate of convergence
for large κ(A).

8.2 Method of Chebyshev Polynomials
the disadvantage of the method of steepest descent mentioned in the end of the last subsection renders it
quite outdated and obsolete. this next method has a much better error bound that can handle large values
of κ more efficiently. however, we will need a positive lower bound m for the smallest eigenvalue of a and an
upper bound m for the largest eigenvalue. that is,

m ≤ α, β ≤ m

and all the eigenvalues of a lie in the interval [m,m]. it follows that

κ =
β

α
<
m

m

we generate the same sequence of approximations {xn} by the same recursion formula

xn+1 = xn − s(axn − b) ⇐⇒ xn+1 = (i− sna)xn + snb
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since the solution of x satisfies the formula; that is, since x = (i − sna)x + snb, we subtract this equation
from the top to get

en+1 = (i− sna)en
doing this recursively, we can deduce an explicit formula

en = pn(a)e0 =

n∏
n=1

(1− sna)

this allows us to estimate the size of en.

||en|| ≤ ||pn(a)||||e0||

the norm of a self adjoint matrix a is the largest |a|, where a is the eigenvalue, and the spectral mapping
theorem states that the eigenvalues p of pn(a) are of the form p = pn(a), where a is an eigenvalue of a. this
means that

||a|| ≤ max
m≤a≤m

|a| =⇒ ||pn(a)|| ≤ max
m≤a≤m

|pn(a)|

so, we are left with the bound
||en|| ≤ ||e0|| max

m≤a≤m
|pn(a)|

to get the best estimate of en, we have to choose the s1, s2, ..., sn so that the polynomial pn has a small
maximum on the interval [m,m]. note that the polynomial pn satisfies the normalizing condition

pn(0) = 1

to find such a polynomial, we must first define chebyshev polynomials.

Definition 8.4 ()

the nth chebyshev polynomial tn is defined for −1 ≤ u ≤ 1 by

tn(u) = cos(nθ), u = cos(θ)

Proposition 8.1 ()

among all polynomials pn of degree n that satisfy pn(0) = 1, the one that has the smallest maximum
on [m,m] is the rescaled chebyshev polynomial that rescales values from [−1, 1] to the interval [m,m]
while preserving the condition that pn(0) = 1. this polynomial is expressed as

pn(a) ≡ tn
(
m+m− 2a

m−m

)/
tn

(
m+m

m−m

)

now, assuming that m/m ≈ κ,

tn

(
m+m

m−m

)
= tn

( m
m + 1
m
m − 1

)
≈ tn

(
κ+ 1

κ− 1

)
since |tn(u)| ≤ 1 for |u| ≤ 1, this also implies that

tn

(
m+m− 2a

m−m

)
≤ 1

combining this together, we get

||en|| ≤ ||e0|| max
m≤a≤m

|pn(a)| = ||e0||
/
tn

(
κ+ 1

κ− 1

)
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it is a fact that higher order chebyshev polynomials tend to infinity faster once the value reaches out of
[−1, 1], meaning that as n→∞, tn

(
(κ+1)/(κ− 1)

)
will also tend to infinity (note that (κ+1)/(κ− 1) is a

constant, implying that en tends to 0 as n tends to infinity. the error bound for en is given by the following

||en|| ≤ 2

(
1 +

2√
κ

)−n

||e0|| ≈ 2

(
1− 2√

κ

)n
||e0||

once again, this confirms that en → 0 as n→∞. furthermore, when κ is large, the error bound works with√
κ, which is must smaller than κ itself. so, en converges much faster through this algorithm than through

the method of steepest descent.
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9 Tensors as Multilinear Maps
There are multiple ways to construct tensor product spaces. Note that all the constructions are equivalent
and will lead to the exact same properties of tensors. The first method defines tensors outright as multilinear
maps, without the need for a basis.

9.1 Tensor Product of Two Spaces

Definition 9.1 ()

The tensor product of two vector spaces V and W is a vector space, denoted V ⊗W , created by the
bilinear map

⊗ : V ×W −→ V ⊗W, (x, y) 7→ x⊗ y

That is,
V ⊗W ≡ {x⊗ y | x ∈ V, y ∈W}

where the elements of V ⊗W are called tensors. Note that since we have defined the operation ⊗
to be bilinear, it satisfies the properties

1. (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v
2. v ⊗ (u1 + u2) = v ⊗ u1 + v ⊗ u2
3. (λu)⊗ v = u⊗ (λv) = λ(u⊗ v)

Moreover, each tensor x⊗ y is itself a bilinear operator

x⊗ y : V ∗ ⊗W ∗ −→ F

Using these properties we will deduce further qualities of tensor product spaces. First, given a basis {ei} of
n-dimensional space V and {fj} of m-dimensional space W , we can construct a basis

{ei ⊗ fj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

of V ⊗W using only the bilinearity properties of ⊗.

Example 9.1 ()

Let V ∗ be a 4-dimensional vector space with basis {e0, e1, e2, e3}. Then the basis of V ∗ ⊗ V ∗ is

{e0 ⊗ e0, e0 ⊗ e1, e0 ⊗ e1, e0 ⊗ e1,
e1 ⊗ e0, e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3,
e2 ⊗ e0, e2 ⊗ e1, e2 ⊗ e2, e2 ⊗ e3,
e3 ⊗ e0, e3 ⊗ e1, e3 ⊗ e2, e3 ⊗ e3}

That is, every tensor can be expressed as a linear combination of these vectors, which implies

dimV ⊗W = (dimV )(dimW )

By equality of dimensionality and bilinearity, it is obvious that

V ⊗W ≃ Hom(V ×W,F)

In fact, they are naturally isomorphic.

Notice that we still haven’t actually defined how to "calculate" using the operator x⊗ y. It turns out that
defining a tensor product is unique up to isomorphism. That is, if (V ⊗W,⊗1) and (V ⊗W,⊗2) are two
tensor product spaces sufficing bilinearity, then V ⊗1 W ≃ V ⊗2 W . This result is formally stated in the
proposition below.
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Proposition 9.1 (Universal Property of 2-tensors)

With this constructed basis, we can claim that for every map φ : V ×W −→ F, there exists a unique
linear map ψ : V ⊗W −→ F such that

φ(x, y) = ψ(x⊗ y) ∀x ∈ V, y ∈W

Proof.

Since {ei ⊗ fj} is a basis for V ⊗W , we know that every element z ∈ V ⊗W decomposes uniquely
into

z =
∑
i,j

zijei ⊗ fj , zij ∈ F

Thus, by linearity it suffices to define these maps for the basis vectors. This linear map is determined
as

ψ(ei ⊗ fj) = φ(ei, fj)

Denoting the map that is defined by taking all ei ⊗ fj 7→ (ei, fj) as S, we can see that S is clearly an
isomorphism defined such that the diagram below commutes.

V ⊗W F

V ×W

ψ

S
φ

That is, the unique isomorphism S exists that determines ψ such that

ψ = φ ◦ S

which means that all definitions of ⊗ are equivalent under S. Note further that S determines the isomorphism

(V ⊗W )∗ ≡ Hom(V ⊗W,F) ≃ Hom(V ×W,F)

Therefore, it does not matter how we choose to concretely define the operator x ⊗ y for computations.
However, it is customary to define it as

(x⊗ y)(α, β) = α(x) · β(y), α ∈ V ∗, β ∈W ∗

Given x⊗ y ∈ V ⊗W , we can also choose to input elements "partially." That is, if we only input one vector
α ∈ V ∗ into x⊗ y, we get

(x⊗ y)(α, ·) = α(x)y(·) = α(x)y ∈W

meaning that the isomorphisms below are all canonical

V ⊗W ≃ Hom(V ×W,F) ≃ Hom(V ∗,W )

This means that
V ∗ ⊗W ≃ Hom(V,W )

That is, an element α ⊗ y ∈ V ∗ ⊗W is a linear map from V to W ! We will focus a bit more on elements
of V ∗ ⊗W . Given the previous bases ei and fj for V and W , let {ϵi} be the dual basis for V ∗. Then, the
tensor α⊗ w ∈ V ∗ ⊗W can be represented as

α⊗ w ≡
(∑

i

αiϵi

)
⊗
(∑

j

wjfj

)
=
∑
i,j

αiwj ϵi ⊗ fj =
∑
i,j

Aij ϵi ⊗ fj
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In fact, the Aij are precisely the ijth components of the matrix representation of linear operator α⊗ y with
respect to basis {ϵi} and {fj}. Indeed,

(α⊗ y)(ej) =
(∑

i,j

ei ⊗ fj
)
ej

=
∑
i,j

Aijei · δjj =
∑
i

Aijei

which is consistent with the column space interpretation of matrix multiplication discussed in the beginning
of Chapter 4. The realization of this tensor product between a covector and a vector is realized as an outer
product.

Definition 9.2 ()

Given vector spaces U, V with defined bases in each of them, the outer product of two vectors u ∈ U
and v ∈ V is defined

u⊗ v ≡ uvT ≡


u1
u2
...
um

⊗ (v1 ... vn
)
=


u1v1 ... u1vn
u2v1 ... u2vn
... ... ...

umv1 ... umvn


Note that the ⊗ symbol in here represents the outer product, not the tensor product. Note that the
tensor rank of the outer product of two vectors is (2, 0).

Abstractly speaking, the outer product of u ∈ U and v ∈ V is the element u⊗v ∈ U⊗V , which is a rank-(2,0)
tensor, not a rank-(1,1) tensor! Just because it "looks" like a matrix, u ⊗ v should not be interpreted as a
linear map. Such a m × n matrix could really be the realization of either a (2,0) tensor, (1,1) tensor, or a
(0,2) tensor.

However, if U is an inner product space, then it is possible to define u × v as a linear map from U −→ W .
The structure of the inner product on U allows us to define the canonical isomorphism ϕ between U and U∗.
Then, we can define the canonical injections i : U −→ U ⊗V and j : U∗ −→ U∗⊗V to get the commutative
diagram

U ⊗ V U∗ ⊗ V

U U∗

γ

i

ϕ

j

Given that
ϕ(u) ≡ l such that (u, x) = l(x)∀x ∈ U

we can define the mapping γ : jϕi−1 such that

γ(u⊗ v) ≡ ϕ(u)⊗ v ≡ l ⊗ v ∈ U∗ ⊗ V

which is ultimately a linear mapping from U −→ V since

l ⊗ v(u0, ·) ≡ l(u0)v(·)

with l(u0) ∈ F and v(·) a vector. This proves the following theorem.

Proposition 9.2 ()

The matrix rank of the outer product of any 2 vectors is 1.
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Proof.

Trivial.

We can extrapolate and see that for higher order tensor products, we would get an n-dimensional array of
scalars. A matrix is a 2-dimensional array of numbers since it is the tensor product of two vectors.

Definition 9.3 ()

Given vector spaces U, V with defined bases in each of them, the Kronecker product of two vectors
u ∈ U and v ∈ V is defined

u⊗Kron v ≡


u1
u2
...
um

⊗ (v1 ... vn
)
=


u1v1
u1v2
...

umvn−1

umvn


Clearly, the outer product and Kronecker product are closely related, and we can interpret the Kronecker
product as a form of "vectorization" or "flattening out" of the outer product.

9.2 Higher Order Tensor Product Spaces
Since U ⊗W is a vector space itself, we can multiply it further to create higher order tensor product spaces.

U ⊗W ⊗ U ⊗ ...

Note that by construction, the operation of tensor product on vector spaces is commutative and associative
in the sense that

V ⊗W ≃W ⊗ V

and
(U ⊗ V )⊗W ≃ U ⊗ (V ⊗W ) ≃ U ⊗ V ⊗W

which allows us to write tensor products of any finite number of vector spaces V1, V2, ..., Vn without paran-
theses. By induction, we can keep constructing higher order tensor products as such

V1 ⊗ V2 → (V1 ⊗ V2)⊗ V3 →
(
(V1 ⊗ V2)⊗ V3

)
⊗ V4 → ...

to get the tensor product space
n⊗
i=1

Vi ≡ V1 ⊗ V2 ⊗ ...⊗ Vn

with tensors in the form
n⊗
i=1

vi ≡ v1 ⊗ v2 ⊗ v3 ⊗ ...⊗ vn; vi ∈ Vi

defined as the following multilinear map

n⊗
i=1

vi :

n∏
i=1

V ∗
i −→ F,

( n⊗
i=1

vi

)(
l1, l2, ..., ln

)
≡

n∏
i=1

vi(li), li ∈ V ∗
i

This map can then be used to easily see the following statement

n⊗
i=1

Vi ≃ Hom
( n∏
i=1

V ∗
i ,F

)
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Similarly to the section about the tensor product of two spaces, we can "partially" fill in the inputs of a
general tensor v1 ⊗ v2 ⊗ ... ⊗ vn to interpret them as multilinear operators that can take in k vectors and
output n− k vectors. That is, tensors (written as τ below) are multilinar maps from a cartesian product of
vector spaces to a tensor product of vector spaces.

τ : V1 × ...× Vn −→W1 ⊗ ...⊗Wm

For example,

Hom
( n∏
i=1

V ∗
i ,F

)
≃ Hom

( n∏
i=2

V ∗
i , V1

)
≃ Hom

( n∏
i=3

V ∗
i , V1 ⊗ V2

)
≃ ...

Furthermore, we can generalize the universal property of two tensors to the following proposition, which is
also called the fundamental principle of tensor algebra.

Proposition 9.3 (Universal Property)

Given a linear mapping φ : V1× ...×Vn −→ F, there exists a unique linear map ψ : V1⊗ ...⊗Vn −→ F.
That is,

Hom
( n⊗
i=1

Vi,F
)
≡
( n⊗
i=1

Vi

)∗

≃ Hom
( n∏
i=1

Vi,F
)

Definition 9.4 ()

Given that
{eij}

kj
ij=1 of Vj , j = 1, 2, ..., n

are n sets of bases for each Vj ,

{
n⊗
j=1

eij}i1,...,in is a basis of
n⊗
j=1

Vj

Proposition 9.4 ()

Given vector spaces V1, V2, ..., Vn,

dim

n⊗
i=1

Vi =

n∏
i=1

dimVi

Proof.

This follows naturally from the construction of the basis.

We move on to talk about something quite enlightening: the tensor product of linear operators, which are
themselves tensors.

Definition 9.5 ()

Given linear operators A ∈ End(V ), B ∈ End(W ), we can construct the linear operator

A⊗B ∈ End(V ⊗W )

such that
(A⊗B)(x⊗ y) ≡ Ax⊗By ∈ V ⊗W

Notice that since A,B are linear operators, they are tensors. More specifically, A ≡ α ⊗ u and
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B ≡ β ⊗ v, so

(A⊗B)(x⊗ y) ≡ Ax⊗By
= (α⊗ u)x⊗ (β ⊗ v)y
= α(x)β(y)u⊗ v
=
(
(α⊗ β)(x⊗ y)

)
(u⊗ v)(·, ·)

=
(
(α⊗ β)⊗ (u⊗ v)

)(
(x⊗ y), (· ⊗ ·)

)
=
(
(α⊗ β)⊗ (u⊗ v)

)
(x⊗ y)

=⇒ A⊗B ≡ α⊗ β ⊗ u⊗ v.

We will work through an example that gives the matrix representation of the tensor product of linear
mappings. For simplicity, let us work with the example when

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
Given that U has basis {u1, u2} and V has basis {v1, v2}, U ⊗ V will have basis

{u1 ⊗ v1, u1 ⊗ v2, u2 ⊗ v1, u2 ⊗ v2}

We then define the induced linear mapping A ⊗ B : U ⊗ V −→ U ⊗ V by defining it on its basis vectors.
Note that the linear mapping (A⊗B)(u⊗ v) must be an element of U ⊗ V , implying that it is defined

(A⊗B)(u⊗ v) ≡ Au⊗Bv

This is called the tensor product of operators A and B. So, the tensor product of matrices A and B can
be calculated

(A⊗B)(u1 ⊗ v1) = (a11u1 + a21u2)⊗ (b11v1 + b21v2)

= a11b11(u1 ⊗ v1) + a11b21(u1 ⊗ v2)
+ a21b11(u2 ⊗ v1) + a21b21(u2 ⊗ v2)

... = ...

(A⊗B)(u2 ⊗ v2) = (a12u1 + a22u2)⊗ (b12v1 + b22v2)

= a12b12(u1 ⊗ v1) + a12b22(u1 ⊗ v2)
+ a22b12(u2 ⊗ v1) + a22b22(u2 ⊗ v2)

In matrix form, this results in the 4× 4 matrix (also in block form)

A⊗B ≡


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 =

(
a11B a12B
a21B a22B

)

representing the linear transformation from U ⊗ V to itself under the basis {ui ⊗ vj}.

Proposition 9.5 ()

In general,the tensor product of matrices A ∈ End(V ) and B ∈ End(W ) (with basis of V,W defined)
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is the (mn)× (mn) matrix

A⊗B ≡


a11B a12B ... a1nB
a21B a22B ... a2nB
... ... ... ...

an1B an2B ... annB


represented in block form.

Proposition 9.6 ()

TrA⊗B = TrA · TrB
detA⊗B = (detA)n(detB)m

Proposition 9.7 ()

For finite dimensional space V and W ,

End(V ⊗W ) = End(V )⊗ End(W )

9.3 Contractions, Tensor Algebras

Definition 9.6 ()

Given vector space V , a rank (k, l)-tensor product space of V , denoted Tkl V , is defined

Tkl V ≡
( k⊗
i=1

V

)
⊗
( l⊗
j=1

V ∗
)
≡ V ⊗k ⊗ V ∗⊗l

That is, Tkl is the space of all (k, l)-tensors. A rank (k, l)-tensor is an element of a rank (k, l) tensor
product space. Note that all tensors are vectors and all tensor product spaces are vector spaces, too.
The order in which we multiply V ’s and V ∗’s matter, but in most cases, and from now, we will work
with tensor product spaces strictly in the form

V ⊗k ⊗ V ∗⊗l

where the V ’s are multiplied first and V ∗’s last. So, T1
1 ≡ V ⊗ V ∗, but T1

1 ̸≡ V ∗ ⊗ V . We can do
this because the tensor product of spaces are commutative in the sense that we can always find an
isomorphism

V ⊗W ≃W ≃ V

Example 9.2 ()

F is a rank (0,0)-tensor space. V is a rank (1,0)-tensor space, and V ∗ is a rank (0,1)-tensor space.

We can now think of the tensor product now as a bilinear operator

⊗ : TpqV × TrsV −→ Tp+rq+sV
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such that ( p⊗
i=1

vi ⊗
q⊗
j=1

wj

)
⊗
( p+r⊗
i=p+1

vi ⊗
q+s⊗
j=q+1

wj

)
=

p+r⊗
i=1

vi ⊗
q+s⊗
j=1

wj ∈ Tp+rq+sV

Proposition 9.8 ()

T2
2V ≃ End(V )⊗ End(V )

That is, the tensor multiplication T1
1×T1

1 −→ T2
2 is precisely the multiplication of the linear operators.

Proof.

Letting A = u⊗ α,B = v ⊗ β with u, v ∈ V and α, β ∈ V ∗, we know that

A⊗B = u⊗ v ⊗ α⊗ β

=⇒ End(V )⊗ End(V ) ≃ V ⊗ V ⊗ V ∗ ⊗ V ∗ ≃ T2
2V .

When working with tensors in general, we use the Einstein Summation Notation to write vectors in shorthand
form

Aµeµ ≡
n∑
i=1

Aiei

The indices in this context are not important here (but they are significant in physics). For example, the
Einstein notation for rank (2,0) tensors is written

Tµνe
µ ⊗ eν ≡

∑
µ,ν

Tµνe
µ ⊗ eν

and for an n vectors,

Tµ1,...,µn

n⊗
i=1

eµi ≡ Tµ1,...,µn
eµ1 ⊗ eµ2 ⊗ ...⊗ eµn

≡
∑

µ1,...,µn

Tµ1,...,µne
µ1 ⊗ eµ2 ⊗ ...⊗ eµn

≡
∑

µ1,...,µn

Tµ1,...,µn

⊗
i=1

eµi

Since the coefficients of the shorthand tensor notation implies the tensors themselves, we can simply write

Tµ1,...,µn ≡ Tµ1,...,µn

n⊗
i=1

eµi

Clearly, this notation is not restricted to the tensor product of contravariant vectors. For example,

T αβ
µ ν e

µ ⊗ eα ⊗ eβ ⊗ eν ≡
∑

µ,α,β,ν

T αβ
µ ν e

µ ⊗ eα ⊗ eβ ⊗ eν

is the form of a general tensor in the tensor space V ∗ ⊗ V ⊗ V ⊗ V ∗. Note that the order of the subscript-
s/superscripts in the coefficients of T matters, but again, we usually work with Tpq where vector spaces V ’s
come first and then the dual spaces V ∗’s come later.
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Example 9.3 ()

Let eµ ⊗ eν ⊗ eλ ∈ T1
2. Then

(eµ ⊗ eν ⊗ eλ)
(
Bϵe

ϵ, Aδeδ, C
σeσ
)
= eµ(Bϵe

ϵ) · eν(Aδeδ) · eλ(Cσeσ)
= BϵA

δCσ δϵµ δ
ν
δ δ

λ
σ

= BµA
νCλ ∈ R

We now define the contraction of a tensor.

Definition 9.7 ()

A contraction is a linear map

Cmn : Tpq −→ Tp−1
q−1, 1 ≤ m ≤ p, 1 ≤ n ≤ q

defined as follows. Let us define the map

C̃mn :
∏
p

V ×
∏
q

V ∗ −→ Tp−1
q−1V

such that (where the hatted elements are taken out)

(x1, ..., xp, α1, ..., αq) 7→ αn(xm) x1 ⊗ ...x̂m...⊗ xp ⊗ α1 ⊗ ...α̂n...⊗ αq

This is clearly a multilinear map, so by the universal property, there exists a unique linear map
Cmn : TpqV −→ Tp−1

q−1V such that

p⊗
i=1

xi ⊗
q⊗
j=1

αj 7→ αn(xm)
⊗
i ̸=m

xi ⊗
⊗
j ̸=n

αj

This mapping Cmn is called the mnth contraction of a tensor in TpqV .

Note that there are multiple mappings from Tpq −→ Tp−1
q−1, depending on the choice of m,n. This contraction

function is also canonical, i.e. we did not have to endow any structures to V to define Cnm.

We could also contract multiple steps at once with the map Tpq −→ Tp−kq−k , but this is really just a composition
of single contractions

Tpq −→ Tp−1
q−1 −→ Tp−2

q−2 −→ ... −→ Tp−kq−k

Definition 9.8 ()

Given a (0, 2)-tensor Fαβ , we can find its symmetric component

F{αβ} =
1

2

(
Fαβ + Fβα

)
and its anti-symmetric component

F[αβ] =
1

2

(
Fαβ − Fβα

)
such that

Fαβ = F{αβ} + F[αβ]
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In shorthand form, to form a contraction, we can just write the indices that are being contracted as the same
letter.

Example 9.4 ()

When performing a contraction, it is common to make the indices that are being contracted the
same. For example, Xabc

d ∈ V ⊗3 ⊗ V ∗ can be contracted, so if we can choose the a and d indices to
contract, we get

Xabc
a ∈ V ⊗ V

Proposition 9.9 ()

The contraction of a linear operator A = u⊗ α is its trace. Notice how that the vector u comes first
and the covector α comes second, since we’re working in T1

1V .

Proof.

Given that {ei} is the basis for n-dimensional space V and {fi} is the dual basis of V ∗.

C1
1 (x⊗ α) = α(u) =

( n∑
i=1

αifi

)( n∑
j=1

xjej

)
=
∑
i,j

αixjδ
j
i =

n∑
i=1

αixi

which is clearly the definition of the trace.

In addition to contracting a tensor with itself, we can contract a tensor X with another tensor Y .

Example 9.5 ()

XabcYd ∈ V ⊗3 ⊗ V ∗

Proposition 9.10 ()

The contraction of a linear operator A = u⊗ α and a vector x is precisely Ax, the image of x under
the linear operator A.

Ax = (u⊗ α)x = α(x)u ∈ V

Calculating this after defining coordinates aligns with matrix multiplication of form
— A1 —
— A2 —
... ... ...
— An —


...x
...

 =


A1 · x
A2 · x
...

An · x


Proposition 9.11 ()

The contraction of the tensor product of linear operators A,B is just the regular composition AB.
Note that this contraction contracts the second index of A with the first index of B. That is,

C(A⊗B) = C
(
(u⊗ α)⊗ (v ⊗ β)

)
= α(v)u⊗ β ∈ T1

1

Clearly, α(v)u⊗β is a really another linear map. We can evaluate ABx by performing the contraction
on AB first and then contracting it with x.

ABx = α(v)(u⊗ β)(x) = α(v)β(x)u
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Alternatively, we can evaluate ABx equivalently by performing the contraction on Bx first and then
A

ABx = β(x)Av = α(v)β(x)u

Either way, it results in the same vector α(v)β(x)u. This is expected because tensor products are
associative.

Similarly, we can contract the tensor products of general tensors T and R, which is called a contraction of
T with R. Furthermore, just like linear mappings or vectors, we can factorize arbitrary tensors in their own
way. The field of math dealing with this is called Tensor Network Theory, which has multiple applications
in computer science, chemistry, and physics.

Definition 9.9 ()

We can factorize a complex tensor X into a product of tensors that can be contracted to result in X.
We can think of factoring tensors as analogous to anti-contraction. This process is best illustrated
with the following example. Let us factor the tensor into three different tensors: a rank (1,2) tensor
A, rank (2,2) tensor B, and rank (1,2) tensor C.

X hg
abde = A c

ab ⊗B
fg

de ⊗ C h
cf

We can visually represent factorization with the tensor network diagram

A

B

C

a

b
d

e

c

f
g

h

where the "inputs" at each node are covectors and the "outputs" are vectors. Therefore, the entire
diagram, which represents the tensor X has a total of 4 inputs (indices a, b, d, e) and two outputs
(indices h, g). We can see from the diagram that the indices c and f , which travels "between" the
factors are the ones that are being contracted. Therefore, the contraction of c and f contracts the
rank (4,6) tensor A⊗B ⊗ C to a rank (2,4) tensor.

Definition 9.10 ()

The tensor algebra of vector space V over field F is an associative, noncommutative algebra defined

T (V ) ≡
∞⊕
n=0

V ⊗n = V ⊗0 ⊕ V ⊗1 ⊕ V ⊗2 ⊕ V ⊗3 ⊕ ...

= F⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ V ⊗4 ⊕ ...

with elements being infinite-tuples
(a,Bµ, Cνγ , Dαβϵ, ...)

The addition operation is defined component-wise, and the multiplication operation is the tensor
product

⊗ : T (V )× T (V ) −→ T (V )

and the identity element is
I = (1, 0, 0, ...)

Linearity is easily proved.
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The tensor algebra is used to "add" differently ranked tensors together. In order to do this rigorously, we
must define the map (which is also an isomorphism)

ij : V
⊗j −→ T (V ), ij(T

κ1,...,κj) = (0, ..., 0, Tκ1,...,κj , 0, ..., 0)

So, we can implicitly define the addition of arbitrary tensors A ∈ V ⊗n and B ∈ V ⊗m as

A+B ≡ in(A) + im(B) ∈ T (V )

along with the tensor multiplication of the form

A⊗B ≡ in(A)⊗ im(B) ≡ in+m(A⊗B)

This allows us to alternatively define the tensor product operation as

ii(V
⊗i)⊗ ij(V ⊗j) ≡ ii+j(V ⊗(i+j))

9.4 Exterior Algebras and Symmetric Algebras
We can define the symmetric and exterior algebras multiple ways. In here, we will construct their powers
separately as quotient spaces and direct sum them to create their respective algebras. But first, we must
introduce the Schmidt decomposition, which is the foundation of all the results of this section.

Theorem 9.1 (Schmidt Decomposition)

For any w ∈ U ⊗ V , where U, V (dimU = n, dimV = m) are inner product spaces over F ∈ {R,C},
there exists an orthonormal basis {ui} of U and {vj} of V such that

w =

min {n,m}∑
i=1

αiui ⊗ vi, αi ∈ F

Proof.

Since U ⊗ V ≃ Hom(V ∗, U), we can interpret w as a matrix w̃. Using singular value decomposition,
there exists unitary matrices A,B and diagonal matrix Σ such that

w̃ = AΣB†

C(A) and R(B†) determine the orthonormal basis of U ⊗ V , and we can thus see that the minimum
number of required u⊗ v’s is precisely the number of nonzero singular values, which is the rank of w̃.

Definition 9.11 ()

Let I be a subspace of V ⊗ V generated by elements of the form x ⊗ x ∈ V ⊗ V . That is, given a
basis {ei} of n-dimensional space V , all tensors of the form x⊗ x ∈ V ⊗ V can be written

x⊗ x =

n∑
i=1

ai(ei ⊗ ei) +
∑
i ̸=j

bij(ei ⊗ ej + ej ⊗ ei)

which implies that the components of ei ⊗ ej and ej ⊗ ei must be the same for every element in I.

99/ 110



Linear Algebra Muchang Bahng Spring 2020

Example 9.6 ()

Given that V is 2-dimensional, a vector x ∈ V can be written x = ae1 + be2, which implies

x⊗ x = (ae1 + be2)⊗ (ae1 + be2)

= a2(e1 ⊗ e1) + ab(e1 ⊗ e2) + ba(e2 ⊗ e1) + b2(e2 ⊗ e2)
= a2(e1 ⊗ e1) + b2(e2 ⊗ e2) + ab(e1 ⊗ e2 + e2 ⊗ e1)

Since we can group the components ei ⊗ ej and ej ⊗ ei together to ei ⊗ ej + ej ⊗ ei, the basis of I is

{e1 ⊗ e1, ..., en ⊗ en, e1 ⊗ e2 + e2 ⊗ e1, ..., en−1 ⊗ en + en ⊗ en−1}

Definition 9.12 ()

Now, we can define the second exterior power of V as

Λ2V ≡ V ⊗ V
I

and it follows that
dimΛ2V = n2 − dim I =

1

2
n(n− 1)

We denote the elements of Λ2V as x ∧ y, which really just represents the equivalence class of x ⊗ y
in the quotient space. It is clear that x⊗ x ∈ I =⇒ x ∧ x = 0, so

0 = (x+ y) ∧ (x+ y) = x ∧ x+ x ∧ y + y ∧ x+ y ∧ y
= x ∧ y + y ∧ x

=⇒ x ∧ y = −y ∧ x

That is, the wedge product is antisymmetric. Note also that we can assume distributivity of ∧ since
it is just the quotient operation of another operation ⊗ that satisfies distributivity. We can construct
a basis on Λ2V , given by

{ei ∧ ej | i < j}

Again, we note that i < j since ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei.

One realization of the space Λ2Rn is the set of antisymmetric n×n matrices. We can construct higher order
exterior powers, too. For n = 3 (and assuming that dimV ≥ 3), the subspace I ⊂ V ⊗ V ⊗ V is the space
generated by elements of the forms

x⊗ x⊗ y, x⊗ y ⊗ x, y ⊗ x⊗ x

Following a similar construction, the third exterior power of V is

Λ3V ≡ V ⊗ V ⊗ V
I

with its elements being equivalence classes of the form

x ∧ y ∧ z, x, y, z ∈ V

such that

x ∧ y ∧ z = −x ∧ z ∧ y
= −y ∧ x ∧ z
= −z ∧ y ∧ x
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The basis of Λ3V is

{ei ∧ ej ∧ ek | i < j < k} =⇒ dimΛ3V =
1

6
n(n− 1)(n− 2)

Generally, if σ is a permutation of the ordered list (1, 2, ..., n), and x1, x2, ..., xn ∈ V , then

xσ(1) ∧ xσ(2) ∧ ...∧σ(n) = sgn(σ) x1 ∧ x2 ∧ ... ∧ xn

which means that if xi = xj for some 1 ≤ i ̸= j ≤ n,

x1 ∧ x2 ∧ ... ∧ xn = 0

By constructing all the exterior powers of n-dimensional space V , we can construct the algebra

Λ(V ) ≡
n⊕
k=0

ΛkV ≡ Λ0V ⊕ Λ1V ⊕ Λ2V ⊕ ...⊕ ΛnV

Note that Λ0V = F and Λ1V = V . Unlike the tensor algebra, the exterior algebra is finite since the exterior
powers vanish for finite n. In fact,

dimΛkV =

{
nCk 0 ≤ k ≤ n
0 n < k

which implies that
dimΛ(V ) = 2n

Definition 9.13 ()

The nth exterior power ΛnV is 1 dimensional, spanned by the singular basis vector

e1 ∧ e2 ∧ ... ∧ en−1 ∧ en

This vector is the determinant. Note that this construction of the determinant is consistent with
our previous construction of the determinant of a matrix since e1 ∧ ... ∧ en is indeed multilinear and
antisymmetric. In its purest sense,

e1 ∧ ... ∧ en :

n∏
i=1

V ∗ −→ F

is a mapping that is multilinear and antisymmetric. But there is an inconsistency. The matrix
determinant takes in matrices rather than taking in n-tuples of covectors. However, we can interpret
the n covectors in V ∗ × ...× V ∗ as the column (or row) vectors of an n× n matrix. This completes
the realization, and so we can conclude that the matrix determinant is just a realization of the more
abstract determinant e1 ∧ ... ∧ en.
Note that any tensor in ΛnV satisfies multilinearity and antisymmetricity, but only the basis vector
e1 ∧ ... ∧ en satisfies the normalizing condition

det I = 1

Since, given that the dual basis of V ∗ is {fj}

(e1 ∧ ... ∧ en)(f1, f2, ..., fn) =
n∏
i=1

ei(fi) =

n∏
i=1

δii = 1
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Example 9.7 ()

Given 3 dimensional vector space V with basis {e1, e2, e3}, the wedge product of two vectors a, b ∈ V
is

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2

which is essentially the formula for the cross product × in Euclidean space. We can therefore think
of the realization of the wedge product in 3 dimensional space V as the cross product.

∧ : V × V −→ Λ2V

Note that Λ2V ≃ V if dimV = 3, so we can construct the more familiar × operation in R3.

× : R3 × R3 −→ Λ2R3 ≃ R3

which is consistent with × taking two vectors and outputting a third vector living in R3 that is
orthogonal to the two input vectors.

Example 9.8 ()

The realization of the wedge product of 3 vectors in 3 dimensional space V is the triple scalar product,
which we will denote as ×3

∧ : V × V × V −→ Λ3V

Note that since Λ3V ≃ V when dimV = 3, we can write

×3 : R3 × R3 × R3 −→ Λ3R3 ≃ R

which is consistent with ×3 taking three vectors and outputting the signed volume of their paral-
lelopiped which lies in R.

Now we introduce the symmetric algebra and its construction. Let I be the subspace of V ⊗ V generated
by all tensors of the form

u⊗ v − v ⊗ u, u, v ∈ V

For example, given a, b ∈ V with basis {e1, e2},

a⊗ b− b⊗ a = (a1e1 + a2e2)⊗ (b1e1 + b2e2)− (b1e1 + b2e2)⊗ (a1e1 + a2e2)

= (a1b2 − b2a1)e1 ⊗ e2 + (a2b1 − b2a1)e2 ⊗ e1

is an element of I. We can generalize this to see that

{ei ⊗ ej − ej ⊗ ei}, i ̸= j

is the basis for I. Now, let us define the second symmetric power of V as

Sym2 V ≡ V ⊗ V
I

where, given that dimV = n,

dimSym2 V = n2 − 1

2
n(n− 1) =

1

2
n(n+ 1)

We denote the elements of Sym2 V as x⊙ y, which are really the equivalence classes {x⊗ y − y ⊗ x}. Note

102/ 110



Linear Algebra Muchang Bahng Spring 2020

that

x⊙ y − y ⊙ x = {x⊗ y − y ⊗ x} − {y ⊗ x− x⊗ y}
= {x⊗ y − y ⊗ x− y ⊗ x+ x⊗ y}
= {0} = 0

=⇒ x⊙ y = y ⊙ x. That is, the ⊙ operator is symmetric, and Sym2 V has basis

{ei ⊙ ej}j≥k

One realization of Sym2 Rn is the set of all symmetric n×n real matrices. We can construct higher symmetric
powers satisfying this property that its tensors are invariant under transpositions.

x1 ⊙ ...xi ⊙ ...xj ⊙ ...xn = x1 ⊙ ...xj ⊙ ...xi ⊙ ...xn

for all 1 ≤ i ̸= j ≤ n, which implies that it is invariant under any permutation p ∈ Sn of the xi’s. Additionally,

dimSymk V =

(
n+ k − 1

k

)

Definition 9.14 ()

The symmetric algebra of vector space V is constructed as such

Sym(V ) ≡
∞⊕
k=0

Symk V

Note that unlike the exterior algebra, Sym(V ) is infinite dimensional.

Example 9.9 ()

The inner product (·, ·) on V is an element of Sym2 V , since it is a bilinear, symmetric operation on
V .

⊙, (·, ·) : V × V −→ F

There is a simple relationship between V ⊗ V , Λ2V , and Sym2 V .

Theorem 9.2 ()

V ⊗ V ≃ Sym2 V ⊕ Λ2V

with isomorphism defined

v ⊗ w 7→
(1
2
(v ⊙ w), 1

2
(v ∧ w)

)
This is precisely the factoring of a rank (2,0) tensor into its symmetric and antisymmetric parts.

Proof.

Given v ⊗ w ∈ V ⊗ V ,

v ⊗ w + w ⊗ v ∈ Sym2 V and v ⊗ w − w ⊗ v ∈ Λ2V

By defining v ⊙ w and v ∧ w as the expressions above, the isomorphism is satisfied.
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Therefore, when working in V ⊗ V , we can interpret

v ∧ w =
1

2
(v ⊗ w − w ⊗ v)

v ⊙ w =
1

2
(v ⊗ w + w ⊗ v)

However,
V ⊗ V ⊗ V ̸≃ Sym3 V ⊕ Λ3V

Schur functors are used to fix this discrepancy.

Note that we have introduced these two algebras by first constructing the quotient spaces ΛnV and Symn V
from the tensor product spaces T⊗n and then direct summing these powers to construct the algebras. We will
introduce another type of construction that directly takes the quotient algebra of T (V ) with the two-sided
ideal.
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10 Exercises

10.1 Vector Spaces and Dual Spaces

Exercise 10.1 (Lax 1.1)

Show that the zero of vector addition is unique.

Exercise 10.2 (Lax 1.2)

Show that the vector with all components zero serves as the zero element of classical vector addition.

Exercise 10.3 (Lax 1.3)

Show that (i) and (iv) are isomorphic.

Exercise 10.4 (Lax 1.4)

Show that if S has n elements, (i) and (iii) are isomorphic.

Exercise 10.5 (Lax 1.5)

Show that when K = R, (iv) is isomorphic with (iii) when S consists of n distinct points of R.

Exercise 10.6 (Lax 1.6)

Denote by X the linear space of all polynomials p(t) of degree < n, and denote by Y the set of
polynomials that are zero at t1, . . . , tj , j < n. (i) Show that Y is a subspace of X. (ii) Determine
dim Y . (iii) Determine dim X/Y .

Exercise 10.7 (Lax 1.7)

Prove (i)-(iii) above. Show furthermore that if x1 ≡ x2, then kx1 ≡ kx2 for every scalar k.

Exercise 10.8 (Lax 1.9)

Show that the set of all linear combinations of x1, . . . , xj is a subspace of X, and that it is the smallest
subspace of X containing x1, . . . , xj . This is called the subspace spanned by x1, . . . , xj .

Exercise 10.9 (Lax 1.10)

Show that if the vectors x1, . . . , xj are linearly independent, then none of the xi is the zero vector.

Exercise 10.10 (Lax 1.15)

Show that the above definition of addition and multiplication by scalars is independent of the choice
of representatives in the congruence class.
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Exercise 10.11 (Lax 1.11)

Prove that if X is finite dimensional and the direct sum of Y1, . . . , Ym, then

dimX =
∑

dimYj .

Exercise 10.12 (Lax 1.12)

Show that every finite-dimensional space X over K is isomorphic to Kn, n = dimX. Show that this
isomorphism is not unique when n is > 1.

Exercise 10.13 (Lax 1.14)

Show that two congruence classes are either identical or disjoint.

Exercise 10.14 (Lax 1.18)

Show that
dimX1 ⊕X2 = dimX1 + dimX2.

Exercise 10.15 (Lax 1.19)

X a linear space, Y a subspace. Show that Y ⊕X/Y is isomorphic to X.

Exercise 10.16 (Lax 1.17)

Prove Corollary 6’: A subspace Y of a finite-dimensional linear space X whose dimension is the same
as the dimension of X is all of X.

Exercise 10.17 (Lax 2.1)

Given a nonzero vector x1 in X, show that there is a linear function l such that...

Exercise 10.18 (Lax 2.2)

Verify that Y ⊥ is a subspace of X ′.

Exercise 10.19 (Lax 2.3)

Prove Theorem 6: Denote by Y the smallest subspace containing S:

S⊥ = Y ⊥.

Exercise 10.20 (Lax 2.4)

In Theorem 6 take the interval I to be [−1, 1], and take n to be 3. Choose the three points to be
t1 = −a, t2 = 0, and t3 = a.

(i) Determine the weights m1,m2,m3 so that (9) holds for all polynomials of degree < 3.
(ii) Show that for a >

√
1/3, all three weights are positive.

(iii) Show that for a =
√
3/5, (9) holds for all polynomials of degree < 6.
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Exercise 10.21 (Lax 2.5)

In Theorem 6 take the interval I to be [−1, 1], and take n to be 4. Choose the four points to be
−a,−b, b, a.

(i) Determine the weights m1,m2,m3, and m4 so that (9) holds for all polynomials of degree < 4.
(ii) For what values of a and b are the weights positive?

Exercise 10.22 (Lax 2.6)

Let P2 be the linear space of all polynomials

p(x) = a0 + a1x+ a2x
2

with real coefficients and degree ≤ 2. Let ξ1, ξ2, ξ3 be three distinct real numbers, and then define

ℓj = p(ξj) for j = 1, 2, 3.

(a) Show that ℓ1, ℓ2, ℓ3 are linearly independent linear functions on P2.
(b) Show that ℓ1, ℓ2, ℓ3 is a basis for the dual space P ′

2.
(c) (1) Suppose {e1, . . . , en} is a basis for the vector space V . Show there exist linear functions

{ℓ1, . . . ℓn} in the dual space V ′ defined by

ℓi(ej) =

{
1 if i = j,

0 if i ̸= j.

Show that {ℓ1, . . . , ℓn} is a basis of V ′, called the dual basis.
(2) Find the polynomials p1(x), p2(x), p3(x) in P2 for which ℓ1, ℓ2, ℓ3 is the dual basis in P ′

2.

Exercise 10.23 (Lax 2.7)

Let W be the subspace of R4 spanned by (1, 0,−1, 2) and (2, 3, 1, 1). Which linear functions ℓ(x) =
c1x1 + c2x2 + c3x3 + c4x4 are in the annihilator of W?

10.2 Class

Exercise 10.24 (Math 403 Spring 2020, Week 1.2)

If e1, e2, . . . , en is a basis for V and we define linear maps e′i to K by

e′i(ej) = δij ,

then prove e′1, e′2, . . . , e′n form a basis for V ′.

Exercise 10.25 (Math 403 Spring 2020, Week 4.2)

Find the Jordan Normal Form, J , of

A =

 4 −2 −6
−1 2 2
1 −1 −1


and a matrix S such that J = S−1AS.

107/ 110



Linear Algebra Muchang Bahng Spring 2020

Exercise 10.26 (Math 403 Spring 2020, Week 4.3)

Let dn(α) denote the dimension of the nullspace of (αI − A)n for a matrix A and a scalar α. In
the following examples we list all the possible nonzero values of dn(α). In each case find the Jordan
Normal Form of A or prove A cannot exist.

1. d1(1) = 2, and dn(1) = 3 if n ≥ 2.
2. dn(2) = 1 if n ≥ 1; d1(1) = 2, dn(1) = 4 if n ≥ 2.
3. d1(1) = 1, dn(1) = 3 if n ≥ 2.

Exercise 10.27 (Math 403 Spring 2020, Week 7.1)

Let
σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Compute ∆(σx)∆(σy) if the state vector is
(
1
0

)
. Is this consistent with the Heisenberg Uncertainty

Principle?

Exercise 10.28 (Math 403 Spring 2020, Week 8.1)

Compute the singular value decompositions of the following matrices
1. (1 1)

2.
(
1 1
0 1

)
3.
(

0 1
−1 0

)

Exercise 10.29 (Math 403 Spring 2020, Week 8.2)

Let M be any matrix over R and let M (k) be the rank k approximation of M we did in class. That
is M (k) is obtained from an SVD of M where we set all but the k largest singular values to 0.

1. Show that B =M (k) is not the unique matrix that minimizes the norm

||M −B||2

if σk = σk+1 where σ1 ≥ σ2 ≥ · · · are the singular values of M .
2. Discuss if B =M (k) is the unique matrix that minimizes this norm if σk > σk+1.

Exercise 10.30 (Math 403 Spring 2020, Week 9.1)

Let

A =


0 0 0 1/3
1/2 0 1 1/3
0 1 0 1/3
1/2 0 0 0

 .

Compute the asymptotic behaviour of ANv where v has coordinates (1/4, 1/4, 1/4, 1/4) and N is
large.
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Exercise 10.31 (Math 403 Spring 2020, Week 10.1)

Prove v ⊗ 0 = 0 in V ⊗ V for any vector v ∈ V .

Exercise 10.32 (Math 403 Spring 2020, Week 10.2)

Prove there is a natural isomorphism between the vector spaces Hom(V, V ) and V ⊗ V ∗.

Exercise 10.33 (Math 403 Spring 2020, Week 10.3)

If {e1, e2, ...} is a basis for V , which vector in V ⊗ V ∗ is identified with the identity in Hom(V, V )
under this isomorphism.

Exercise 10.34 (Math 403 Spring 2020, Week 10.4)

Given a map f : Y ⊗X → Z what is the naturally associated map Y → X∗ ⊗ Z? Give your answer
in terms of components assuming bases are given for all the spaces involved.

Exercise 10.35 (Math 403 Spring 2020, Week 10.5)

Let V = R3 with a basis {e1, e2, e3} and with the standard inner product. Consider the vector
v ∈ V ⊗ V which if we write in terms of components

v =
∑
ij

mijei ⊗ ej ,

then the matrix M with entries mij is given by

M =

 1 2 −1
1 −2 −1
−1 0 1

 .

Find vectors x1, x2, y1, y2 ∈ V such that

v = x1 ⊗ y1 + x2 ⊗ y2,

with x1 perpendicular to x2, and y1 perpendicular to y2.

Exercise 10.36 (Math 403 Spring 2020, Week 10.6)

What does the exterior algebra of R3 look like? What is the wedge product of two vectors?

Exercise 10.37 (Math 403 Spring 2020, Week 11.1)

The Baker-Campbell-Hausdorff formula says eAeB = eA∗B , where

A ∗B =

∞∑
k=1

Fk

and Fk is of total order k in A and B. We have

F1 = A+B
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F2 =
1

2
[A,B].

Compute F3 expressing it in terms of commutators.

Exercise 10.38 (Math 403 Spring 2020, Week 11.2)

Let H =

(
1 0
0 −1

)
and S = exp(iθH) ∈ SU(2). Let M be a traceless self-adjoint 2× 2 matrix. Then

let M correspond to a three dimensional vector with components (x, y, z) by decomposing using the
Pauli matrices as

M = xσx + yσy + zσz.

Suppose we define
M ′ = S−1MS.

Show M ′ is also traceless and self-adjoint. If M ′ is similarly associated to a three dimensional vector,
show S thereby induces a linear transformation on R3. What exactly is this transformation?

Exercise 10.39 (Math 403 Spring 2020, Week 12.1)

Recall that the Baker-Campbell-Hausdorff formula says the group law is given by eAeB = eA∗B ,
where

A ∗B =

∞∑
k=1

Fk

and Fk is of total order k in A and B. We have

F1 = A+B

F2 =
1

2
[A,B].

You computed F3 last week and expressed it purely in terms of the bracket. Let A and B be elements
of the vector space V and let the bracket be a bilinear form V ⊗ V → V . Now think of this as an
arbitrary map not necessarily given by commutators.

1. Prove −(−B) ∗ (−A) = A ∗B and thus the bracket obeys [A,B] = −[B,A].
2. Using your knowledge of F3, prove that associativity of the group law implies the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Exercise 10.40 (Math 403 Spring 2020, Week 12.2)

Let n denote the irreducible representation of sl2C of dimension n. In class we showed 2⊗ 2 = 3⊕ 1.
Perform similar decompositions for:

1. 3⊗ 2
2. Sym2 3
3. Λ34.
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