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1 Metric and Normed Linear Spaces

1.1 Metric Spaces

A metric space is a space V with a metric function d : V × V −→ R satisfying:

1. d(x, y) ≥ 0 and equality holds iff x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

We are only used to the Euclidean metric

d(x, y) =

√∑
i

(xi − yi)2

but we introduce some other ones. In addition to the L2 metric, the L1 metric and L∞ metric are defined

d1(x, y) =
∑
i

∣∣xi − yi
∣∣ and d∞(x, y) = max

i

{
|xi − yi|

}
Note that

d∞(p, q) ≤ d2(p, q) ≤ d1(p, q) ≤ 2d∞(p, q)

Let M be the unit circle in R2, i.e. the set of all pairs of real numbers (x, y) s.t. x2 + y2 = 1. Then, we
can set the metric as

1. d1[(x1, y1), (x2, y2)] :=
√

(x1 − x2)2 + (y1 − y2)2, the metric induced by the R2 thatM is embedded
in.

2. Another possible metric is d2[p, p
′], the arc length between the points p and p′.

Given C([0, 1]), the set of continuous real-valued functions on [0, 1], we can equip it with either of the
metrics

d1(f, g) := max
x∈[0,1]

∣∣f(x)− g(x)
∣∣ or d2(f, g) := ˆ 1

0

∣∣f(x)− g(x)
)
dx

Another metric is the discrete metric, defined

d(p, q) =

{
1 if p ̸= q

0 if p = q

With this notion of a metric, we can now define convergence: A sequence of elements {xn}∞n=1 of a metric
space (M,d) is said to converge to an element x ∈ M if d(x, xn) → 0 as n → ∞. In the unit circle
M ⊂ R2, the fact that

d1(p, q) ≤ d2(p, q) ≤ πd1(p, q)

means that a sequence in M converges under d1 if and only if if converges under d2. However, neither
d1 < d2 nor d2 > d1 within C1([0, 1]).
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1.2 Complete Metric Space

Definition 1.1 (Cauchy Sequence). A sequence of elements {xn} of a metric space (M,d) is called a
Cauchy sequence if for all ϵ > 0 there exists a N ∈ N such that m,n > N implies d(xm, xn) < ϵ.

It is clear that any convergent sequence is Cauchy. The fact that a sequence is convergent in (M,d)
means that its limit is in M . Let us have a sequence {xn} converging to x and some ϵ > 0. Choose ϵ/2.
Then, we know that for any ϵ/2 > 0, there exists a N ∈ N such that

d(x, xn) <
ϵ

2
for all n > N

and
d(x, xm) <

ϵ

2
for all m > N

By triangle inequality, there exists a N ∈ N such that

d(xn, xm) ≤ d(x, xn) + d(x, xm) < ϵ

for all n,m > N , thus proving Cauchy. However, the converse is not true. A sequence in (0, 1) may be
Cauchy, but it may converge to 1 ̸∈ (0, 1) and therefore not convergent.

An equivalent definition of convergence is that given a metric space (M,d), x
d−→ x if and only if for each

neighborhood N of x, there exists an M such that m ≥ M implies xm ∈ N . The topology is induced by
the metric d.

Definition 1.2. A function f from a metric space X to a topological space Y is continuous if and only
if for all open sets O ⊂ Y , f−1(O) is open.

Now given a metric space (M,d), we can talk about convergence, and this allows us to talk about the
completeness of this metric space. Note that we must have a metric in order to define completeness.

Definition 1.3 (Complete Metric Space). A metric space (M,d) is called complete if every Cauchy
sequence of points in M converges to a limit that is also in M .

Intuitively, a set of complete is there are ”no points missing” from it, both inside or at the boundary.
However, it is always possible to ”fill all the holes”, leading to the completion of a given space.

1. Q is not complete, since
√
2 is a limit point of a sequence of rational numbers but is not in Q.

2. R is complete, since every Cauchy sequence (a sequence in which successive terms must get arbi-
trarily close together).

3. Any open set in R is not complete. Take (0, 1). We can construct a Cauchy sequence that converges
to 1 ̸∈ (0, 1)

4. Any open set in Rn is not complete, since we can construct a Cauchy sequence that tends to a
boundary point that is not in the open set. Take the unit open ball O, and let e1 = (1, 0, . . . , 0).
Then, we can construct the sequence {n−1

n e1} which converges to e1 ̸∈ O.

5. Let (X, d) be

1.3 Normed Linear Spaces

Definition 1.4 (Normed Linear Space). A normed linear space is a vector space (V, || · ||) over C with
a norm from V to R satisfying

1. ||v|| ≥ 0 and equality holds iff v = 0

2. ||λv|| = |λ|||v|| for all λ ∈ C

3. ||v + w|| ≤ ||v||+ ||w||

A norm induces a metric. A normed linear space is complete if it is complete as a metric space with the
induced metric.
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Definition 1.5 (Bounded Linear Map). A bounded linear map from a normed space (V1, || · ||1) to a
normed space (V2, || . . . ||2) is a linear map T : V1 −→ V2 satisfying that for some C ≥ 0

||Tv||2 ≤ C||v||1

The smallest such C is called the norm of T , written ||T ||. WLOG, we can let ||v||1 = 1. Then, ||Tv||2
would be bounded by C, and naturally,

||T || = sup
||v||1=1

||Tv||2

Some examples of normed vector spaces

1. Cn with the norm
||(x1, . . . , xn)|| :=

√
|x1|2 + . . .+ |xn|2

2. C([0, 1]) with either the norm

||f ||∞ = sup
x∈[0,1]

|f(x)| or ||f ||1 =

ˆ 1

0

|f(x)| dx

Theorem 1.1. The following are equivalent for a linear transformation T between two normed vector
spaces.

1. T is continuous at one point.

2. T is continuous at all points.

3. T is bounded.

2 Measure and Lp Spaces

Given a set S, we know that the power set 2S = P(S) is the collection of all subsets A ⊂ S. But this is
not too interesting to work with, since it is too big. There are two restricted notions of this collection of
subsets:

1. The first is the topology, which is a collection of sets τS ⊂ 2S such that ∅ ∈ τS , S ∈ τS , it is stable
under countable unions, and it is stable under finite intersections.

2. An algebra of sets A ⊂ 2S contains ∅ and S itself, and it is stable under finite union and comple-
mentation.

3. A σ-algebra is an algebra, but it is stable under not a finite union, but a countable union. Stability
under countable union implies stability under finite union, and so a σ-algebra is an algebra by
definition.

Remember that stability under countable unions is a stronger condition than stability under finite unions.
For example, the countable union of sets

∞⋃
k=2

[1
k
, 1− 1

k

]
= (0, 1)

but a finite union of them does not equal (0, 1).
Given a set S with its σ-algebra A, a function µ : A −→ R+

0 ∪ {+∞} is called a measure. It satisfies
non-negativity: µ(E) ≥ 0 for all E ∈ A, null empty set: µ(∅) = 0, and countable additivity: for all
countable collections {Ek}∞k=1 of pairwise disjoint sets in A,

µ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek)

In measure theory, a set S with its σ-algebra A, along with a measure µ, is called a measure space.
A probability space (Ω,F ,P) is a measure space with the additional condition that P(Ω) = 1, i.e. the
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measure of the entire space is 1. An element of Ω is called an outcome, an element A ∈ A is called
an event, and the measure of that event P(A) is the probability of that event. Given a measure space
(S,A, µ) where the measure of the entire space S is finite, say 10, we can simply normalize it by defining
a new measure P = 1

10µ to define a probability space. Of course, we cannot do this with the Lebesgue
measure of R since µleb(R) is infinite, but we can do this with the space (0, 1) (this is the uniform
distribution).
Now a filtration is a sequence of σ-algebras Fi ⊃ Fi+1 such that the next one is a subcollection of the
next one. The fact that we work with σ-algebras rather than the big power set is an advantage for
probability theory since with σ-algebras we can model our knowledge, which is done with filtrations.
As events unfold, we have more and more knowledge on what is happening, and so we can construct a
filtration that models conditional probabilities. For example, when we flip 3 coins, the outcome space is

Ω1 = {000, 001, 010, 011, 100, 101, 110, 111}

and its σ-algebra is, in this case, the power set 2Ω1 . We start off with F1 = 2Ω1 . Say that we get 0 on
the first coin flip. Then, our outcome space becomes restricted to

Ω2 = {000, 001, 010, 011}

and our σ-algebra becomes restricted to 2Ω2 ⊂ 2Ω1 . This goes on for the second and third flip, say we
get 1 and 0, respectively. Then,

Ω3 = {010, 011}, Ω4 = {010}

and so we construct the filtration
2Ω1 ⊃ 2Ω2 ⊃ 2Ω3 ⊃ 2Ω4

where 2Ω4 = {∅, {010}} with the measure defined to be P(∅ |Ω4) = 0 and P({010} |Ω4) = 1.
Now an Lp space is a normed vector space (with norm denoted || · ||Lp(X,Y,dµ)) of functions from some
measure space X to a Banach space Y

Lp(X,Y, dµ) :=
{
f : X −→ Y, | ||f ||Lp(X,Y,dµ) :=

(ˆ
X

||f ||pY dµ

)1/p

< ∞
}

For p = ∞, the L∞ space is defined

L∞(X,Y, dµ) :=
{
f : X −→ Y, | ||f ||L∞(X,Y,dµ) := inf{c s.t. ||f ||Y ≤ c almost everywhere in X} < ∞

}
where almost everywhere in X means that everywhere except for a set of measure 0. The power of p
doesn’t affect whether the norm is finite or not, so we don’t need to pay attention to it. Like the norms
of Rn, || · ||p converges to || · ||∞ as p → ∞.
Lp measures are used to measure the integrability (i.e. blowup) of functions. For example, the integral
of f(x) = 1

x over both (0, 1) and (1,∞) both go to infinity since

ˆ 1

0

1

x
dx = log(x)

∣∣1
0
= ∞ and

ˆ ∞

1

1

x
dx = log(x)

∣∣∞
1

= ∞

so f ̸∈ L1(0, 1) and f ̸∈ L1(1,∞) =⇒ L1(0,∞). But note that f ∈ L2(1,∞) since
´∞
1

| 1x |
2 dx =

(− 1
x )
∣∣∞
1

= 1. For g(x) = 1
x2 , it is even more infinite over the interval (0, 1) since now, rather than

log(x)
∣∣01, we are dealing with ˆ 1

0

1

x2
dx =

(
− 1

x

)∣∣∣1
0
= ∞

which is an even bigger infinity. On the other hand, ||g||L1(1,∞) = 1 is finite. Since 1
x ∈ L2(1,∞) but

1
x ̸∈ L2(0, 1), we can reflect it and equally claim that 1

x ∈ L1/2(0, 1) but 1
x ̸∈ L1/2(1,∞). In summary,

the concept of Lp spaces gives us a quantitative way of measuring how bad the blowup is for a function
over a given interval. That is, 1

x blows up at 0, but 1
x2 blow up even worse at 0, and this can be studied

by what Lp spaces they live in.
Try looking at which spaces some functions live in by doing x−m.
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2.1 Inequalities

Theorem 2.1 (Holder’s Inequality). Let p and q be dual indices, i.e. 1/q + 1/p = 1, with 1 ≤ p ≤ ∞.
Let f ∈ Lp(Ω) and g ∈ Lq(Ω). Then the pointwise product, (fg)(x) = f(x)g(x), is in L1(Ω) and∣∣∣∣ ˆ

Ω

fg dµ

∣∣∣∣ ≤ ˆ
Ω

|f ||g| dµ ≤ ||f ||p||g||q

3 Linear Algebra Review

In functional analysis, there are two big theorems that we care about, and those are duality theorems.
Let’s review some linear algebra. First, the Riesz Representation Theorem. Let X be a Hilbert space
over C. Then, for any linear functional l ∈ X∗, there exists a unique vector v ∈ X such that

l(x) = ⟨x, v⟩X

for all x ∈ X. That is, any linear functional l(·) can be represented as an inner product of the first
argument ⟨·, v⟩. Remember that over C, the inner product has first argument linearity and second
argument conjugate linearity. This map l 7→ v is a natural isomorphism, but only under the condition
that X is a Hilbert space. This does not work when X does not have an inner product.
Let L(X,Y ) be the vector space of linear maps from vector space X to vector space Y . Then, the adjoint
map

∗ : L(X,Y ) −→ L(Y ∗, X∗)

is an isometric isomorphism. We construct this isomorphism as such: Given a fixed linear map T ∈
L(X,Y ), choose some vector x ∈ X. The dual spaces of X,Y automatically exist without invoking
anything else. Now choose any vector l ∈ Y ∗. Then, there exists a unique T ∗ ∈ L(Y ∗, X∗) such that

l(Tx) = (T ∗l)(x)

for all x ∈ X, l ∈ X∗. We can visualize it with the following diagram.

x ∈ X Y ∋ Tx

T ∗l ∈ X∗ Y ∗ ∋ l

T

T∗

This is called the Banach adjoint. If we assume even further that X and Y are Hilbert spaces, then we
can invoke Riesz representation theorem to define an isomorphism iY : Y → Y ∗ and iX : X → X∗ such
that for any given x ∈ X and y ∈ Y ,

iX(x) = lx s.t. lx(·) = ⟨·, x⟩X
iY (y) = ly s.t. ly(·) = ⟨·y⟩Y

and define the Hilbert adjoint to be, TH = i−1
X ◦ T ∗ ◦ iY : Y −→ X, which satisfies

⟨y, Tx⟩Y = ⟨T ∗y, x⟩X

We differentiate between these two definitions because some texts define the adjoint to be the map
from Y to X rather than their duals, but with the Riesz isometry, the Banach and Hilbert adjoints are
precisely the same. The big idea is that ∗ is an isometric isomorphism. We will prove only linearity.
Assume A,B ∈ L(X,Y ). Then, we wish to show that ∗(A+B) = ∗(A)+ ∗(B). Given A+B ∈ L(X,Y ),
∗(A+B) is defined such that for all x ∈ X, l ∈ Y ∗,

[(A+B)∗(l)](x) = (l)[(A+B)(x)]

= (l)[Ax+Bx] (by definition of A+B)

= l(Ax) + l(Bx) (by linearity of l)

= (A∗l)(x) + (B∗l)(x) (definition of adjoint)

We can also see that the map T ′ = iY ◦ T ◦ i−1
X : X∗ −→ Y ∗ is also well-defined. This is not necessarily

the inverse of T ∗.
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So if we have a Hilbert space H, the adjoint operator is an isometric isomorphism from L(H,H) to itself
(since by Riesz rep theorem H∗ ≃ H).

∗ : L(H,H) −→ L(H,H)

So therefore L(H,H) has the following properties. Let A : H −→ H and B : H −→ H be elements of
L(H,H).

1. As we know, L(H,H) is a vector space since A+B, λA ∈ L(H,H) for any λ ∈ C.

2. We can define multiplication on L(H,H) to be simply the composition of operators, so AB ∈
L(H,H).

3. We can define the adjoint operator on L(H,H) from above, which satisfies A∗∗ = A and (AB)∗ =
B∗A∗.

The first two conditions simply make L(H,H) an algebra (in the algebraic sense), but the third condition
makes it a C∗-algebra.

4 Duality

Now given the L2 space (of complex-valued functions over a measure space X), we can upgrade it from
Banach to Hilbert by defining the inner product

⟨f, g⟩ :=
ˆ
X

f(x)g(x) dµ

Now, given p, q satisfying 1
p + 1

q = 1, let f ∈ Lp and g ∈ Lq. Then, f defines a linear map

Tf : g 7→
ˆ
X

fg dµ

Sometimes, this map Tf may be written
´
X
f , but this does not denote an integral; it is purely notation.´

X
f does not even have to be finite since f is not L1. They are only integrals when you feed them the

appropriate terms.
Some definitions.

1. c0 =
{
{aj} | aj → 0

}
is the set of convergent sequences. It can be seen that c0 ⊂ ℓ∞ since every

convergent sequence is bounded.

2. ℓ1 =
{
{aj} |

∑
j |aj | < ∞} is the set of sequences such that the sum of all (the absolute value of)

its terms is finite. But upon looking at this, we can see that ℓ1 is precisely the L1 space of functions
over the measure space (N, 2N, µ), where µ is the counting measure (where the measure of a subset
is determined by the number of elements in that set). Note that ℓ1 ⊂ c0.

3. ℓ2 =
{
{aj} |

∑
a2j < ∞

}
. That is, this is the L2(N) space under the counting measure.

4. ℓp can be defined as the same space under the counting measure, but equipped with the p-norm.

5. ℓ∞ =
{
{aj} | |aj | ≤ c for allj

}
for some constant c. Clearly, this is the L∞-norm, and it must be

for all j since the counting measure on any nonempty subset of N is at least 1.

In summary,
ℓ1 ⊂ ℓ2 ⊂ ℓ3 ⊂ . . . ⊂ c0 ⊂ ℓ∞

To prove this, let’s assume that some sequence f ∈ ℓp, and let 1 ≤ p < q ≤ ∞. Then,f ∈ c0 and therefore
is convergent to 0. There must be some K ∈ N such that f(k) < 1 for k > K. So, for all k > K, we
have |f(k)|q < |f(k)|p < 1, and so ∑

k>K

|f(k)|q <
∑
k>K

|f(k)|p

The first k terms would not affect finiteness of the norm so

||f ||p =
∑
k∈N

|f(k)|p < ∞ =⇒ ||f ||q =
∑
k∈N

|f(k)|q < ∞
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and so ℓp ⊂ ℓq.
Let’s talk about duality. Unlike that of a finite-dimensional vector space, the dual of an infinite dimen-
sional space is not isomorphic to itself. This dual space just some abstract space of linear functionals, but
we can informally think of it as sort of an ”infinite dot product.” That is, given a sequence {f(n)}n∈N,
an element ϕ in its dual space would act on f as

ϕ(f) :=
∑
n∈N

f(n)ϕ(n) ∈ C

For example, the dual of c0 is not itself because f =
(

1√
n

)
n
∈ c0, but the functional ϕ =

(
1√
n

)
acting on

f would be infinite.

ϕ(f) =
∑
n∈N

1√
n

1√
n
=

∑
n∈N

1

n
= ∞ ̸∈ C

So what is the dual space of c0? It turns out that c∗0 ≃ ℓ1. In order to prove this, we must prove that
the map ϕ : ℓ1 −→ c∗0 defined

ϕ(g)(f) :=
∑
n∈N

g(n) f(n)

is an isomorphism. Linearity is easy since

ϕ(λg1 + g2)(f) =
∑
n∈N

(λg1 + g2)(n) f(n)

=
∑(

λg1(n) + g2(n)
)
f(n)

=
∑

λg1(n) f(n) + g2(n) f(n)

= λ
∑

g1(n) f(n) +
∑

g2(n) f(n)

= λϕ(g1)(f) + ϕ(g2)(f)

Now, we want to prove boundedness (i.e. ϕ(g) is bounded for all g so doesn’t explode to ∞). By Holder’s
Inequality, we have f ∈ c0 ⊂ ℓ∞ and g ∈ ℓ1, so∑

n∈N
|f(n) g(n)| ≤ ||f ||∞||g||1 < ∞

since ϕ(g)(f) converges absolutely, it also converges. To prove injectivity, we can just prove that the
nullspace of ϕ is trivial. Assume that a nontrivial l ∈ ℓ1 is in the nullspace. Then, there exists a kth
nonzero term: l(k) ̸= 0. But we have claimed that ϕ(l)(f) = 0 for all f ∈ c0, but setting f(k) = 1, this
makes a contradiction. To prove surjectivity, let φ ∈ c∗0 be a linear functional. Then, we can construct
a sequence g element-wise by assigning

gn = φ(en)

where en is the nth basis element of c0. Then, g = (gn)n∈N is a sequence, and we want to show that it
is in ℓ1.
Furthermore, given that p, q are duals, i.e. 1

p + 1
q = 1, we have

1. c∗0 = ℓ1

2. ℓ∗1 = ℓ∞

3. ℓ∗2 = ℓ2. Since the dual space of ℓ2 is itself, using Riesz Representation theorem we can construct
an inner product on ℓ2 to make it a Hilbert space. ℓ2 is the only space that can be construct into
a Hilbert space. The rest are Banach spaces.

5 Measuribility

Know what this means. Borel Cantelli
∞⋃

n=1

⋂
m>n

Am

and know what
lim supAn

means. And know what infinitely often means. As time goes on, what is an event that happens infinitely
often.
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6 Fourier Transform

The Fourier transform F is an operator (an isometric isomorphism) mapping one function to another.
There are three spaces where it is naturally defined, the Schwartz class S, the L2 space, and the Banach
dual of S.

F : S −→ S
F : L2 −→ L2

F : S ′ −→ S ′

and S ⊂ Lp ⊂ S ′. S is small, S ′ is big, and Lp spaces live in between them. The Schwartz class is the
function space of all functions f : Rn −→ C satisfying

1. f ∈ C∞(Rn,C)

2. f decays rapidly in the sense that for any scalar α, f multiplied by any monomial xα is bounded
everywhere:

sup
x∈Rn

|xαf(x)| < ∞, or a similar condition ||xαf ||∞ < ∞

Furthermore, with vector β = (β1, . . . , βn) ∈ Nn and multi-indexing Dβ = Dβ1

1 Dβ2

2 . . . Dβn
n f , all of

its derivatives are also bounded for all β

sup
x∈Rn

|xαDβf(x)| < ∞, or ||xαDβf | < ∞

Now Schwartz functions have both the properties of smoothness and decay. The purpose of the Fourier
transform is to convert between the properties of smoothness and decay. That is, if f decays (is smooth)
to some extent, then Ff is smooth (decays) to that extent. F : S −→ S is defined (note that x and ξ
are just dummy variables)

f(x) 7→ Ff(ξ) = f̂(ξ) =

ˆ
Rn

f(x) e−ixξ dx

This transform is a simple map from a larger class called the Fourier integral operators, which are maps
of the form

f(x) 7→ Ff(ξ) =

ˆ
Rn

f(x) eφ(x,ξ)a(ξ, x) dx

Now since F is an isometric automorphism of S, we can take its inverse transform, defined

F−1g(x) =

ˆ
Rn

g(ξ) eixξ dξ

The Fourier transform allows us to connect multiplication and differentiation. Let us calculate the α-fold
derivative along ξ of the Fourier transform of f .

∂α
ξ f̂(ξ) = ∂α

ξ

ˆ
Rn

e−ixξf(x) dx

=

ˆ
Rn

∂α
ξ e

−ixξf(x) dx

=

ˆ
Rn

(−ix)αe−ixξf(x)

= F((−ix)αf(x))

So, a α-fold differentiation after Fourier transforming a function is the same as multiplying xα first and
then Fourier transforming the same function. Now, if we multiply a the Fourier transform of a function
by a monomial this sort of looks like the Fourier transform of the derivative of the function.

ξαf̂(ξ) =

ˆ
Rn

ξαe−ixξ f(x) dx

=

ˆ
Rn

∂α
x (e

−ixξ) f(x) dx

=

ˆ
Rn

(e−ixξ) ∂α
x f(x) dx (Integration by Parts)
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7 Inequalities

The Cauchy Schwartz inequality

ab ≤ a2

2
+

b2

2

is a special case of Young’s inequality

ab ≤ ap

p
+

bq

q

where p and q are Holder conjugates ( 1p + 1
q = 1). Young’s inequality is actually a specific case of a

more general inequality. Let f : R → R be strictly monotonic satisfying f(0) = 0. Then, there exists an
inverse f−1 = g : R → R. For any point α, β within the respective domain and range,

ab ≤
ˆ a

0

f(x) dx+

ˆ b

0

g(x) dx

and Young’s inequality sets f(x) = xp−1 and g(x) = xq−1 = x
p

p−1−1 = x
1

p−1 = f−1(x). Here 1 < p < ∞.
Minkowski Inequality says that if you have an Lp(Ω;R) space with norm || · ||Lp := (

´
|f |p)1/p, then the

norm satisfies the triangle inequality. Using induction gives∣∣∣∣∣∣∣∣∑
j

fj(x)

∣∣∣∣∣∣∣∣
Lp(dx)

≤
∑
j

∣∣∣∣fj(x)∣∣∣∣Lp(dx)

That is, the norm of the sum of the functions is less than the sum of the function norms. But if we index
fj(x) as f(x, y), then since integration is really the same thing as summation, we can write the above as∣∣∣∣∣∣∣∣ˆ

N
f(x, y) dy

∣∣∣∣∣∣∣∣
Lp(dx)

≤
ˆ
N

∣∣∣∣f(x, y)∣∣∣∣
Lp(dx)

dy

expanding (ˆ
Ω

∣∣∣∣ˆ
N
f(x, y) dy

∣∣∣∣p dx) 1
p

≤
ˆ
N

(ˆ
Ω

∣∣f(x, y)∣∣p dx) 1
p

dy

So summing
´
dy, then power to p, then norming

´
dx, then power to 1

p is less than powering to p

first, then norming
´
dx, then power to 1

p , and finally summing
´

dy. Minkowski inequality is especially
useful for functions of the form

f(x, y) = ϕϵ(x− y)u(y)

where ϕϵ is some sort of bump function (ϕϵ(x) → δ(x) as ϵ → 0. Then, defining the convolution operator

(Jϵu)(x) =

ˆ
φϵ(x− y)u(y) dy

Now we can approximate the delta function δ(x− y) with C∞ bump functions by ”squeezing them” as
ϕϵ(t) = ϕ(t/ϵ)ϵ−n (we power to n to normalize over t ∈ Rn, an n-dimensional input). Therefore, we can
approximate u with arbitrary accuracy with a C∞ function.

(Jϵu)(x) =

ˆ
φϵ(x− y)u(y) dy︸ ︷︷ ︸

smooth

≈
ˆ

δ(x− y)u(y) dy = u(x)

Assuming that some smooth and compactly supported φ ∈ C∞
C (Rn) exists (we can construct this), we

can construct a family of approximate identities/deltas (since deltas are identities for convolutions),
called mollifiers (which ”mollify” or smooth out an arbitrary function)

{φϵ}ϵ s.t. φϵ(t) = ϵ−nφ(t/ϵ)

We have

(Jϵu)(x) := (φϵ ∗ u)(x) =
ˆ

φϵ(x− y)u(y) dy → u(x) in Lp

So, ||(Jϵu(x) − u(x)||Lp → 0 using Minkowski inequality. This property is very useful because if we’re
getting an arbitrary signal, we can interpret it as a function, assume the white noise is Gaussian, and
then the convolution would be a smooth signal. So in reality, we don’t have to worry about smoothness.
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Theorem 7.1. If there exists some function u such that

ˆ
uφ = 0 for all ϕ ∈ C∞

C

Then u = 0 almost everywhere.

8 Sobolev Spaces

8.1 Weak Derivative
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