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The motivation for complex numbers is quite established as the field extension R ⊂ R[i] ≃ C which gives
algebraic closure.
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1 The Complex Numbers
The next field that will be particularly important is the complex numbers. It is straightforward to construct
C, but let’s motivate this for a minute.

Example 1.1 (Polynomial Roots)

The roots of the polynomial
f(x) = x2 + 1 (1)

does not exist in R.

Therefore, we would like to construct a new space that contains all possible roots for all possible polynomials
with real coefficients. We call this C. Clearly, by constructing polynomials of the form x2−r2 for some r ∈ R,
we know that R ⊂ C. Therefore, we want to create a further extension of R, along with some canonical
injection ι : R → C that is also a field homomorphism. It turns out that once we construct this field, there is
no possible way that we can make it an ordered field. However, the norm extends naturally into C such that
ι is isometric. Finally, we can define a new operator called conjugation that gives us additional structure.

This is not the only way to construct the complex plane however. Rather than defining all these from
scratch, we could just define the addition operations with an isometric vector space isomorphism from R2 to
C actually, and then define multiplication. Another way is to start again with Q × Q, define a norm on it,
complete it, and finally define the addition and multiplication operations that satisfy the field property.

1.1 Construction

Theorem 1.1 (Construction of the Complex Numbers)

Let C be defined as the space R× R with the following operations.
1. Addition. x = (a, b), y = (c, d) =⇒ x+C y = (a+ c, b+ d).
2. Additive Identity. 0C = (0, 0).
3. Additive Inverse. x = (a, b) =⇒ −x = (−a,−b).
4. Multiplication. x = (a, b), y = (c, d) =⇒ x×C y = (ac− bd, ad+ bc).
5. Multiplicative Identity. 1C = (1, 0).
6. Multiplicative Inverse.

x = (a, b) =⇒ x−1 =

(
a

a2 + b2
,

−b
a2 + b2

)
(2)

Our first claim is that (C,+C,×C) is a field. Furthermore, we define the additional structures
1. Conjugate. x = (a, b) =⇒ x = (a,−b).
2. Norm. |x|C = x×C x = a2 + b2.
3. Metric. This is the norm-induced metric. dC(x, y) = |x− y|C.
4. Topology. This is the metric-induced topology generated by the open balls B(x, r) := {y ∈

C|d(x, y) < r}, where x ∈ C, r ∈ R.
Our second claim is that the canonical injection ι : R → C defined

ι(r) = (r, 0) (3)

is an isometric field isomorphism. Our third claim is that C is Cauchy-complete with respect to this
metric.

Note that we do not talk about order C, and so the concepts of Dedekind completeness, least upper bound
properties, or Archimedean principle is meaningless in the complex plane.
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Definition 1.1 (Imaginary Number)

Let us denote i = (0, 1) which we call the imaginary number, which has the property that i2 = 1.
With this notation, we can see through abuse of notation that

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0, 1) = a+ bi (4)

Therefore, we generally write complex numbers as z = a+ bi, and we define the real and imaginary
components as Re(z) and Im(z), respectively.

Note that the identity x2 + 1 ≡ (x + i)(x − i) implies that the equation x2 = −1 has exactly two solutions
in C, i and −i. Therefore, if a subfield of C contains one of these solutions, it must contain the other (since
i and −i are additive and multiplicative inverses).

Furthermore, since i is defined to be
√
−1, we could replace i with −i and our calculations would still be

consistent throughout the rest of mathematics. In fact, i and −i behave exactly identically and cannot
be distinguished in an abstract sense. Visually, the complex plane "flipped" across the real number axis
produces the same complex plane.

Theorem 1.2 (Uniqueness of C)

C is unique up to an isomorphism that maps all real numbers to themselves. Every complex number
can be uniquely written as a+ bi, where a, b ∈ R and i is a fixed element such that i2 = −1.

Proof.

Consider the subset of C
K ≡ {a+ bi | a, b ∈ R} (5)

By evaluating its operations, we can check for closure, identity, and invertibility of nonzero elements
to conclude that K is a subfield of C =⇒ by prop. (iii), K = C =⇒ every element in C can be
written in form a+ bi. To prove uniqueness, we assume that p ∈ C can be written in distinct forms
p = a+ bi = a′ + b′i. Then

a+ bi = a′ + b′i =⇒ (a− a′)2 = (b′i− bi)2 = −(b′ − b)2

=⇒ a− a′ = b′ − b = 0

To prove uniqueness of C up to ismorphism, we assume that C′ exists with i′ such that i′2 containing
elements a+ bi′. Let f : C −→ C′ defined

f(a+ bi) = a+ bi′ (6)

Then,

f
(
(a+ bi) + (c+ di)

)
= f

(
(a+ c) + (b+ d)i

)
= (a+ c) + (b+ d)i′

= (a+ bi′) + (c+ di′)

= f(a+ bi) + f(c+ di)

f
(
κ(a+ bi)

)
= f

(
κa+ κbi

)
= κa+ κbi′

= κ(a+ bi′)

= κf(a+ bi)

So, f is an isomorphism, and C ≃ C′. From analysis, we can construct and prove the existence of R.
We then define the map

ρ : R2 −→ C, ρ(a, b) ≡ a+ bi (7)
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with ρ(1, 0) as the multiplicative identity and ρ(0, 1) ≡ i. Therefore, every element of C can be
uniquely represented as an element of R2.

Unfortunately, we lose the ordering.

Theorem 1.3 (Order on Complex Plane)

There exists no order on C that makes it a totally ordered field.

Proof.

We attempt to construct an order on i and 0 in C.
1. If i = 0, then i4 = 0 · i3 =⇒ 1 = 0, which contradicts that 0 < 1.
2. If i ̸= 0, then i2 > 0 from the field axioms, and so −1 > 0. But this also means that 1 = i4 > 0.

This contradicts the ordered field property that x > 0 ⇐⇒ −x < 0.
Therefore C cannot be turned into an ordered field.

1.2 Properties of the Complex Plane

Theorem 1.4 (Conjugation is an Isomorphism)

Conjugation is an isometric field automorphism of C.

c = a+ bi 7→ c̄ = a− bi (8)

This is identically defined by replacing i with −i. Clearly, ¯̄c = c.

Proof.

Proposition 1.1 (Properties of Conjugation)

For any c ∈ C, c+ c̄ and cc̄ are real.

Proof.

Using the fact that the complex conjugate is an isomorphism,

¯c+ c̄ = c̄+ ¯̄c = c̄+ c = c+ c̄

c̄c̄ = c̄¯̄c = c̄c = cc̄

Note that we proved this abstractly using only the properties given above, and did not decompose c to its
algebraic form a+ bi.

If c = a+ bi, a, b ∈ R, then
c+ c̄ = 2a, cc̄ = a2 + b2 (9)

1.3 Polar Coordinates
In case the reader is unaware, it is common to interpret complex numbers c = a + bi as points or vectors
(a, b) on the complex plane.
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Definition 1.2 (Polar Form of Complex Numbers)

The polar representation, or trigonometric representation, of a complex number c = a+ bi is
defined using the equations

a = r cosφ, b = r sinφ =⇒ c = r(cosφ+ i sinφ) (10)

where r = |c| and φ is the argument of c, which is the angle formed by the corresponding vector
with the polar axis defined within the interval [0, 2π).

arg(c) ≡ tan−1 b

a
(11)

This mapping can be defined

ρ : R× R
2π

−→ C, ρ(r, φ) = r(cosφ+ i sinφ) (12)

Theorem 1.5 ()

ρ is "similar" to a homomorphism in the following way. By defining the domain and codomain as
groups,

ρ :
(
R,×

)
×

( R
2π

)
−→

(
C,×

)
(13)

we can see that
ρ(r1, φ1)× ρ(r2, φ2) = ρ(r1 × r2, φ1 + φ2) (14)

or equivalently,

r1(cosφ1 + i sinφ1) · r2(cosφ2 + i sinφ2) = r1r2(cos (φ1 + φ2) + i sin (φ1 + φ2)) (15)

Corollary 1.1 ()

The formula for the ratio of complex numbers is defined

r1(cosφ1 + i sinφ1)

r2(cosφ2 + i sinφ2)
=
r1
r2

(cos (φ1 − φ2) + i sin (φ1 − φ2)) (16)

Corollary 1.2 ()

The positive integer power of a complex number can be written using De Moivre’s formula.(
r(cosφ+ i sinφ)

)n
= rn(cosnφ+ i sinnφ) (17)

1.4 Roots, Exponentials, Logarithms
We can use this formula to extract a root of nth degree from a complex number c = r(cosφ+ i sinφ), which
means to solve the equation zn = c. Let z = s(cosψ + i sinψ). Then by De Moivre’s formula,

zn = sn(cosnψ + i sinnψ) = r(cosφ+ i sinφ)

=⇒ s = n
√
r, ψ =

φ+ 2πk

n

=⇒ z = n
√
r

(
cos

φ+ 2πk

n
+ i sin

φ+ 2πk

n

)
for k = 0, 1, ..., n− 1
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Geometrically, the n solutions lie at the vertices of a regular n-gon centered at the origin. When c = 1, the
solutions are the nth roots of unity.

1.5 Trigonometric Functions
Now with complex numbers, we have a yet another way of defining trigonometric functions that generalizes
that of the reals. We can use the series representation.

1.6 Dual Numbers
Another similar number system.
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2 TBD

2.1 Algebraic Extension of Field R
We introduce the number i, called the imaginary unit, such that i2 = −1. We may multiply real numbers
y to i to get yi, and we can add real numbers to such numbers, to get numbers of the form

x+ yi, x, y ∈ R

We then define all objects of the form x+ iy as the complex numbers, with addition defined

(x1 + iy1) + (x2 + iy2) ≡ (x1 + x2) + i(y1 + y2)

and multiplication defined

(x1 + iy1) · (x2 + iy2) ≡ (x1x2 − y1y2) + i(x1y2 + x2y1)

As expected, this makes + and · commutative operations. Furthermore, two complex numbers z = x1 + iy1
and w = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2.

One nontrivial property of field C is that every element z ∈ C has a multiplicative inverse z−1. To find this,
we must define the following.

Definition 2.1 (Complex Conjugate)

Given complex number z = x+ iy, its complex conjugate is

z = x+ iy = x− iy

Note that
z · z = x2 + y2 ̸= 0 iff z ̸= 0

Thus, given z,

z−1 =
1

z · z
· z ⇐⇒ (x+ yi)−1 =

x

x2 + y2
− i

y

x2 + y2

2.1.1 Geometric Interpretation of C

Once the algebraic operations + and · has been introduced, the symbol i is no longer needed. That is, we
can define a new set R2 = R× R with the operations +R, ·R : R2 × R2 −→ R2 defined

(x1, y1) +R (x2, y2) ≡ (x1 + x2, y1 + y2)

(x1, y1) ·R (x2, y2) ≡ (x1x2 − y1y2, x1y2 + x2y1)

We can check that this new set (R2,+R, ·R) is isomorphic to (C,+, ·) as fields, and therefore one can identify
complex numbers with vectors z = (x, y) of the plane R2, where x = Re z is called the real part and
y = Im z is called the imaginary part.

Definition 2.2 (Norm, Metric of C)

Moreover, the isomorphism
γ : C −→ R2, γ(x+ yi) = (x, y)

induces additional structures on C, such as the norm and metric.
1. The norm of z = x+ iy ∈ C is defined as the norm of γ(z) = (x, y) ∈ R2. That is,

|z| = |x+ yi| = |(x, y)| =
√
x2 + y2
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Or more simply,
|z| = z · z

2. The metric of two complex numbers z1, z2 ∈ C is defined

|z1 − z2| = |(x1, y1)− (x2, y2)| = |(x1 − x2, y1 − y2)| =
√
(x1 − x2)2 + (y1 − y2)2

Or more simply,
|z1 − z2| = (z1 − z2) · (z1 − z2)

Definition 2.3 (Polar Coordinates of C)

Given the basis transformation of polar coordinates (r, φ) 7→ p(r, φ) = (x, y) where

p

(
r
φ

)
=

(
r cosφ
r sinφ

)
=

(
x
y

)
the isomorphism C ≃ R2 induces a similar polar transformation in C

ρ = γ−1 ◦ p ◦ γ : C(r,θ) −→ C(x,y), ρ(r + θi) = r cos θ + r sin θi = x+ yi

as shown in the commutative diagram.

C(r,θ) C(x,y)

R2
(r,θ) R2

(x,y)

γ

ρ

γ

p

Therefore, we can write
z = r(cosφ+ i sinφ)

where r = |z| is called the magnitude of z, and φ = Arg z is called the argument of z.

Lemma 2.1 (Multiplication of Complex Numbers in Polar Form)

It turns out that multiplication is a lot easier in polar coordinates than in rectangular ones:

z1 · z2 = (r1 cosφ1 + ir1 sinφ1)(r2 cosφ2 + ir2 sinφ2)

= . . .

= r1r2
(
cos (φ1 + φ2) + i sin (φ1 + φ2)
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Theorem 2.1 (De Moivre’s Formula)

By induction using the previous lemma, we get

z = r(cosφ+ i sinφ) =⇒ zn = rn(cosnφ+ i sinnφ)

Corollary 2.1 (Roots of Unity)

The n complex solutions of the equation
zn = a

where a = ρ(cosψ + i sinψ) is

zk = n
√
ρ

(
cos

(ψ + 2πk

n

)
+ i sin

(ψ + 2πk

n

))
, k = 0, 1, 2, . . . , n− 1

Moreover, if a = 1, then the n complex solutions are called the nth roots of unity, defined

zk = cos
(2πk
n

)
+ i sin

(2πk
n

)
, k = 0, 1, 2, . . . , n− 1

which shows that the nth roots of unity are at the vertices of a regular n-sided polygon inscribed in
the unit circle, with one vertex at 1, within the complex plane. The 5th and 6th roots of unity are
shown below.

Finally, we can visualize certain transformations in C. For a fixed b ∈ C, the sum z + b cam be interpreted
as the mapping of C onto itself given by the formula

z 7→ z + b

This mapping is a translation of the plane by the vector b.
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Visualizing multiplication is a bit harder. Given a

a = |a|(cosφ+ i sinφ) ̸= 0

the product az can be interpreted as the mapping of C onto itself given by the formula

z 7→ az

which is the composition of a dilation by a factor of |a| and a rotation through the angle φ ∈ Arg a.

2.2 Sequences and Series in C
Our previous construction of a metric within C enables to define the ϵ-neighborhood of a number z0 ∈ C as
the set

Uϵ(z0) ≡ {z ∈ C | |z − z0| < ϵ}
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which can be visualized as an open disk of radius ϵ in R2 centered at point (x0, y0) if z0 = x0 + iy0.

Definition 2.4 (Convergence of a Sequence in C)

A sequence {zn} of complex numbers converges to z0 ∈ C if and only if

lim
n→∞

|zn − z0| = 0

It is clear from the inequality

max{|xn − x0|, |yn − y0|} ≤ |zn − z0| ≤ |xn − x0|+ |yn − y0|

that a sequence of complex numbers converges if and only if the sequences of its real and imaginary
parts of the terms of the sequence both converge. That is,

{zn} converges ⇐⇒ {Re z} and {Im z} converges

Lemma 2.2 (Convergence of Cauchy Sequences over C)

A sequence of complex numbers {zn} is called a Cauchy sequence if for every ϵ > 0 there exists an
index N ∈ N such that

|zn − zm| < ϵ for all n,m > N

It is also clear that
{zn} is Cauchy ⇐⇒ {Re z} and {Im z} is Cauchy

and using the Cauchy criterion for sequences of real numbers, we can easily see that a sequence of
complex numbers converges if and only if it is a Cauchy sequence.

Lemma 2.3 (Convergence of Cauchy Series over C)

Interpreting the sum of a series of complex numbers

z1 + z2 + . . .+ zn + . . .

as the limit of the sequence its partial sums {sn}, where sn = z1 + . . . zn as n→ ∞, we can see that
the series converges if and only if for every ϵ > 0 there exists a N ∈ N such that

|zm + . . .+ zn| < ϵ

for any natural numbers n ≥ m > N .
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Definition 2.5 (Absolute Convergence of C)

A series z1 + . . .+ zn + . . . of complex numbers is absolutely convergent if the series

|z1|+ |z2|+ . . .+ |zn|+ . . .

converges. Clearly, is a series converges absolutely, then it converges due to the inequality

|zm + . . .+ zn| ≤ |zm|+ . . .+ |zn|

Example 2.1 ()

The following complex series converges because they converges absolutely. That is,

1 +
1

1!
|z|+ 1

2!
|z2|+ . . . converges ∀ C =⇒ 1 +

1

1!
z +

1

2!
z2 + . . . converges ∀ C

|z|+ 1

3!
|z|3 + 1

5!
|z|5 + . . . converges ∀ C =⇒ z − 1

3!
z3 +

1

5!
z5 + . . . converges ∀ C

1 +
1

2!
|z|2 + 1

4!
|z|4 + . . . converges ∀ C =⇒ 1− 1

2!
z2 +

1

4!
z4 − . . . converges ∀ C

Definition 2.6 (Complex Power Series)

Series of the form
∞∑

n=0

cn(z − z0)
n = c0 + c1(z − z0) + . . .+ cn(z − z0) + . . .

are called complex power series, or power series over C.

But a power series is quite useless unless we know the domain in which is converges (again, note that it is
not always guaranteed to converge onto the function f if its power series expansion does converge at all).
To develop more sophisticated tests of convergence of a complex power series, we introduce the complex
analogue of the root test for real power series.

Theorem 2.2 (Cauchy-Hadamard Theorem)

The complex power series
c0 + c1(z − z0) + . . .+ cn(z − z0) + . . .

converges inside the disk |z − z0| < R with center at z0 and radius given by the formula

R =
1

limn→∞
n
√
|cn|

=
1

limn→∞ sup n
√

|cn|

Where lim denotes the superior limit. Furthermore,
1. the power series diverges at any point exterior to the disk.
2. the power series converges absolutely at any point interior to the disk.
3. the power series is indeterminate at any point on the boundary of the disk.

Note that in the degenerate case when R = 0, the series converges only at the point z = z0.
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Corollary 2.2 (Abel’s First Theorem on Power Series)

If the power series
c0 + c1(z − z0) + . . .+ cn(z − z0) + . . .

converges at some value z∗, then it converges absolutely for any value of z satisfying

|z − z0| < |z∗ − z0|

The values of z satisfying the inequality above can be intuitively visualized as the following region.

Theorem 2.3 (Product of Absolutely Convergent Series)

Let a1 + a2 + . . . and b1 + b2 + . . . be an absolutely convergent series such that

∞∑
i=1

ai = A and
∞∑
j=1

bj = B

Then, the Cauchy product of the two series( ∞∑
i=1

ai

)
·
( ∞∑

j=1

bj

)
=

∞∑
k=0

ck = AB, where ck =

k∑
l=0

albk−l

a1b1 + a2b2 + . . . is absolutely convergent and

∞∑
i=1

aibi = AB

Proof.

To be done.

Example 2.2 (Convergence of the Cauchy Product of Absolutely Convergent Complex
Series)

The two series
∞∑

n=0

1

n!
an and

∞∑
m=0

1

m!
bm

converges absolutely. Therefore, we can see that their Cauchy product can be nicely represented by
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grouping together all monomials of the form anbm having the same total degree m+ n = k.( ∞∑
n=0

1

n!
an

)
·
( ∞∑

m=0

1

m!
bm

)
=

∞∑
k=0

( ∑
n+m=k

1

n!
an

1

m!
bm

)
But we can simplify

∑
m+n=k

1

n!m!
anbm =

1

k!

k∑
n=0

k!

n!(k − n)!
anbk−n =

1

k!
(a+ b)k

and therefore we find that ( ∞∑
n=0

1

n!
an

)
·
( ∞∑

m=0

1

m!
bm

)
=

∞∑
k=0

1

k!
(a+ b)k

2.3 Euler’s Formula

Definition 2.7 (Complex Taylor Expansions of Transcendental Functions)

Since we have determined absolute convergence, and therefore convergence, of all these series in all
of C, it is natural to extend the definitions of

exp, cos, sin : R −→ R

to the complex field
exp, cos, sin : C −→ C

by defining them as

ez ≡ 1 +
1

1!
z +

1

2!
z2 +

1

3!
z3 + . . .

cos z ≡ 1− 1

2!
z2 +

1

4!
z4 − 1

6!
z6 + . . .

sin z ≡ z − 1

3!
z3 +

1

5!
z5 − 1

7!
z7 + . . .

Notice that even in the complex field, cos z is an even function and sin z is an odd function.

cos(−z) = cos(z)

sin(−z) = − sin(z)

In fact, the last example in the previous subsection just proves the following.

Lemma 2.4 (Exponential Map as a Group Homomorphism)

The exponential map exp : C −→ C \ {0} satisfies the following

exp(z1 + z2) = exp(z1) · exp(z2)

That is, exp is a group homomorphism from (C,+) to (C \ {0}, ·).
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Definition 2.8 (Euler’s Formula)

By making the substitution z = yi in the series expansion of ez (where y is an arbitrary complex
number), we get

eiy = 1 +
1

1!
(iy) +

1

2!
(iy)2 +

1

3!
(iy)3 +

1

4!
(iy)4 + . . .

=

(
1− 1

2
y2 +

1

4!
y4 − . . .

)
+ i

(
1

1!
y − 1

3!
y3 +

1

5!
y5 − . . .

)
which brings us the identity

eiy = cos y + i sin y

Since cos is even and sin is odd, we can add the two identities

eiz = cos z + i sin z

e−iz = cos z − i sin z

to get

cos z =
1

2

(
eiz + e−iz

)
sin z =

1

2i

(
eiz − e−iz

)
This gives us a very elegant connection between these three transcendental functions.

Definition 2.9 (Hyperbolic Functions)

Likewise, the following series are convergent (since they are absolutely convergent) and therefore we
can define the extension of cosh and sinh into the complex field as

cosh z ≡ 1 +
1

2!
z2 +

1

4!
z4 +

1

6!
z6 + . . .

sinh z ≡ z +
1

3!
z3 +

1

5!
z5 +

1

7!
z7 + . . .

The following identities immediately follow

cosh z =
1

2

(
ez + e−z

)
sinh z =

1

2

(
ez − e−z

)
Lemma 2.5 (Trigonometric, Hyperbolic Identities over C)

Common identities, which are exactly the same as their real analogues, are listed.
1. cos2 z + sin2 z = 1
2. cosh2 z − sinh2 z = 1
3. ei(z1+z2) = (cos z1 cos z2 − sin z1 sin z2) + i(sin z1 cos z2 + cos z1 sin z2)
4. cos (z1 + z2) = cos z1 cos z2 − sin z1 sin z2
5. sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2
6. cosh z = cos iz
7. sinh z = −i sin iz

However, to obtain even such geometrically obvious facts as the equality

sinπ = 0 or cos z + 2π = cos z

16/ 23



Complex Analysis Muchang Bahng Spring 2025

from the power series definitions of cos and sin is extremely difficult. What the properties actually do
is present the remarkable unity of these seemingly different trigonometric and hyperbolic functions, which
would have been impossible to detect without going into the domain of complex numbers.

If we just take the following identities

cosx = cos (x+ 2π)

sinx = sin (x+ 2π)

cos 0 = 1

sin 0 = 0

then we get the following identity.

Theorem 2.4 (Euler’s Identity)

The following relation is true.
eiπ + 1 = 0

which immediately implies
exp(z + 2πi) = exp z

That is, the exponential function is a periodic function on C with the purely imaginary period T = 2πi.

Corollary 2.3 (Trigonometric Notation of Complex Number)

With Euler’s formula and the periodic relation of exp z, the trigonometric form of a complex number
can be presented as

z = r(cosφ+ i sinφ) = reiφ

We can rewrite DeMoivre’s formula as
zn = rnenφi

2.4 Continuity, Differentiability, Analyticity of Complex Functions
The definitions of continuity and differentiability are the same, just under a different field.

Definition 2.10 (Limit of a Complex Function)

The function f : E ⊂ C −→ C tends to A ∈ C as z → a, or that

lim
z→a

f(z) = A

if for every ϵ > 0 there exists a δ > 0 such that

0 < |z − a| < δ =⇒ |f(z)−A| < ϵ

Note that we set 0 < |z − a| to ensure that z ̸= a.
Therefore, in other words, for any arbitrarily small ϵ > 0, we can find a δ > 0 such that the image of
the deleted δ-neighborhood of a, denoted Ůδ(a)), is completely within the ϵ-neighborhood Uϵ(A).

17/ 23



Complex Analysis Muchang Bahng Spring 2025

Definition 2.11 (Continuity of a Complex Function)

A function f : E ⊂ C −→ C is continuous at a point z0 ∈ E if for any neighborhood U(f(z0)) there
exists a neighborhood U(z0) such that its image is contained in U(f(z0)). In short,

lim
z−→z0

f(z) = f(z0)

Definition 2.12 (Differentiability of a Complex Function)

The derivative of a function f : E ⊂ C −→ C is defined

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

if this limit exists. f differentiable at x0 means that a differential function

df(z0) : Tz0C −→ Tf(z0)C, h 7→ df(z0)(h)

exists such that
f(z) = f(z0) + df(z0)(h) + o(h)

where h = z − z0 is the increment of the argument. Just like the real case, it turns out that
df(z0)(h) = f ′(z0)h, and

f(z)− f(z0) = f ′(z0)(z − z0) + o(z − z0)

which elegantly weaves together the two concepts of differentiability and the derivative.
Visualizing this, we can see that for whatever function f : C −→ C there is a linear function that
transforms the entire space as such at z0 (along with a given point z0 ∈ C),

18/ 23



Complex Analysis Muchang Bahng Spring 2025

The differential df(z0) at the point z0 is a linear mapping that "best" approximates f , with an error
of o(h) = o(z − z0).

Lemma 2.6 (Arithmetic Properties of Differentiation over C)

If functions f, g : E ⊂ C −→ C are differentiable at a point z ∈ E, then
1. their sum is differentiable at z, and

d(f + g)(z) = df(z) + dg(z) ⇐⇒ (f + g)′(z) = (f ′ + g′)(z)

2. their product is differentiable at z, and

d(f · g)(z) = g(z)df(z) + f(z)dg(z) ⇐⇒ (f · g)′(z) = f ′(z)g(z) + f(z) · g′(z)

3. their quotient is differentiable at z if g(z) ̸= 0, and

d

(
f

g

)
(z) =

g(z)df(z)− f(z)dg(z)

g2(z)
⇐⇒

(
f

g

)′

(z) =
f ′(z)g(z)− f(z)g′(z)

g2(z)

Just like the real case, the operation of taking the derivative is a linear operator.

Lemma 2.7 (Chain Rule for Composite Functions over C)

Let there be functions f : E1 ⊂ C −→ C differentiable at point z ∈ E1 and g : E2 ⊂ C −→ C
differentiable at point w = f(z) ∈ E2, with respective differentials

df(z) : TzC −→ TwC
dg(w) : TwC −→ Tg(w)C

Then, the composite function g◦f : E1 −→ C is differentiable at z, and d(g◦f)(z) : TzC −→ Tg◦f(z)C
is

d(g ◦ f)(z) = dg(w) ◦ df(z) ⇐⇒ (g ◦ f)′(z) = g′
(
f(z)

)
◦ f ′(z)
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2.4.1 Power Series Representation of a Function

Definition 2.13 (Holomorphic Function)

If function f : E ⊂ C −→ C is (complex) differentiable at a point z0 ∈ E, then f is said to be
holomorphic at z0.

We recall the diagram that summarizes the conditions of differetiability and analyticity of a function f over
the field R.

Taylor series converges to f at x0 ⇐⇒ f is analytic

Taylor series converges at x0

f infinitely differentiable at x0 ⇐⇒ Taylor series of f exists at x0

In the theory of functions of a complex variable we actually have a remarkable theorem that does not have
an analogue for functions over R.

Theorem 2.5 (Analyticity of Differentiable Functions over C)

If a function f : E ⊂ C −→ C is differentiable in a neighborhood of a point z0 ∈ E, then it is analytic
at that point. In other words,

f is holomorphic at z0 =⇒ f is analytic at z0

This means that the conditions in the diagram above all are equivalent! Visually,

f is differentiable at z0 ⇐⇒ f is holomorphic at z0
⇕

⇕

⇕
Taylor series converges to f at z0 ⇐⇒ f is analytic

Taylor series converges at z0

f infinitely differentiable at z0 ⇐⇒ Taylor series of f exists at z0

This is certainly an amazing fact, since it then follows from the theorem that if a function f(z)
has one derivative f ′(z) in a neighborhood of a point, it also has derivatives of all orders in that
neighborhood.

2.4.2 Algebraic Closedness of the Field C

Definition 2.14 (Algebraically Closed Field)

A field F is algebraically closed if every nonconstant polynomial in F[x] (the polynomial ring with
coefficients in F) has a root in F.
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Theorem 2.6 (Fundamental Theorem of Algebra)

C is algebraically closed. That is, every polynomial

P (z) ≡ c0 + c1z + c2z
2 + . . .+ cnz

n

of degree n ≥ 1 with complex coefficients ci ∈ C (i = 0, 1, . . . , n) has a root in C. This immediately
implies that every polynomial P (z) admits a representation (unique up to the order of the factors)
in the form

P (z) = cn(z − z1)(z − z2) . . . (z − zn)

where z1, . . . , zn ∈ C not necessarily all distinct.

We can also prove the interesting property about zeroes of polynomials in R[x].

Corollary 2.4 (Complex Conjugate Roots of Real Polynomials)

Given a polynomial with real coefficients

P (z) ≡ a0 + a1z + a2z
2 + . . .+ anz

n

P , as we know, does not always have real roots (e.g. P (x) = x2 + 1). However, we state that

if P (z0) = 0, then P (z0) = 0

Therefore, every polynomial P with real coefficients can be expanded as a product of linear and
quadratic polynomial with real coefficients.

Proof.

We can see from the properties of complex numbers that

(z1 + z2) = z1 + z2

(z1 · z2) = (r1eiφ1 · r2eiφ2)

= r1r2ei(φ1+φ2) = r1r2e
−i(φ1+φ2)

= r1e
−iφ1 · r2e−iφ2 = z1 · z2

Thus, if P (z0) = 0, then

0 = P (z0) = a0 + . . .+ anzn0 = a0 + . . .+ anz
n
0 = a0 + . . .+ anz

n
0 = P (z0)

and thus P (z0) = 0.

2.5 Primitives

Definition 2.15 (Primitive)

A function F (x) is a primitive of a function f(x) on an interval if F is differentiable on the interval
and satisfies the equation

F ′(x) = f(x)

or equivalently, if their respective differentials satisfy

dF (x) = f(x) dx
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Lemma 2.8 ()

If F1(x) and F2(x) are two primitives of f(x) on the same interval, then the difference (F1 − F2)(x)
is constant on that interval.

Example 2.3 ()

Both
F1(x) ≡ arctanx and F2(x) ≡ arccot

1

x

are primitives of f(x) = 1
1+x2 . Indeed, we can see by direct calculation that in the domain R \ 0,

F1(x)− F2(x) = arctanx− arccot
1

x
=

{
0, x > 0

−π, x < 0

which is supported by the lemma.

Notice how given a function f(x), the operation of finding its differential, denoted with d, gives us a new
function of h, called the differential

df(x)(h)

Similarly, the operation of finding a primitive of function f(x), denoted with the symbol
∫

, gives us a new
function.

Definition 2.16 (Indefinite Integration)

The operation of finding a primitive of a certain function f(x) is called indefinite integration, and
the mathematical notation ∫

f(x) dx

is called the indefinite integral of f(x) on a given interval (f called the integrand and f(x) dx
called the differential form).

1. It immediately follows from the lemma that if F (x) is any particular primitive of f(x) on the
interval, then on that interval ∫

f(x) dx = F (x) + C

2. If F ′(x) = f(x) (that is, F is a primitive of f on some interval), then we have

d

∫
f(x) dx = dF (x) = F ′(x) dx

3. It also follows that ∫
dF (x) =

∫
F ′(x) dx = F (x) + C

Theorem 2.7 (Basic Methods of Indefinite Integration)

The definition of the indefinite integral has three basic properties that can be used to solve indefinite
integrals.

1. Linearity of the indefinite integral.∫ (
αu(x) + βv(x)

)
dx = α

∫
u(x) dx+ β

∫
v(x) dx+ C
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2. Integration by parts. ∫
(uv)′ dx =

∫
u′(x)v(x) dx+

∫
u(x)v′(x) dx+ C

3. Change of Variable, or U -substitution. Given that F ′(x) = f(x) on an interval Ix and φ : It −→
Ix is a C1 mapping of interval It into Ix, then∫

(f ◦ φ)(t)φ′(t) dt = (F ◦ φ)(t) + C
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