
Development Tools Muchang Bahng Fall 2024

Development Tools

Muchang Bahng

Fall 2024

Contents
1 Text Editing with Neovim 3

1.1 Configuration Files . 3
1.2 Troubleshooting . 4
1.3 Language Service Providers . 5
1.4 Snippets . 5

2 LaTeX 6
2.1 TLMGR . 6
2.2 PDF Viewers . 6
2.3 Compilation and Debugging . 7
2.4 Macros . 8
2.5 Figures and Tikz . 8

3 Version Control with Git 9
3.1 Local Git Repository . 9
3.2 Conflicts . 10
3.3 Interactive Rebasing . 11
3.4 Branches . 13

3.4.1 Working Between Branches . 14
3.4.2 Integrating Branches . 14

3.5 Remote Trees . 17
3.6 Reflog . 21
3.7 Pull Requests and Forking . 22

4 Continuous Integration (CI) with Git Actions and Docker 23

5 Unit and Integration Tests 24
5.1 Structure of Unit Tests . 25

5.1.1 Output Based Testing . 25
5.1.2 State Based Testing . 25
5.1.3 Communication Based Testing . 25

6 Package Management 26
6.1 Pip . 26
6.2 Conda . 26
6.3 Using Pip with Conda . 28
6.4 Mamba . 31

7 Linux Desktop 32
7.1 Systemd . 34

7.1.1 systemctl: Managing systemd . 36

1/ 53

Development Tools Muchang Bahng Fall 2024

7.1.2 Targets . 37
7.1.3 Systemd Logging . 37

7.2 Directory Structure . 37
7.2.1 Users and Permission . 37

7.3 Display Servers . 40
7.4 Package Management . 40
7.5 Wget . 41
7.6 Pacman . 41
7.7 Yay . 44
7.8 Dpkg and Deb files . 44
7.9 Apt . 44
7.10 Snap and Flatpak . 45
7.11 Windows Managers and Desktop Environments . 45
7.12 Shells and Terminals . 46

7.12.1 Crontab . 46
7.13 Graphics Drivers . 47

7.13.1 Multiple GPUs . 48
7.14 Peripheral Devices . 48
7.15 Architecture . 49
7.16 System Hardware . 50

8 Remote Access 51
8.1 Clipboard . 51

9 Research 53

2/ 53

Development Tools Muchang Bahng Fall 2024

1 Text Editing with Neovim
The first thing you do when coding is typing something, and this requires a text editor. Vim is guaranteed to
be on every Linux system, so there is no need to install it. However, you may have to install Neovim (which
is just a command away). Vim can be a really big pain in the ass to learn, but I got into it when I was
watching some video streams from a senior software engineer at Netflix called The Primeagen. He moved
around the code like I’ve never seen, and I was pretty much at the limit of my typing speed, so I decided
to give it a try during the 2023 fall semester. My productivity plummetted during the first 2 days (which
was quite scary given that I had homework due), but within a few weeks I was faster than before, so if you
have the patience, I would recommend learning it. Here is a summary of reasons why I would recommend
learning Vim:

1. It pushes you to know the ins and outs of your editor. As a mechanic with his tools, a programmer
should know exactly how to configure their editor.

2. The plugin ecosystem is much more diverse than other editors such as VSCode. You can find plugin-
s/extensions for everything. Here is a summmary of them here.

3. You’re faster. If you’re going to be coding for say the next 10 years, then why not spend a month to
master something that will make you faster by 10%? That way, you’ll have coded 1 years worth more
with a 1 month commitment. I’d take a free 11 months of coding any day.

4. Computing clusters and servers will be much easier to navigate since they all run Linux with Vim.

5. Vim is lightweight, and you don’t have to open up VSCode every time you want to edit a configuration
file.

Example 1.1 (Vim vs Neovim)

Experience wise, Vim and Neovim are very similar, and if you configure things rihght, you may not
even be able to tell the difference. But there are 3 differences that I want to mention:

1. Neovim can be configured in Lua, which is much cleaner than Vimscript.
2. Neovim provides mouse control right out of the box, which is convenient for me at times and

can be easier to transition into, while Vim does not provide any mouse support.
3. There are some plugins that are provided in Neovim that are not in Vim.

Either way, the configuration is essentially the same. At startup, the text editor will parse some
predetermined configuration file and load those settings.

It may be the case that a remote server does not have neovim installed, or you may not have the permissions
to install it. In this case, you can use sshfs, which is a file system client based on the SSH File Transfer
Protocol. It allows you to mount a remote directory over SSH.

1.1 Configuration Files
In Vim, your configuration files are located in /.vimrc and plugins are located in /.vim/. In here, you
can put in whatever options, keymaps, and plugins you want. All the configuration is written in VimScript.

1 # options
2 filetype plugin indent on
3 syntax on
4 set background=dark
5 set expandtab ts=2 sw=2 ai
6 set nu
7 set linebreak
8 set relativenumber
9

10 # keymaps
11 inoremap <C-j> <esc>dvbi

3/ 53

https://github.com/rockerBOO/awesome-neovim#neovim-lua-development

Development Tools Muchang Bahng Fall 2024

12 inoremap jk <esc>
13 nnoremap <C-h> ge
14 nnoremap <C-l> w

In Neovim, I organize it using Lua. It essentially looks for the /.config/nvim/init.lua file and loads
the options from there. We also have the option to import other Lua modules for better file structure with
the require keyword. The tree structure of this configuration file should be the following below. The extra
user director layer is necessary for isolating configuration files on multiple user environments.

The init file is the “main file” which is parsed first. I generally don’t put any explicit options in this file and
reserve it only for require statements. It points to the following (group of) files:

1. options.lua: This is where I store all my options.

2. keymaps.lua: All keymaps.

3. plugins.lua: First contains a script to automatically install packer if it is not there, and then contains
a list of plugins to download.

4. Plugin Files: Individual configuration files for each plugin (e.g. if I install a colorscheme plugin, I
should choose which specific colorscheme I want from that plugin).

5. Filetype Configuration Files: Options/keymaps/plugins to load for a specific filetype. This helps
increase convenience and speed since I won’t need plugins like VimTex if I am working in JavaScript.

Once you have your basic options and keymaps done, you’ll be spending most of your time experimenting
with plugins. It is worth to mention some good ones that I use.

1. Packer as the essential package manager.

2. Plenary

3. Telescope for quick search and retrieval of files.

4. Indent-blankline for folding.

5. Neoformat for automatic indent format.

6. Autopairs and autotag to automatically close quotation marks and parantheses.

7. Undotree to generate and navigate undo history.

8. Vimtex for compilation of LaTeX documents.

9. Onedark and Oceanic Next for color schemes.

10. Vim-Startify for nice looking neovim startup.

11. Comment for commenting visual blocks of code.

It is also worthwhile to see how they are actually loaded in the backend. Each plugin is simply a github repo
that has been cloned into /.local/share/nvim/site/pack/packer/, which contains two directories. The
packages in start/ are loaded up every time Neovim starts, and those in opt/ are packages that are loaded
up when a command is called in a certain file (known as lazy loading). Therefore, if you have any problems
with Neovim, you should probably look into these folders (and possibly delete them and reinstall them using
Packer if needed).

1.2 Troubleshooting
A good test to run is :checkhealth, which checks for any errors or warnings in your Neovim configuration.
You should aim to have every (non-optional) warning cleared, which usually involves having to install some
package, making it executable and/or adding to $PATH.

4/ 53

Development Tools Muchang Bahng Fall 2024

If you are getting plugin errors, you can also manually delete the plugin directory in ‘pack/packer‘ and run
‘PackerInstall‘ to re-pull the repos. This may help.

1.3 Language Service Providers
If you were to create a text editor from scratch, you would first want to make a buffer and some external
program to analyze this buffer (plus some other text files) concurrently. Things like autocompletion, type
checking, and syntax checking may all be taken for granted, but it’s not, and these are all provided by the
language service provider, also known as LSP. LSPs are specific to each language, such as pyright being
the mainstream LSP for Python, and ts_ls for TypeScript. Some of its services have specific names, and
overlap a lot.

1. Autocompleting partially typed words with suggestions based on what you typed so far in the current
buffer, or from analyzing existing paths of various directories/files.

2. Linting, which is a general term for finding issues in your code.

3. Type checking the correct types of variables to find bugs or edge cases in your code.

4. Symbol searching variables so that you can jump to where they are declared or defined.

The tricky part about LSPs is that they can get quite heavy in computation. For modern laptops this isn’t
really a problem. For example, on my Macbook Pro M3 I can have a heavy type checker, full autocompletion
of every word, symbol searching of every variable, and linting across all files in my current directory (of up to
50 files), all with no noticeable delay. This was quite nice, until I started working on a remote server offering
4 crappy CPUs to work off of, and this just made coding impossible since all of these processes caused a
1 second delay in my writing. Therefore, depending on where you work, LSPs should be lightweight. The
balance between functionality and performance is what I think VSCode does very well compared to Neovim.

1.4 Snippets

5/ 53

Development Tools Muchang Bahng Fall 2024

2 LaTeX
Latex is a great way to take notes, and while it may be tedious to write it at first, it’s a skill that you build
up just like when you first wrote the alphabet in kindergarten. If you think you’ll be slow at latex forever,
don’t worry. In a few months I was faster at taking notes with latex than by hand or google docs.

I still handwrite notes though during class. Some people handwrite because it helps with retention, but I
do it because I often need to reorganize the structure and content of my notes multiple times before I have
a clear picture of the entire course. My general system is to handwrite notes for about a month’s worth of
classes, and then spend a few days thinking about them and adding them to my website.

Now let’s get back to latex. Most users write on Overleaf, which is a platform that makes latex easier
by having all the packages you’ll ever need on the cloud, along with a user-friendly GUI. Everything is
preconfigured, but that means that your work environment can’t really be tailored to the way you like it.
I’ve used Overleaf for about 3 years before I started using Vim, and the lack of Vim keybindings on Overleaf
just made me write latex on my local desktop. This allows me to have all my files locally, which I can then
store in some remote Github repository.

I use the Neovim plugin VimTex, which is installed in my plugins.lua with use lervag/vimtex. Then,
you want to install TexLive, which is needed to compile tex files and to manage packages. The directions for
TexLive installation is available [here](https://tug.org/texlive/quickinstall.html). Once I downloaded the
install files, I like to run sudo perl ./install-tl –scheme=small. Be careful with the server location
(which can be set with the –location parameter), as I have gotten some errors. I set –scheme=small, which
installs about 350 packages compared to the default scheme, which installs about 5000 packages (7GB).
I also did not set –no-interaction since I want to slightly modify the –texuserdir to some other path
rather than just my home directory.

2.1 TLMGR
Once you installed everything, make sure to add the binaries to PATH, which will allow you to access the
tlmgr package manager, which pulls from the CTAN (Comprehensive TeX Archive Network) and gives
VimTex access to these executables. Unfortunately, the small scheme installation does not also install the
latexmk compiler, which is recommended by VimTex. We can simply install this by running

1 sudo tlmgr install latexmk

Now run :checkhealth in Neovim and make sure that everything is OK, and install whatever else is needed.

To install other Latex packages (and even document classes), we can use tlmgr. All the binaries and
packages are located in /usr/loca/texlive/202*/ and since we’re modifying this, we should run it with
root privileges. The binaries can also be found here. Let’s go through some basic commands:

1. List all available packages: tlmgr list

2. List installed packages: tlmgr list –only-installed (the packages with the ‘i‘ next to them are
installed)

3. Install a package and dependencies: sudo tlmgr install amsmath tikz

4. Reinstall a package: sudo tlmgr install amsmath –reinstall

5. Remove a package: sudo tlmgr remove amsmath More commands can be found here for future refer-
ence.

2.2 PDF Viewers
I will already assume you have a PDF viewer installed. Many operating systems come with their own default
PDF viewers, such as Preview for MacOS, Adobe/Edge for Windows, or some other for Ubuntu. So what
should you look for in a PDF viewer? That depends on your needs, but as of May 2025 here are mine.

6/ 53

http://tug.ctan.org/info/tlmgrbasics/doc/tlmgr.pdf

Development Tools Muchang Bahng Fall 2024

1. Customization of keyboard shortcuts. For example, when I want to scroll down 10 pages, I want to be
able to use some keymaps to go there rather than scrolling with my mouse wheel.

2. Support for dark mode. Text is generally black on a white background, but this can hurt the eyes
especially at night when my room is darker.

3. Modifying and viewing comments are nice when people are annotating or editing my work. This is
especially useful in collaborative research or when doing literature reviews.

4. Ability to fill/sign PDF forms. Not as important but is nice for e-signing.

On Arch Linux I use zathura, which is lightweight and also comes with vim motions for navigation. On
Mac the most similar is Skim, which also has keybindings and supports a dark mode1.

2.3 Compilation and Debugging
From the moment you compile a latex file, there are several files that are generated before the final PDF
renders. Let’s start with the most basic ones. T

Definition 2.1 (paper.log)

Log file of the compilation. You should first check this when debugging.

Definition 2.2 (paper.aux)

This is used for reference information. Mainly, if you use
ref{} but the corresponding
label{} is only later in the document, LaTeX has not seen it and won’t look ahead. Instead, each
time there is a
label{}, a command gets written to the .aux file. Next time you compile your .tex, that .aux
is inputted right before the document gets started, and the command you had written to it then
registers the value for
ref{}.

Definition 2.3 (paper.synctex.gz)

This specifies the synchronization between your PDF and source files. In other words, it allows you
to click in the PDF to go to the corresponding line in your source code and vice versa. This can be
safely deleted.

Definition 2.4 (paper.out)

This is used by hyperref to store a list of PDF bookmarks.

Now there may or may not exist, depending on the packages you use.

Definition 2.5 (paper.toc)

If you use
tableofcontents, this will create a .toc file.

1Under Skim, Settings, PDF Display, Invert Colors for Dark Mode

7/ 53

Development Tools Muchang Bahng Fall 2024

Definition 2.6 (paper.bbl/blg)

The bbl doc is outputted by biber (or bibtex) and contains the prepared data to be used by biblatex
(or natbib). Then the blg is the log files of biber/bibtex.

Definition 2.7 (paper.fls)

2.4 Macros

2.5 Figures and Tikz
After this, you can install Inkscape, which is free vector-based graphics editor (like Adobe Illustrator). It
is great for drawing diagrams, and you can generate custom keymaps that automatically open Inkscape for
drawing diagrams within LaTeX, allowing for an seamless note-taking experience.

8/ 53

Development Tools Muchang Bahng Fall 2024

3 Version Control with Git
Git is a pretty complex version control tool. It allows you to perform different actions. We’ll go over them,
starting with the most basic to the most complex. In order to learn this, we should know the structure of
the git history.

3.1 Local Git Repository
When you do git init in a repository, you are essentially saying that you want to keep track of the history
of this repository. This can obviously be done with an undo tree, which comes out-of-box in almost all text
editors, but it is much more powerful.

Definition 3.1 (Local Git Tree)

The history of our repository is essentially a tree, with each node representing some edits composed
of

1. adding a new file
2. modifying a file
3. deleting a file

Each node is represented by a hash generated from its previous node and the corresponding edits.
You can see your history using

1 git log

HEAD is a pointer to the node that reflects the state of your current repository (minus your uncom-
mitted edits), which is usually the most recent node.

Unlike most undo trees, these nodes are not added automatically. You must add them manually through a
2-step process.

Definition 3.2 (Stage)

You want to take a set of edits and stage them. This essentially tells git that these staged files/lines
are going to be a part of the next node.

Definition 3.3 (Commit)

Then you commit your changes, which does the following.
1. This takes all of your staged changes and packages them in a node A.
2. It looks at HEAD, uses HEAD’s hash to generate the hash of A, and appends A to HEAD by having

A point to HEAD.a
3. It moves HEAD to A.

Therefore, when you make your first commit, you are creating a genesis node from which every other edit will
be based off of. Your HEAD then points to this commit. This is great start, and let’s add more functionality.

Definition 3.4 (Checkout a Commit)

You can move HEAD to point to a specific commit by using

1 git checkout <commit-hash> # point to this commit
2 git checkout HEAD~N # point to the commit N nodes before HEAD

aSo nodes actually point to previous nodes.

9/ 53

Development Tools Muchang Bahng Fall 2024

This leaves you in a detached head state, which means that your head is not pointing to the end
node. This is useful if you want to

1. explore the codebase at a commit’s snapshot in time.

Note that so far, we have described git as a linked list plus some extra head pointer. Adding to this linked
list is easy since we are simply adding new edits, but deleting can be very tricky. We will first introduce how
to delete the most recent K commits, which is the easiest way to delete.

Definition 3.5 (Reset)

Say that your history is
(A)← (B)← (C)← (H 7→ D) (1)

If we want to throw away commits C and D, we can reset to B, which deletes C,D and has H point
to B, giving us

(A)← (H 7→ B) (2)

1. A soft reset means that the edits introduced in C and D will still be kept as unstaged changes,
and so you may use them as a starting point to make your next commit.

2. A hard reset means that the edits are also completely deleted.

Most beginners in git really know these commands when working with their history, but this is really just a
glorified stack. The additional operations can be daunting because they have the risk of introducing conflicts.

3.2 Conflicts

Definition 3.6 (Conflicts)

A conflict arises when two commits contain edits that change some location independently at the
same time. They occur most frequently when working with multiple branches, but they can happen
even when working on a single branch. Git will tell you when there is conflict between commits C and
C ′ at a certain location. At this point, you will have to manually go to that location and compare
the changes introduced in C and C ′, called hunks. The conflict looks generally like this.

1 ... some code above
2 <<<<< (C) # hunk 1
3 ========
4 >>>>> (C’) # hunk 2
5 ... some code below

In order to fix this conflict, you can
1. select hunk 1 (and ignore hunk 2)
2. select hunk 2
3. select both hunks (i.e. incorporate both edits)
4. manually delete the »>, ===, «< and directly edit the file to make a custom change that overrides

both hunks.

Choosing the option to fix a conflict may sometimes be complicated, since you may not always want to select
the hunk reflected in your most recent changes, because doing that might introduce another conflict in a
later commit that actually modified the old code into the new code.

10/ 53

Development Tools Muchang Bahng Fall 2024

Definition 3.7 (Revert Commit)

Say that you have history
(C1)← (C2)← (C3)← (H 7→ C4) (3)

You can choose to revert and of the 4 commits above. Given any commit C, reverting a commit
means that you simply add a new commit C ′ with the changes that are the exact opposite of C. If
we want to revert commit C2, our history looks like

(C1)← (C2)← (C3)← (C4)← (C ′
2) (4)

So really, we are “deleting” our history by adding.

Example 3.1 (Conflicts in Reverting)

Say that you have history
(C1)← (C2)← (C3)← (H 7→ C4) (5)

If you try to revert H, this is fine and will never have conflicts. Say that you made an edit in (C3)
where you added x = 4 to some python script, and then you removed this line in (C4). Then if you
add (C ′

3) to undo it, it tries to delete a line that isn’t even there! Therefore you will get a conflict
that looks something like

1 <<<<< (C4) # hunk 1
2 - x = 4
3 ========
4 - x = 4
5 >>>>> (C3’) # hunk 2

Obviously you can just select either one of the hunks to get what you want.

Conflicts are unavoidable and you will have to get comfortable with them.

Definition 3.8 (Amending a Commit)

If you have some staged edits and you decide that these edits should go into some previous commit
rather than a new one, you can amend the old commits. In lazygit, you can stage which edits you
want to amend with, then go to the commit in your working branch and press <shift-a> to amend
it.

3.3 Interactive Rebasing
Even though we can revert commits, we haven’t actually found out how to truly delete a commit from your
history which modifies

(A)← (B)← (C)← (D) (6)

to something like
(A)← (B)← (D) (7)

Definition 3.9 (Rebasing)

Essentially, we want to directly (unlike a revert) modify our history that goes beyond (unlike a reset)
the last K commits. Any actions that modifies the history is known as rebasing, which can be done
automatically by git (regular rebasing just picks all commits) but must often be done interactively,
which allows for more operations listed below. When you want to start an interactive rebase, you

11/ 53

Development Tools Muchang Bahng Fall 2024

want to tell git from which commit Cs you want to start the interactive rebase on.

1 git rebase -i <start commit hash>

You are saying that from commit Cs and beyond until the end Cn, I may arbitrarily modify them,
but commits previous to Cs will be untouched. When you do this, all commits Ci where i ≥ s will
be shown as below.

Figure 1: Interactive rebase shown in LazyGit.

There are a fixed set of supported operations allows in an interactive rebase.a
1. Pick. This just means that you are leaving the commit alone, i.e. picking it to be in the rebase.
2. Reword. Just edits the commit message.
3. Squash. Given commit Ci ← Ci+1, you can label Ci+1 with squash to merge it into Ci, turning

2 nodes into one. This almost never causes conflicts. The new commit message is just those of
Ci, Ci+1 concatenated.

4. Fixup. Like squash, but discard the commit’s message.
5. Drop. This deletes a commit and removes it entirely.
6. Break. Stop at this commit to edit it. I think you can change which edits you have committed,

choose which edits to keep, and choose which edits to remove (back into your unstaged changes).
7. Edit. Stop at this commit to amend it.
8. You can also swap commits by editing the text file so that the commits are in a different order.

1 # Original order in rebase editor:
2 pick abc123 First commit
3 pick def456 Second commit
4

5 # After swapping lines in editor:
6 pick def456 Second commit
7 pick abc123 First commit

After you edit the rebase text file and continue the rebase, git will do the following sequentially:
1. HEAD, which pointed at Cn, will point towards Cs.
2. While HEAD is pointing at Ci ̸= Cn (i.e. not at the end), we do the following.

(a) It will attempt to perform all the operations you have specified for the next commit Ci+1.
(b) If the operations are finished, we increment HEAD to point to Ci+1 and continue.
(c) If there is a conflict, it will pause, state that there are conflicts between HEAD = Ci and

Ci+1, and ask you to resolve them. Once resolved it will continue.
3. Then we are done with the rebase since we have went through all commits, modified them, and

resolved all conflicts.
Interactive rebasing is an extremely powerful way to modify your commit history, and it’s probably
the operation where you’ll spend the most time on git.

Again, note that if you have changed anything in commit Ci, then the hash of Ci every Cj after will get
changed. This causes git to interpret these changed commits as completely new ones, even if we only picked

aNote that pick and reword will never cause conflicts. Squash and fixup will most likely not cause conflicts. Drop, break,
edit, and swapping may cause conflicts.

12/ 53

Development Tools Muchang Bahng Fall 2024

a given commit without any modifications. For single-branch rebases, this is fine, but this causes some nasty
problems when rebasing over multiple branches, as we will talk about later.

Definition 3.10 (Patching)

An easier way to modify your edits in old commits is through patching.a Within a commit, a patch
is simply a diff file that you can add and remove to. It’s like having a mini-staging area in a commit.
When you have selected the different files/lines you have added to your patch, you can either choose
to:

1. Remove them from the commit.
2. Add them to another commit.
3. Move them from the original commit to a new commit.

Theorem 3.1 (Splitting Commits Into Two Different Commits)

If you want to split commits,
1. create a dummy commit
2. go to the commit you want to split, get its patches, and add them to the dummy commit.
3. Do an interactive rebase to swap the dummy commits down until you have it at the desired

location.

3.4 Branches
Okay, so we now have much better control over our git history, but we’ve only been treating our history as
a linked list. In order to introduce the tree structure, we need to introduce the branch. This is especially
important if we have a particular previous commit Ck<n where we would like to make some different changes
to, giving us diverging histories with next nodes Ck ← Ck+1 and Ck ← Ck′+1.

Definition 3.11 (Branch)

A branch is a path from the root commit to any leaf node. It represents a unique history from
genesis to HEAD. To list all branches, use

1 >> git branch
2 feature/threading
3 * main
4 test/tensor

The asterisk represents which branch you are currently on. The first branch you start off with is a
special branch called main, or master branch.

Therefore, really our linked-list history is a git tree with a single branch.

Definition 3.12 (Creating/Switching Branches)

From any (main or non-main) branch you can create new branches by choosing the commit to split
from.

1. Create a new branch from HEAD of current branch.

1 git branch <new-branch-name>

2. Create a new branch from certain commit of current branch.

aThough patching really just does an interactive rebase in the backend.

13/ 53

Development Tools Muchang Bahng Fall 2024

1 git branch <new-branch-name> <commit-hash>

3. To switch to another branch

1 git checkout <branch>

3.4.1 Working Between Branches

If you are simultaneously working on multiple branches, you may have to checkout/switch between branches
frequently. Often, you may have uncommitted changes before you checkout, and git does not allow you to
do this. Therefore, we can stash them.

Definition 3.13 (Stash)

Stashing changes mean that you can take uncommitted changes and store them in a temporary
node but not have it point to any existing commit in a branch. This allows you to save your changes
without having to commit incomplete work to a branch, and you can pop them back whenever you
need.

Sometimes, you may want to just copy a commit from one branch to another. You can do this using an
interactive rebase, but this may be overkill since it is mainly used to work with a sequence of commits.

Definition 3.14 (Cherry-Picking and Pasting)

You can do copy a commit by cherry picking it and pasting it somewhere else.

3.4.2 Integrating Branches

The reason you want to have different branches is so that you have independent workflows that may hopefully
be integrated into the master branch. So how does one actually perform this integration? There are two
general ways to do this: a 3-way merge or a rebase. For both methods, we will use this example.

1 main : A1 --- A2 --- A3
2 \
3 feature1 : B1 --- B2 --- B3
4 \
5 feature2 : C1 --- C2 --- C3

Definition 3.15 (Fast-Forward Merge)

If you want to merge main and feature1, notice that feature1 is really just ahead of main by some
number of commits. The easiest way to merge is to add the additional commits in feature1 to main.
This is called a fast-forward merge, which we can call using

1 git checkout main
2 git merge --ff-only feature1

Doing so will result in

1 main : A1 --- A2 --- A3 --- B1 --- B2 --- B3
2 \
3 feature1 : --- B1 --- B2 --- B3

14/ 53

Development Tools Muchang Bahng Fall 2024

4 \
5 feature2 : --- C1 --- C2 --- C3

and we can delete feature1 since it’s not needed.

In fact, if a fast-forward merge is possible, then calling git merge feature1 will automatically do a fast-
forward. We can explicitly set it to only attempt or never attempt fast-forward by adding the –ff-only or
–no-ff flags.

Definition 3.16 (3-Way Merge)

If you want to merge two divergent branches, e.g. feature1 and feature2, then a fast-forward is
not possible. Rather, you want to choose to merge feature2 into feature1. Git will rather do a
three-way merge between the divergent node A3 and the heads of the respective branches B3 and
C3. After you resolve conflicts, the tree should look something like

1 main : A1 --- A2 --- A3
2 \
3 feature1 : --- B1 --- B2 --- B3 --- M1
4 \ /
5 feature2 : --- C1 --- C2 --- C3 ---

Note that we could choose to merge feature1 into main subsequently, resulting in both feature
branches merged.

1 main : A1 --- A2 --- A3 ------------------------------- M2
2 \ /
3 feature1 : --- B1 --- B2 --- B3 --- M1 ---
4 \ /
5 feature2 : --- C1 --- C2 --- C3 ---

Note that a three-way merge may result in a pretty ugly tree, especially if we are working with dozens of
branches. What we would like to do is a three-way merge in a fashion that looks like a fast-forward merge.
That is, we want the main branch to have a linear structure rather than a series of diverging and converging
nodes. In fact, we already have the tools to do this. Let’s revisit the interactive rebase again. We have seen
that we can do an interactive rebase from a start commit by doing

1 git rebase -i <start-commit-hash>

What we would like to do is to rebase from a commit in a different branch.

Definition 3.17 (Rebase)

If we want to linearly merge feature2 into feature1, this is called “rebasing feature2 onto
feature1.” We run

1 git checkout feature2
2 git rebase feature1

which means “take my current branch’s unique commits and replay them on top of whatever branch
I am rebasing on (in here, feature1).” This will result in

1 main : A1 --- A2 --- A3

15/ 53

Development Tools Muchang Bahng Fall 2024

2 \
3 feature1 : B1 --- B2 --- B3
4 \
5 feature2 : C1’ --- C2’ --- C3’

where the C’ are the same commits but with different hashes since they start from a different parent.

Example 3.2 (Updating Feature Branch with Changes from Main)

A common workflow you would do in a large project with multiple developers is as follows. Consider
that you are working on feature1 and another developer is working on feature2.

1 main : A1 --- A2 --- A3
2 \
3 feature1 : --- B1 --- B2 --- B3
4 \
5 feature2 : --- C1 --- C2

Your friend pushes their changes to main, which leads to this structure.

1 main : A1 --- A2 --- A3 --- C1 --- C2
2 \
3 feature1 : --- B1 --- B2 --- B3
4 \
5 feature2 : --- C1 --- C2

Your branch has diverged from main, so you will need to rebase your own branch onto main. You
checkout to feature1 and run git rebase main. After settling conflicts, your branch will look like
the following, updated with the most recent commits from main.

1 main : A1 --- A2 --- A3 --- C1 --- C2
2 \
3 feature1 : --- B1’ --- B2’ --- B3’
4 \
5 feature2 : --- C1 --- C2

Example 3.3 (Converting a Merge Into Rebase)

Say that you already merged feature1 and main.

1 main : A1 --- A2 --- A3 ------------------------ M1
2 \ /
3 feature1 : --- B1 --- B2 --- B3 ---

You realized that you actually wanted to do a fast-forward so that it looks linear! How do you do
this?

1. You first undo the merge.

1 git checkout main
2 git reset --hard A3

2. Then do the rebase of feature1 onto main.

1 git checkout feature1

16/ 53

Development Tools Muchang Bahng Fall 2024

2 git rebase main

3. Then fast-forward to main to include feature1’s commits.

1 git checkout main
2 git merge --ff-only feature1

We will have this in the end.

1 main : A1 --- A2 --- A3 --- B1’ --- B2’ --- B3’
2 feature1 : A1 --- A2 --- A3 --- B1’ --- B2’ --- B3’

3.5 Remote Trees
So far, we’ve talked about how you can use git to keep track of your edit history locally, but another benefit
is to store these changes in the cloud. This is done through a third-party provider, and they are completely
separate entities from git. The three most dominant ones are

1. Github. Owned by Microsoft and is the default for most open-source projects, with 100 million users.

2. Gitlab. Owned by Gitlab and is slowly gaining popularity due to better control of repositories and
after Microsoft acquired github.

3. Bitbucket. Owned by Atlassian and used for private repositories in enterprise settings.

Again, all three platforms still use git, but the cloud storage is managed separately. All of these platforms
provide a remote server that stores all of these git histories of millions of repositories around the world. The
motivation behind the need of a remote workspace is that it is a common ground in which many developers
can communicate and track the progress of their entire repository.

Definition 3.18 (Remote Repository)

The first step to setting up a cloud-based git tree is to place it on some server (IP address) in
some directory with the proper permissions. This remote location containing the git tree and the
corresponding code is called the remote repository, and it is encoded in either a URL or a SSH
host link of the form

1 https://github.com/user/repo.git

For now, we will consider a local repository having at most 1 remote repository that it can commu-
nicate to.a Conventionally, the primaryb remote repository goes under the alias origin.

None of the commands that we have introduced so far does anything to the remote repository. The first
command we should know is how to set up one from scratch.

Definition 3.19 (Add Remote)

Given that git is initialized, we can initialize a corresponding remote repository by running

1 git remote add <remote-name> <remote-url>

Again, conventionally the <remote-name> is put as origin.

aWhen we get to forking, we will talk about multiple remote repositories.
bAgain, for now it’s really the only remote.

17/ 53

Development Tools Muchang Bahng Fall 2024

Great, we have set a remote repository up, but there is an extra step to do. Most synchronizations happens
at a branch level rather than the whole tree itself, so what we would need to do for each local branch is
create a corresponding remote branch and then connect those two so that git knows which branches to sync
together. The local branch is called the downstream branch and its corresponding remote branch is called
upstream.

In order to understand how the process of setting upstream branches is done, we introduce another variable
in our local repository. In our local git tree, we have stated that for each branch B, there is a HEAD pointer
living at the most recent commit, denoted as B/HEAD or just B.

Definition 3.20 (Remote References)

There is actually a second pointer called the remote reference (ref) in the local branch called
origin/B (more generally <remote>/<branch>), which is a symbolic link that points to the head
of the remote branch. They are git’s way of keeping track of the state of branches in your remote
repositories.

For some local branch, the existence of a remote ref tells you where the corresponding upstream branch is
located (i.e. at <remote>/<branch>). If you do not see the remote ref, this means that you have not yet
connected your local branch to its remote upstream, which can happen if the remote counterpart doesn’t
exist (i.e. you created a completely new branch) or you have never connected it. You can find all local
branches and the remote references by calling

1 git branch -vv
2 # Shows all branches with their tracking info
3 # Example output:
4 # * main abc123 [origin/main] Latest commit message
5 # feature def456 [origin/feature: ahead 2] Some work

Definition 3.21 (Push with Set Upstream)

We consider two cases, where we do not see the remote refs at all.
1. Say that you have a local branch main with some committed changes, and the remote branch

does not exist at all. Your tree will look something like this

1 Remote:
2 Local : A <- B <- C <- (main) D

2. Say that you have a local branch main with some committed changes, and the remote branch
does exist but the upstream is not set.

1 Remote: A <- (main) B
2 Local : A <- B <- C <- (main) D

We can synchronize our local commits with the remote repo by pushing them. As we push, we also
set the upstream with the -u or –set-upstream flag.

1 git push -u <remote> <branch>
2

3 # for example, if we want to push our current checked out branch to origin/main
4 git push -u origin main

This will set your remote refs, and in both cases we will have

1 Remote: A <- B <- C <- (main) D

18/ 53

Development Tools Muchang Bahng Fall 2024

2 Local : A <- B <- C <- (main, origin/main) D

Definition 3.22 (Push)

If your remote ref is already set and you have some further commits,

1 Remote: A <- B <- C <- (main) D
2 Local : A <- B <- C <- (origin/main) D <- E <- (main) F

then you can just push your changes with git push, which will push the commits up to HEAD and
update the remote ref to HEAD.

1 Remote: A <- B <- C <- D <- E <- (main) F
2 Local : A <- B <- C <- D <- E <- (main, origin/main) F

In all of these scenarios, we have only seen cases when origin/main and main point to the same commit.
However, remember that the remote ref is a local pointer to the remote repo’s head, and so it is only updated
every time your local repo interacts with the remote repo. Therefore, they can be different.

Example 3.4 (Remote Ref is Different From True Remote Head)

Say that you are Local1 and a friend is Local2. We first start off with this.

1 True Remote: A <- B <- C <- (main) D
2 Remote1 : A <- B <- C <- (main) D
3 Local1 : A <- B <- C <- (main, origin/main) D
4 Remote2 : A <- B <- C <- (main) D
5 Local2 : A <- B <- C <- (main, origin/main) D

Your friend makes commits E and F and pushes them while you are working on commit G.

1 True Remote: A <- B <- C <- D <- E <- (main) F
2 Remote1 : A <- B <- C <- (main) D
3 Local1 : A <- B <- C <- (origin/main) D <- (main) G
4 Remote2 : A <- B <- C <- D <- E <- (main, origin/main) F
5 Local2 : A <- B <- C <- D <- E <- (main, origin/main) F

In this case, your friend’s push will update the head of the remote main branch to F and update
their remote ref to F as well. But you have worked only locally and have no interacted with the
remote repo for a while, so your remote ref is still D. When you therefore try to push your changes,
git will complain to you that your future ref and the remote head does not match. Since this creates
divergent histories which splits from D, it will not let you push.

The scenario above is clearly a problem, and it stems from the fact that we have a remote ref. Why need
remote refs at all if they seem redundant and at the same time they might introduce this problem? The
answer is convenience. Imagine that there were no remote refs. This means that every time someone pushed
to the remote main I would need to be notified that there were changes to main. However, I may not have
access to the remote repo while I am working on my code, so I may still have the same problem when I am
able to connect. The extra remote ref pointer allows for quick checking to see if my local branch matches its
upstream. It turns out that if the upstream changed, git does indeed warn you about it as soon as possible.

19/ 53

Development Tools Muchang Bahng Fall 2024

Definition 3.23 (Fetch)

Say that for a branch, it looks like this, and your local remote is not updated with the true remote’s
latest commits.

1 True Remote: A <- B <- C <- D <- E <- (main) F
2 Remote1 : A <- B <- C <- (main) D
3 Local1 : A <- B <- C <- (origin/main, main) D

To update your remote ref to match the current upstream head, we can fetch it to get the following.

1 True Remote: A <- B <- C <- D <- E <- (main) F
2 Remote1 : A <- B <- C <- D <- E <- (main) F
3 Local1 : A <- B <- C <- (main) D <- E <- (origin/main) F

It comes in three commands.

1 git fetch <remote-url> <branch> # fetches from specific remote branch
2 git fetch <remote-url> # fetches from all branches in a remote repo
3 git fetch # fetches from all branches of all remote repos

Definition 3.24 (Fast-Forward)

In the case above, note that even though the commits are synchronized to your local remote, the
changes aren’t actually reflected in your current code since HEAD has not moved. If you want head
to also move to the most recent remote ref, then you can do a fast-forward merge.

1 True Remote: A <- B <- C <- D <- E <- (main) F
2 Remote1 : A <- B <- C <- D <- E <- (main) F
3 Local1 : A <- B <- C <- D <- E <- (origin/main, main) F

You can do this in git by checking out to the local branch you are on. After fetching, you should
have the remote ref that you want to update your HEAD to, which you put in as an argument.

1 git merge --ff-only <remote-url/branch>
2 # e.g.
3 git merge -ff-only origin/main

Definition 3.25 (Pull)

The combination of doing a fetch to get the latest commits and update the remote ref, and then doing
a (fast-forward) merge to update your HEAD pointer to the remote ref, is so common that we refer
to doing these two things sequentially as a pull. Therefore, the two commands are the same.

1 git pull <remote-url> <branch>
2

3 git fetch <remote-url> <branch>
4 git merge <remote-url/branch>

1 git pull origin main
2

3 git fetch origin main
4 git merge origin/main

20/ 53

Development Tools Muchang Bahng Fall 2024

Definition 3.26 (Clone)

Finally, you can take an existing remote repository and clone it, which creates a complete copy of a
remote repository. It does the following.

1. Does a git init to set up git.
2. Does git remote add origin <remote-url> to connect to the remote repo and set the origin

alias to it.
3. Does git fetch origin to fetch all branches of the remote repo, setting up the local remote

branches and their corresponding remote refs.
4. Does git checkout -b main origin/main which creates the local branch main, checks out

to it, and sets origin/main as its upstream.

3.6 Reflog

Definition 3.27 (Reflog)

Git’s reflog is a super-history that records every change to your branch tips. It’s essentially an undo
tree for all git actions (sort of like a meta undo tree). Therefore, if you ever screwed something up,
git allows you to undo your actions by undoing the entries in the reflog. It contains the following
types of actions.

1. Branch Operations
• checkout: switching branches
• branch: creating/deleting branches
• merge: merging branches
• rebase: rebasing branches
• pull: pulling from remote

2. Commit Modifications
• commit: new commits
• reset: moving HEAD
• revert: reverting commits
• amend: amending commits
• cherry-pick: copying commits

3. Stash Operations
• stash: stashing changes
• stash apply: applying stash
• stash pop: popping stash

4. History Rewrites
• rebase -i: interactive rebase
• filter-branch: rewriting history

5. Reference Updates
• HEAD@n: moving HEAD pointer
• refs/heads/*: branch pointer updates
• refs/remotes/*: remote branch updates
• refs/stash: stash reference updates

6. Remote Operations
• clone: cloning repository
• fetch: fetching from remote
• push: pushing to remote
• remote add: adding remote

You can access it using the following command.

1 $ git reflog
2 ab12345 HEAD@{0}: reset: moving to HEAD~1 # Most recent action

21/ 53

Development Tools Muchang Bahng Fall 2024

3 bc23456 HEAD@{1}: commit: Add feature X
4 cd34567 HEAD@{2}: rebase: onto main # Rebase happened here
5 ef45678 HEAD@{3}: commit: Initial commit

3.7 Pull Requests and Forking

22/ 53

Development Tools Muchang Bahng Fall 2024

4 Continuous Integration (CI) with Git Actions and Docker
Continuous integration (CI), or continuous development (CD), refers to any automated process that
runs whenever you perform some action on a repository. These can include:

1. Compiling your package upon pushing to a git branch. This saves the time of manually compiling it
yourself.

2. Compiling and/or running unit tests on your package, over possibly different compiler/interpreter
versions on different operating systems and different architectures, whenever someone opens a pull
request. This is usually done by automatically creating docker images and running a script that sets
up the environment for your system.

3. Automatically publishing a new package version to PyPI upon a push to the master branch of a
repository.

Github actions provide workflow scripts that you can include in your repository’s github/workflows/
directory that automates this. They are essentially yaml files that activate upon some command, whether
that’d be a push to a branch, a pull request, or even the completion/failure of another workflow. This gives
great convenience in deploying code.

23/ 53

Development Tools Muchang Bahng Fall 2024

5 Unit and Integration Tests
In general, if you can reduce the number of lines of code to accomplish a task, it is seen as a good thing.
You are (most of the time) simplifying the logic and therefore reducing the probability of there being bugs.
This leads to our first rule.

Theorem 5.1 ()

Code is not an asset. It’s a liability.

However, codebases must grow, and therefore they must be maintained. As a student, I never worked with
unit tests since I never developed something large or complex enough to warrant them. This is the case for
most college students, and unless you start working—either during an internship or full-time—you may not
even know unit testing even exists. When I wrote my first unit tests during my internship in junior year,
the existing testing suite was massive and a lot to take in. I was supposed to write separate tests for the
new features I was working on, but I felt like I was winging it since I never properly learned how to write
tests. I’ve read up on a few books and used them to write this guide.

1. Korikov’s Unit Testing: Principles, Practices, Patterns

There are two general schools of unit testing (classical/Detroit and London), and I present the classical
school’s definition below.

Definition 5.1 (Unit Test)

In classical unit testing, a unit test is a test that satisfies the 3 properties.
1. Atomicity. It verifies a single unit of behavior.a
2. Efficiency. It does it quickly, and
3. Isolation. It does it in isolation from other tests.b

The London school still asserts efficiency, but the atomicity and isolation requirements are stricter. The
basic idea is that say you have two classes A,B with B a child of A. You want to test the behavior of each
class and therefore have test suites TA, TB for each class. Now say that there is a bug in TA. Then TA and
TB will fail, even though the singular problem was in A. This doesn’t provide the isolation that we need,
since TC for any class C should fail if and only if there is a bug in C. This is why in the London school, you
make double/mock classes, which are minimal copies of the class which are created for testing only.

Definition 5.2 (Integration Test)

An integration test is a test doesn’t satisfy precisely one of the three properties.
1. Atomicity. You may need to see how two units of code act together.
2. Efficiency. This is subjective depending on your time constraints.
3. Isolation. Multiple tests may use a shared dependency.

An end-to-end test is usually defined as not satisfying both atomicity and isolation, which often
means that it doesn’t run quickly either.

What should unit tests achieve?

1. Protection against regressions.2 When you add a new feature that introduces a new bug, the tests
should find that bug and report it before the features is pushed into production. Having good protection
reduces the probability of tests passing that should be actually failing, i.e. false negatives.

2. Resistance to Refactoring. A test should still be runnable after refactoring your code, i.e. should not
be about implementation details. This is a binary attribute: a test either has resistance or it does not.

aThis may or may not encompass units of code, which are generally classes in OOP.
bTBD
2A regression is a software bug.

24/ 53

Development Tools Muchang Bahng Fall 2024

If you don’t do this, then you will generate a lot of tests that should pass but fail due to refactoring,
i.e. false positives. This brittleness dilutes your ability and willingness to react to problems in the
code.

3. Fast Feedback. Should be fast.

4. Maintainability. Should be maintainable.

With this in mind, we will talk about the ways in which we can write tests.

5.1 Structure of Unit Tests
To write a proper unit test, use the following, also called the Given-When-Then pattern.

1. Arrange. Bring the system under test (SUT) and dependencies to a desired state. This is usually the
largest of the three, but if it’s significantly larger than the act and assert sections combined, then it’s
a good idea to extract the arrangements either into private methods or a separate function.

2. Act. Call methods on SUT, pass the prepared dependencies, and capture the output (if any).

3. Assert. Verify the outcome. This should be a single line of a method call, and be careful if it is not
because then this indicates that an atomic behavior is really 2 methods, and there is an incorrect design
choice somewhere. Then it can be followed by one or more assertions.

4. Teardown. Depending on the language, this may be necessary if there is no automatic garbage disposal.

If you have an arange, act, assert, act, assert, etc., then this is a sign that it’s an integration test. Alterna-
tively, you should refactor it so that it is a sequence of unit tests.

Theorem 5.2 (Avoid If Statements in Tests)

An if statement is a conditional, and this is branching behavior that we don’t want in a linear sequence
of code in a unit test.

Assert statements should be outputted by verbose messages.

5.1.1 Output Based Testing

Definition 5.3 (Output-Based (Functional) Testing)

5.1.2 State Based Testing

Definition 5.4 (State-Based Testing)

5.1.3 Communication Based Testing

Definition 5.5 (Communication-Based Testing)

25/ 53

Development Tools Muchang Bahng Fall 2024

6 Package Management
Package management is quite a broad term, but for applications I will talk about them in the context of
using Python, JavaScript, and C++.

6.1 Pip
Let’s start off with a bit of history of Python, which was launched in 1991. 9 years later, the Python
Distribution Utilities (distutils) module was first added to the Python 1.6.1 standard library (and a month
later, in Python 2.0), with the goal of simplifying the process of installing third-party Python packages.
However, distutils only provided the tools for packaging Python code, but Python still lacked a centralized
catalogue for packages on the internet. As a result, PEP 241 proposed to standardize metadata for packages,
and in 2003, the Python Package Index (PyPI) was finally launched. As of May 2024, PyPI has over 500,000
packages.3 Each package is in the form of source archives, called wheels, that contain binary modules from
a compiled language.

Naturally, there is a need for a package manager, and easy install was one of the first ones. After its
deprecation in 2004, a software engineer named Ian Bicking introduced pyinstall, which was quickly renamed
to pip.4 He also created a virtual environment manager, called virtualenv, or venv.

Example 6.1 (Managing VirtualEnvs)

Here are some useful commands.

1 # Unix Commands
2 > python -m venv myVenvName/ # create the venv
3 > source myVenvName/bin/activate # activate it
4 > pip freeze > requirements.txt # export venv into txt file

Example 6.2 (Manage Packages Inside Venvs)

Here are some useful commands.

1 > pip list # list all packages
2 > pip install xxx # install package
3 > pip install xxx==0.0.1 # install version of package
4 > pip uninstall xxx # uninstall package

Some notes:
1. Running pip install packagename will look at PyPI, find the relevant package, and install

one of the precompiled wheels for the operating system/python version that you are using.
2. pip uninstall does not uninstall depedencies! There is no built-in support for this, which is

a pity. The best way to do this is to pip freeze and look at the differences in the packages.

6.2 Conda
While pip was great for managing Python packages, the main problem was that they were all focused around
python, neglecting non-Python library depedencies, such as HDF5, MKL, LLVM, etc. Therefore, they do not
install files into Python’s site-packages directory. Therefore, conda was released to do more than what pip
does: handle dependencies outside of Python packages as well as Python packages themselves. To reiterate,
pip is for Python packages only, while conda is language-agnostic and can install packages in R or C (though
it is mainly focused on Python).

3Really anybody can upload their own, so many packages may contain malware.
4From several suggestions the creator received on his blog post, and it is a recursive acryonym for “pip installs packages.”

26/ 53

Development Tools Muchang Bahng Fall 2024

Now that we’ve gotten this clear, let’s talk about Anaconda. In 2012, the company Anaconda Inc. was
founded and created the Anaconda and Miniconda distributions mainly focused on data science and AI
project for Python and R. You can think of them having the two main components.

1. Access to the Anaconda Public Repository, which consists of about 8000 packages (similar to PyPI).

2. A package manager called conda, used to install/uninstall/modify these packages in virtual environ-
ments.

So the APR/conda is analogous to PyPI/pip. Furthermore, when you install Anaconda, a collection of
about 300 essential packages (e.g. numpy, scipy, pandas) come pre-installed. This allows beginners to set
up environments quickly with these essential packages but can come with a lot of bloat. There is also some
GUI tools that are installed but are not really essential. Miniconda does not pre-install anything, so every
new environment is completely empty.

Example 6.3 (Manage Conda Envs)

1 > conda env list # list all envionments
2 > conda env create -n envname # create new conda env with name
3 > conda env create -n envname python=3.9 # create new conda env with specific python

version
4 > conda env remove -n envname # remove conda env
5 > conda env export > environment.yaml # export conda environment to yaml
6 > conda create -f environment.yaml # make conda env from yaml file

Unlike PyPI, the Anaconda repository is divided into channels, which are specific links that contain some
subfamily of packages. The two most popular ones to know are:

1. default: The default channel that is always there for the essentials.

2. conda-forge: A free open-source channel containing about 30,000 packages (as of May 2025). Anybody
can contribute to this channel.

Example 6.4 (Manage Conda Channels)

There are global commands that affect all conda environments. This can also be changed in your
.condarc file, where the channels are listed from highest priority (top) to lowest (bottom).

1 > conda config --add channels some-channel # add a channel permanently to ALL
envs

2 > conda config --remove channels some-channel # remove channel only to current env

The following commands are for env-specific settings.

1 > conda config --show channels # show channels for current env
2 > conda config --env --add channels some-channel # add channel only to current

env
3 > conda config --env --remove channels some-channel # remove channel only to

current env

Example 6.5 (Manage Packages Inside Conda Envs)

Now that we know about channels, we can talk about installing packages.

1 > conda install packagename # install package

27/ 53

Development Tools Muchang Bahng Fall 2024

2 > conda install packagename=0.0.1 # install specific version of
package

3 > conda install -c channel packagename # install package from channel
4 > conda uninstall packagename # uninstall package with

dependencies
5 > conda uninstall packagename --force # uninstall package only without

dependencies
6 > conda uninstall --all --keep-env # uninstall all packages in env

Note that:
1. Conda uses one = sign rather than pip, which uses ==.
2. Conda actually supports both uninstall and remove keywords, unlike pip which only supports

uninstall.
3. conda remove will remove all dependencies that are not used by other packages, which is nice.

6.3 Using Pip with Conda
Now we go to the question that I have asked myself countless times, but have never took the time to study
it until now. What is the difference between pip install and conda install? How should I use them
together? To determine this, let’s compare their behavior.

Example 6.6 (Fresh Environment)

Note that there is always pip installed in a venv while nothing is installed in a conda env. Since the
conda list is quite verbose, I will exclude the Build and Channel colummns from now on.

1 > pip list
2 Package Version
3 ------- -------
4 pip 25.0.1

1 > conda list
2 # packages in environment at /opt/miniconda3/envs/test:
3 #
4 # Name Version Build Channel

Example 6.7 (Dependency Installation when Installing a Package)

Now let’s install a single package numpy==2.1.0. We can see that the pip list is very minimal and
only lists Python-related dependencies, while conda list contains a bunch of non-Python dependencies
(a total of 24). Note that pip was automatically installed as a dependency, so we can also run pip
list in the conda env and get the same output as the one in the venv.

1 > pip install numpy==2.1.0
2 > pip list
3 Package Version
4 ------- -------
5 numpy 2.1.0
6 pip 25.0.1
7 .
8 .
9 .

10 .
11 .
12 .

1 > conda install numpy=2.1.0
2 > conda list
3 # packages in environment at /opt/miniconda3/envs/test:
4 #
5 # Name Version
6 ...
7 ncurses 6.5
8 numpy 2.1.0
9 openssl 3.4.1

10 pip 25.0.1
11 python 3.13.2
12 ...

28/ 53

Development Tools Muchang Bahng Fall 2024

Example 6.8 (Warning)

I have found in a few cases that if you have pip installed in a conda environment, running pip
install may not run the pip binary in the environment. For example, which pip may output the
global pip binary, which will install to your global environment rather than your virtual one—even if
activated. In this case, you want to force python to execute the pip binary.

1. One way to do this is to simply write out the full path of the pip binary in your conda env.
2. A better way is to activate your conda environment, make sure which python outputs the

correct binary, and run

1 python -m pip install ...

Example 6.9 (Uninstalling Package)

Say that we have pandas installed and take a look at the list.

1 > pip install pandas
2 > pip list
3 Package Version
4 --------------- -----------
5 numpy 2.2.4
6 pandas 2.2.3
7 pip 25.0.1
8 python-dateutil 2.9.0.post0
9 pytz 2025.2

10 six 1.17.0
11 tzdata 2025.2

1 > conda install pandas
2 > conda list
3 # packages in environment at /opt/miniconda3/envs/test:
4 #
5 # Name Version
6 ...
7 numpy 2.2.4
8 openssl 3.4.1
9 pandas 2.2.3

10 pip 25.0.1
11 ...

Now if we uninstall it, we can see that conda removes dependencies while pip doesn’t.

1 > pip uninstall pandas
2 > pip list
3 Package Version
4 --------------- -----------
5 numpy 2.2.4
6 pip 25.0.1
7 python-dateutil 2.9.0.post0
8 pytz 2025.2
9 six 1.17.0

10 tzdata 2025.2

1 > conda uninstall pandas
2 > conda list
3 # packages in environment at /opt/miniconda3/envs/test:
4 #
5 # Name Version
6 ca-certificates 2025.1.31
7 openssl 3.4.1
8 .
9 .

10 .

Example 6.10 (Dependency Updating)

Now say that we have numpy==1.26.4 and scipy==1.12.0 installed in our venv and conda env.

29/ 53

Development Tools Muchang Bahng Fall 2024

1 Package Version
2 ------- -------
3 numpy 1.26.4
4 pip 23.2.1
5 scipy 1.12.0
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .

1 # packages in environment at /opt/miniconda3/envs/test:
2 #
3 # Name Version
4 numpy 1.26.4
5 openssl 3.4.1
6 pip 25.0.1
7 python 3.12.9
8 python_abi 3.12
9 readline 8.2

10 scipy 1.12.0
11 setuptools 78.1.0
12 tk 8.6.13
13 tzdata 2025b
14 wheel 0.45.1

We would like to upgrade numpy to 2.2.0, but this will break the dependency for scipy. Both package
managers report this, and pip gives a more readable message. However, note that conda does not
install numpy=2.2.0, while pip does and reports that this can break things. So even though it checks
for dependencies, it does not automatically update them!

1 Package Version
2 ------- -------
3 numpy 2.2.0
4 pip 23.2.1
5 scipy 1.12.0
6 .

1 # packages in environment at /opt/miniconda3/envs/test:
2 # Name Version
3 numpy 1.26.4
4 pip 25.0.1
5 python 3.12.9
6 scipy 1.12.0

As we have seen there are two deal-breakers for pip, which is that it does not clean up dependencies upon
installation and that it updates packages that may break dependencies. This is really because pip is a
package manager, but it is not a dependency manager. So personally, I only do pip install when it is
absolutely necessary, i.e. I need a package that is only available on PyPI and not on any Anaconda channels.

Theorem 6.1 (Best Practices for using Conda and Pip)

Here are my personal best practices.
1. Always use conda environments.

(a) Conda environments completely replace virtualenvs. There is nothing you can do in vir-
tualenvs that you cannot do in conda envs.

(b) Venvs only work with pip, while conda envs allow you to have access to conda, which can
be used to download pip.

(c) You cannot easily switch Python versions in an environment in venv, since you must have
the binary installed on your computer. However for conda, it is as easy as conda install
python=3.x.

2. Always use conda install if possible, and only use pip install if you need a package only
on PyPI. This is for the following reasons.
(a) Due to dependency breaking as mentioned above (and elaborated below), pip can be a

huge headache to work with.a
(b) Pip usually breaks more often when downloading more outdated packages. b

3. Whether you export your environment one way or another will depend on how flexible/rigid
you want your working environment to be when you share.
(a) conda env export will keep track of every (including non-Python related) modules, and

those imported with pip will be under the pip header.
(b) pip freeze will only keep track of Python packages installed and can be cleaner.

30/ 53

Development Tools Muchang Bahng Fall 2024

Others note that if you using conda environments, you should always just use conda install, and if you
ever need to pip install, then just use venv and pip install everything. With venvs, if you ever see a
dependency issue, don’t try to resolve it: burn the whole environment down and recreate a new one from
scratch.

6.4 Mamba
I’ve been using pip and conda for about 6 years before I found out about mamba in a summer internship. The
Mamba project began in 2019 as a thin wrapper around conda and has grown considerably by progressively
rewriting conda with equivalent new efficient C++ code. It is estimated to be about 10 times faster in
creating a large environment from scratch compared to conda. There are essentially no strict disadvantages
to using mamba, but due to its newness it is still relatively unpopular. So besides the fact that mamba
support is lower, it might be good to try it as a replacement. It also seems that recently (as of May 2025),
conda caught up to the speed of mamba, so it also may not be worth switching. I’ll have to run some tests
for this.

The bigger consideration is that for many users (such as companies with 200+ employees), Anaconda Inc.
starting from 2020 required paid licensing for commercial use, including any use of the defaults channels
(though conda-forge channel remains free).

aThough most widely used packages are pretty good at making sure that there are no incompatibilities.
bFor example, installing pandas=1.1.4 works on conda but not with pip.

31/ 53

Development Tools Muchang Bahng Fall 2024

7 Linux Desktop
The following set of notes describes the everyday use of a Linux operating system. I refer to it for mainly
my personal desktop, but it is also useful for working in computing clusters. Some of the commands are
specific to the Arch Linux distribution (since that is what I work with), but I occasionally include those from
Ubuntu and Red Hat, since I run into these distributions often in servers.

I try to organize this in a way so that one who wishes to get started in Linux can go through these notes
chronologically. For now, we will assume that you have a Linux distribution installed. There are many
resources beyond this book that helps you do that.

You can always try out Ubuntu (or any other distribution) through a virtual machine, which is a software
emulation of a physical computer system. It allows you to run multiple operating systems or instances of
an operating system on a single physical machine. Each virtual machine operates independently and has its
own virtual hardware, including virtual CPU, memory, storage, and network interfaces. Virtual machines are
created and managed by virtualization software called hypervisors. The hypervisor abstracts the underlying
physical hardware and allows multiple virtual machines to share the same resources while isolating them from
one another. This enables efficient utilization of hardware resources and provides flexibility in deploying and
managing various operating systems and software applications. VMs generally have the advantage of being
completely isolated from the main computer, so if anything wrong happens in the VM, it’s fine. They can be
used in research environments that are beta-testing unstable packages or for white-hacking practices. One
example of a hypervisor is Oracle’s VirtualBox, which is free to download. It should look like this when
you open it for the first time.

Now in order to create a VM with its own OS, you need to have the appropriate ISO file, which is an exact
copy of an entire optical disk such as a CD, DVD, or Blu-ray archived into a single file. The essentially stores
the entire software needed to operate the OS. Therefore, you should download the proper ISO file from the
internet (usually a couple GBs).

1. Ubunutu ISO files

2. Windows 10 ISO files

3. Apple does not allow distribution of its ISO files, so you will need to download from unofficial sources,
which may be unsafe.

Once you have this ISO file, you can reuse it to create as many VMs as you want of that OS. Now follow
these instructions: Click the new button and select where the virtual machine data will be stored, along
with its OS. You can set the RAM, but don’t make it more than half of your host computer since it will
hog up too much RAM. Choose “Create a virtual hard disk now". Choose “VDI (VirtualBox Disk Image)".
Dynamically allocated just means that the virtual disk size will adaptively grow as your storage gets full.
Set the disk size to be at least 20GB.

After you created this, go to the VM settings (this is where you can edit your CPU cores, RAM cap, etc.).
To add the ISO file, click on the “Empty" tab right under the “Controller:IDE", then the CD icon to the
right, and “choose a disk file". You should now choose the ISO file. Then go tweak other settings, and set the

32/ 53

https://ubuntu.com/download/desktop
https://www.microsoft.com/en-us/software-download/windows10

Development Tools Muchang Bahng Fall 2024

display:video memory to the max (128MB). Now you should be able to go through the installation wizard
when you turn the VM on. Refer to the instructions for each OS.

(a) Windows 10 Set Up (b) Ubuntu 22.04 Set Up

Figure 2: What you should get once you open up the VM after adding ISO files.

1. For Windows: Say I don’t have a product key. Click Windows 10 Home. Accept terms. Select the
custom installation. Click the drive and click new, making the parititon at least 10534MB, and click
apply. Next. Wait for the system to load.

2. For Ubuntu, you should get a GRUB view. Select “Try or install Ubunutu".

You should now see one of these two screens.

(a) Windows 10 Set Up (b) Ubuntu 22.04 Set Up

Figure 3: What you should get once you open up the VM after initial configuration and log in.

1. For Windows, select your region. Select the keyboard layout. Sign in or create a Microsoft account.
Choose privacy terms. Skip whatever.

2. For Ubuntu: Select Install Ubuntu with English. Set the keyboard layout. The normal installation
may take a while, so I would select minimal depending on what you need. If you are short on time,

33/ 53

Development Tools Muchang Bahng Fall 2024

you can uncheck the download updates while installing since you can always do that after you install.
Click Erase disk and install Ubunutu. Choose region and add information.

Finally, you should see your desktop.

(a) Windows 10 Set Up (b) Ubuntu 22.04 Set Up

Figure 4: What you should see once everything is set up.

For my personal use, the packages below are ones that I end up installing every time I create a new VM to
work in during research.

1 sudo apt update
2 sudo apt install snapd
3 sudo snap install --classic code
4 sudo snap install slack
5 sudo apt install git
6 sudo snap install spotify
7 sudo apt install htop
8 wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
9 sudo dpkg -i google-chrome-stable_current_amd64.deb

10 sudo apt install virtualbox

Once you are ready to use Linux consistently, it is optimal to dual boot it, which means that you have one
computer that is divided into two: one for each operating system. Then you need to partition your drive
and allocate it to your secondary OS. There are plenty of guides and tutorials online on how to do this.

There may be a point where you may need to resize your drive partitions as you need more or less space in one
of your OS. This is when we need to do partition resizing. To do this, we need an empty thumb drive with
at least 8GB of space in it (everything in here will be deleted). Then in your Ubuntu, install balenaEtcher
and an Ubuntu (any version) ISO file. Mount the ISO file into your USB drive using balenaEtcher, following
the steps in this video to eventually get into Gparted. Another popular guide uses Rufus in the Windows
system, but I have found that this does not work for me.

7.1 Systemd
A process is really any program that is running on your computer. A daemon is a background process
that runs continuously, performing specific tasks even when no user is logged in.

Once the kernel has been loaded and completed its initialization process, it creates a collection of spontaneous
(as in the kernel starts them automatically) processes in user space. They’re really part of the kernel

34/ 53

https://www.youtube.com/watch?v=Kyz9x71gEPI&t=504s
https://www.youtube.com/watch?v=vlVXPtJ20hA&t=467s

Development Tools Muchang Bahng Fall 2024

implementation and don’t necessarily correspond to programs in the filesystem. They’re not configurable
and they don’t require administrative attention. These processes can be monitored with the commands ps,
top, or htop.

The most important process is the init process, with a system PID of 1 and with special privileges. It is
used to get the system running and for starting other processes.

1. Setting the name of the computer

2. Setting the time sone

3. Checking disks with fsck

4. Mounting filesystems

5. Removing old files from the /tmp directory

6. Configuring network interfaces

7. Configuring packet filter

8. Starting up other daemons and network services, along with killing zombie processes or parenting
orphaned processes.

There are three flavors of system management processes in widespread use:

1. Historically, SysVinit was a series of plaintext files that ran as scripts to start processes, but due to
some problems, Linux now uses systemd.

2. An init variant that derives from the BSD UNIX, used on most BSD-based systems.

3. A more recent contender called systemd which aims to cover the init processes and much more. This
significant increase in control causes some controversy.

4. Other flavors include Apple MacOS’s launchd before it adopted systemd. Ubuntu also used Upstart
before migrating to systemd.

Systemd is essentially a collection of smaller programs, services, and libraries such as systemctl, journalctl,
init, process management, network management, login management, logs, etc. Some processes may depend
on other processes, and with hundreds of them, it’s very hard to do manually, which is why systemd does it
all for you. A post on the systemd blog notes that a full build of the project generates 69 different binaries
(subject to change).

Definition 7.1 ()

A unit is anything that is managed by systemd. It can be “a service, a socket, a device, a mount
point, an automount point, a swap file or partition, a startup carget, a watched filesystem path, a
time controlled and supervised by systemd, a resource management slice, or a group of externally
created processes." Within systemd, the behavior of each unit is defined and configured by a unit
file. Within systemd, the behavior of each unit is defined and configured by a unit file.
The files are all over the place:

1. /lib/systemd/system contains standard systemd unit files
2. /usr/lib/systemd/system are from locally installed packages, e.g. if I installed a pacman

package that contained unit files, then those would go here.
3. /etc/systemd/system is where you put your custom files. etc also has the highest priority, so

it overwrites the other files.
4. /run/systemd/system is a scratch area for transient units.

By convention, unit files are named with a suffix that varies according to the type of unit being
configured. For example, service units have a .service suffix and timers user .timer. Within
the unit file, some sections e.g. ([Unit]) apply generically to all kinds of units, but others (e.g.
[Service]) can appear only in the context of a particular unit type.

35/ 53

Development Tools Muchang Bahng Fall 2024

Example 7.1 (Service Unit File)

If we go into one of these unit files, which have the prefix .service, they are usually formatted as
such:

1 # comments are just the same as in bash Scripts
2 # the headers are important!
3

4 [Unit] #
5 Description=Description of the unit file
6 Documentation=man:something
7 After=network.target
8

9 [Service]
10 Type=forking # tells that the process may exit and is not permanent
11 PIDFile= #
12 ExecStartPre= # scripts to run before you start
13 ExecStart= # scripts to run when starting
14 ExecReload= # script to run when you try to reload the process
15 ExecStop= # script to run to stop the process
16

17 [Install] # Tells at what point should this be running
18 WantedBy=multi-user.target

7.1.1 systemctl: Managing systemd

systemctl is an all-purpose command for investigating the status of systemd and making changes to its
configuration. Running systemctl without any arguments invokes the default list-units subcommand,
which shows all loaded and activive services, sockets, targets, mounts, and devices. To show only services,
use –type=service.

The two main commands that you will use to interact with systemd is systemctl and journalctl.

1. systemctl status unit checks the status, ouputting the description, whether it’s enabled/disabled,
and whether it’s active/inactive.

2. systemctl enable unit enables it, which means that it will start when booting the computer. It
does this by creating a symlink to the unit file. This is different from start.

3. systemctl disable unit disables it.

4. systemctl start unit starts it now and runs it immediately.

5. systemctl stop unit makes it inactive.

6. systemctl reload will run whatever is in the ExecReload in the unit file.

7. systemctl restart runs ExecStop and then ExecStart.

8. systemctl kill unit kills the process.

Some of the statuses that you may see are inactive (deactivated, exited), active (activating, running), failed,
static (not started, frozen by systemd), bad (broken, probably due to bad unit files), masked (ignored by
systemd), indirect (disabled, but another unit file references it so it could be activated).

To troubleshoot, you should run systemctl –failed to see if there are any failed processes, which can be a
problem, and then you can use journalctl –since=today to view your systemd logs. This log is important
for diagnosing fundamental problems with your system. To view only entries logged at the error level or
above, you can set the priorities with -p err -b.

36/ 53

Development Tools Muchang Bahng Fall 2024

7.1.2 Targets

7.1.3 Systemd Logging

The journald daemon allows you to capture log messages produced by the kernel and services. These system
messages are stored in the /run directory, but we can access them directly with the journalctl command.

Example 7.2 ()

You can configure journald to retain messages from prior boots. To do this, edit the following file and
configure the Storage attribute:

1 #/etc/systemd/journald.conf
2 [Journal]
3 Storage=persistent

Then, you can obtain a list of prior boots with journalctl –list-boots and you can access messages from
a prior boot by referring to its index or by naming its long-form ID: journalctl –b -1.

7.2 Directory Structure
It should be clear that the stands for your user home directory, while / stands for the root directory.

1 (base) mbahng@xps15:~\$ pwd
2 /home/mbahng
3 (base) mbahng@xps15:~\$ cd /
4 (base) mbahng@xps15:/\$ pwd
5 /

Let us now take a look at the contents of the root directory:

1 (base) mbahng@xps15:~\$ ls /
2 bin dev lib libx32 mnt root snap timeshift var
3 boot etc lib32 lost+found opt run srv tmp
4 cdrom home lib64 media proc sbin sys usr

You can see that the root home directory is in here, as opposed to user home directories in the /home folder.

1. root: This contains all the files for when you need to boot. You shouldn’t mess with this.

2. etc: This is where you system wide configuration for applications is stored (unlike local configuration
files for one user, which is stored in your home directory). It is often a target for backups.

3. media, mnt: Used for mounting external storage systems and even internal storage systems.

4. opt: A place where you can install whatever you want. Quite flexible.

7.2.1 Users and Permission

You should first check which users are on your system. Most people just check their home directory using

1 (base) mbahng@xps15:~\$ ls -l /home
2 total 8
3 drwxr-xr-x 3 root root 4096 Jan 17 23:57 linuxbrew
4 drwxr-xr-x 44 mbahng mbahng 4096 Jul 2 13:27 mbahng

37/ 53

Development Tools Muchang Bahng Fall 2024

But this is not accurate. Rather, we should check the contents of the /etc/passwd file, which has a list of
users in our computer (1 per line). The purpose is to contain a listing of and the options that are associated
with your user accounts on your server.

1 (base) mbahng@xps15:~\$ cat /etc/passwd
2 root:x:0:0:root:/root:/bin/bash
3 daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
4 bin:x:2:2:bin:/bin:/usr/sbin/nologin
5 sys:x:3:3:sys:/dev:/usr/sbin/nologin
6 sync:x:4:65534:sync:/bin:/bin/sync
7 games:x:5:60:games:/usr/games:/usr/sbin/nologin
8 man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
9 lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

10 mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
11 news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
12 uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
13 proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
14 www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
15 backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
16 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
17 irc:x:39:39:ircd:/run/ircd:/usr/sbin/nologin
18 gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
19 nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
20 ...

Let us just examine my user.

1 (base) mbahng@xps15:~\$ cat /etc/passwd | grep mbahng
2 mbahng:x:1000:1000:mbahng,,,:/home/mbahng:/bin/bash

Going from left to right, mbahng is my user, the x stands for a hashed password that cannot be shown, the
1000 is the user id (UID), the 1000 is the group id (GID), mbahng is the user information field (optional),
next /home/mbahng is the user’s home directory, and finally /bin/bash is the shell designated for the user.
When you create a user id when first installing Ubuntu, this will almost always have uid of 1000. On most
linux distributions, the user accounts that will be used by humans are given uids of 1000 and above. Note
that in Ubunutu 22.04, a home directory is not created automatically (this differs based on distribution)
when we create a new user. So note the following commands. To add a user called batman, we have

1 (base) mbahng@xps15:~\$ sudo useradd batman # just add user
2 (base) mbahng@xps15:~\$ sudo useradd -m batman # add user with home dir
3 (base) mbahng@xps15:~\$ cat /etc/passwd | grep batman
4 batman:x:1001:1001::/home/batman:/bin/sh

and it gives a new uid that is the next available one from 1000, i.e. 1001. To delete the user, just do

1 (base) mbahng@xps15:~\$ sudo userdel batman # delete user
2 (base) mbahng@xps15:~\$ sudo userdel -r batman # delete user w/ home dir

Now let’s talk about changing passwords. If you want to change your own password, you can just type
passwd and go through the steps. To set another user’s password, you need to be in root mode and type

1 (base) mbahng@xps15:~\$ sudo passwd batman # set password for batman

Note that we have a hashed version of the user’s password in the /etc/passwd file. We can actually see the
full hashed versions by going into /etc/shadow.

38/ 53

Development Tools Muchang Bahng Fall 2024

Running ls -l command lists all files and directories in your current working directory, along with their
permissions.

1 -rw-rw-r-- 1 mbahng mbahng 4336730777 Sep 29 2022 cuda_11.8.0_520.61.05_linux.run
2 drwxr-xr-x 9 mbahng mbahng 4096 Jul 1 23:33 Desktop
3 drwxr-xr-x 8 mbahng mbahng 4096 Jul 1 15:08 Documents
4 drwxr-xr-x 6 mbahng mbahng 12288 Jul 1 22:36 Downloads
5 drwxr-xr-x 4 mbahng mbahng 4096 Jun 29 19:43 Games
6 drwxr-xr-x 6 mbahng mbahng 4096 Feb 22 17:27 Jts
7 drwxrwxr-x 5 mbahng mbahng 4096 Jun 28 19:39 KakaoTalk
8 drwxr-xr-x 16 mbahng mbahng 4096 Jun 2 21:13 miniconda3
9 drwxrwxr-x 4 mbahng mbahng 4096 Jun 22 13:12 nltk_data

The first columm is a string of 10 characters representing the permissions. They are divided into 4 sections:

1 d rwx r-x r-x

The first letter can be a d, l, or -, meaning directory, link, or file, respectively. The next three groups,
representing the permissions of the user (third columm), group (fourth), and everyone else, have the same
format. It is rwx, which stands for read, write, execute.

1. Read: Means to read a file or read a directory.

2. Write: Means to edit a file or modify the contents of a directory.

3. Execute: Means to run the file as an executable or go cd into the directory.

A dash in place of any one of them means that whatever entity does not have the permissions. However, we
can set the permissions using the chmod command. If we have a file named testfile.txt in our current
directory, we can add or revoke permissions with

1 chmod +r testfile.txt // assign read permissions to all users
2 chmod +w testfile.txt // assign write permissions to all users
3 chmod +x testfile.txt // assign execute permissions to all users
4

5 chmod g+rw testfile.txt // assign read and write to group
6 chmod u-r testfile.txt // revoke read to user
7 chmod o+x testfile.txt // assign execute to other users

Writing all these can be tedious, so what we can do is take advantage of the numerical encodings of the
permissions. Note that r = 4, w = 2, x = 1, and so any number between 0 and 7 can encode the three bits
(through the coefficients of the binary expansion). Therefore, if we wanted every permission for all users, we
can write

1 chmod 770 testfile.txt

where the first 7 stands for rwx, the next 7 stands for rwx, and the final 0 stands for –-. To change the
permissions for everything inside a directory (e.g. say you want to make all downloads only readable and
writable by you), then you can type

1 chmod 600 ~/Downloads/*

If you have multiple users in your computer (type ls /home), then you may want to give ownership of a
directory or folder to another user.

1 (base) mbahng@xps15: ls /home

39/ 53

Development Tools Muchang Bahng Fall 2024

2 batman mbahng

To change permissions of a file/directory to another user and group, we can use the chown command (with
sudo)

1 sudo chown -R batman:batman Downloads/

7.3 Display Servers
When you boot up your computer, you are greeted with a graphical user interface (GUI) that allows you to
interact with your computer. This is the job of the display server, which is a program that provides graphical
display capabilities for the operating system.

Definition 7.2 (Display Server)

A display server is a program that manages the communication between your computer’s hardware
and graphical software applications. It acts as a bridge for input and output devices; for example, it
processes the input from your keyboard and mouse and outputs graphics to the monitor. The display
server is responsible for the fundamental task of drawing windows and handling the low-level aspects
of input and output, but it doesn’t dictate how these windows look or are arranged. For almost every
purpose, there are two types of display servers:

1. X: The X Window System, which is the older and more established display server.
2. Wayland: The newer and more modern display server.

Definition 7.3 (X Window System)

The X Window System is a windowing protocol for Unix/Linux OSes, similar to the way that
Microsoft Windows or Apple Mac OS X can run different apps in separate windows. X defines the
protocol for a display server what can render windows on a display client (your computer), inside
which are running apps.a

1. X11 refers to version 11 of the X protocol, while
2. Xorg is an open-source implementation of X.

Definition 7.4 (Wayland)

X, made in 1984, has developed a lot of cruft over the years, and Wayland is a modern replacement for
X. It is a protocol for a compositor to talk to its clients, as well as a C library implementation of that
protocol. The compositor can be a standalone display server running on Linux kernel modesetting
and evdev input devices, an X application, or a wayland client itself.

7.4 Package Management
Linux comes in many flavors of distributions. Most beginners look at screenshots of these distributions on
the internet and judge them based on their aesthetics (e.g. I like how Kali Linux looks so I’ll go with that
one). A common feature of all Linux distributions is that they provide the user the power to customize their
system however they want, so you can essentially make every linux distribution look like any other. So what
are some things you should consider when choosing a distribution?

1. First is the popularity and how well it is supported. This includes the number of people who use the
distribution (e.g. the Ubuntu StackExchange is a very large community) and how good the documen-
tation is overall (e.g. the ArchLinux wiki is very well documented).

aExplanation here: https://www.reddit.com/r/linuxquestions/comments/3uh9n9/what_exactly_is_xxorgx11/

40/ 53

Development Tools Muchang Bahng Fall 2024

2. Each linux distribution essentially consists of a kernel and package manager. The architecture, design,
and the update scheme of the kernel may be an interest to many linux users.

3. Every distribution has its own native package manager, and the availability of certain necessary pack-
ages, the ease of installation, and the updating schemes is also something to consider.

4. The ideals of the respective communities. The community behind each distribution has a certain set of
ideals that they lean more towards. For example, the Ubuntu community likes having programs that
are right out of the box, with good GUI support and is more beginner-friendly while Arch has more of
a minimal and extremely customizable nature to it with its software being much more CLI dependent.

Let’s begin with the package managers. Every application on your system (Firefox, Spotify, pdf readers,
VSCode, etc.) is a package, and manually downloading and managing each one is impossible to do. Therefore,
each distribution has its own native package manager that automatically takes care of downloading, installing,
removing, checking dependency requirements of each package. In order to download a package, a package
manager should also know where it is downloading from. Essentially, a package manager itself can be
downloaded with other package managers, so package managers are packages as well.

1. apt : The advanced packaging tool is the native manager for Ubuntu distributions.

2. pacman : Native package manager for Arch Linux.

3. yay : The package manager for software in the Arch User Repository.

4. snap :

5. flatpak :

6. dpkg : Package manager for Debian based distributions.

Chances are if you are using one distribution, you would only have to work with a small subset of these
package managers. Each package manager has one or more files in the computer that specify a list of
repositories.

7.5 Wget
wget is a command-line utility used to download files from the internet. It stands for "web get."

7.6 Pacman
For example, the configuration file for pacman is located at /etc/pacman.conf. In the options section, I
can configure stuff like text color, enabling/disabling parallel downloads, choosing specific packages to ignore
upgrading, etc. Then, we can specify the servers that we should download from. In the text below, the
server variable defines which server we should look at first, and then the Include variable stores the location
of the file mirrorlist that defines a list of other servers that we should download from.

The mirrorlist file stores a list of URLs. Each URL is a mirror, which is a server that contains a physical
replica of all the packages that are available to you via pacman (hence the name mirror). You can literally
type in the links provided in Figure 6 (replacing $repo with core and $arch with x86_64). It contains a
tarball of each package ready to be downloaded. Some repos might contain more packages than others, some
might have packages that only they supply that others don’t, but if you can install the piece of software via
your package manager then one of your configured repos is declaring they have it available and therefore
should have the file on hand to give to you if asked for it. A list of all available mirrors are available here
(this only uses HTTPS, but HTTP mirrors are also available).

The mirrors that you download from should be trustworthy and fast. The speed is mainly related to how
close you are to that mirror geographically, so if you are moving to another country you should probably
update this mirrorlist for faster download speeds. There is a default mirrorlist file that is generated, but you
can download and use the reflector package to update it.

Here are some common commands:

41/ 53

https://archlinux.org/mirrorlist/all/https/

Development Tools Muchang Bahng Fall 2024

1 # The following paths are commented out with their default values listed.
2 # If you wish to use different paths, uncomment and update the paths.
3 #RootDir = /
4 #DBPath = /var/lib/pacman/
5 #CacheDir = /var/cache/pacman/pkg/
6 #LogFile = /var/log/pacman.log
7 #GPGDir = /etc/pacman.d/gnupg/
8 #HookDir = /etc/pacman.d/hooks/
9 HoldPkg = pacman glibc

10 #XferCommand = /usr/bin/curl -L -C - -f -o %o %u
11 #XferCommand = /usr/bin/wget --passive-ftp -c -O %o %u
12 #CleanMethod = KeepInstalled
13 Architecture = auto
14

15 # Pacman won’t upgrade packages listed in IgnorePkg and members of IgnoreGroup
16 #IgnorePkg =
17 #IgnoreGroup =
18

19 #NoUpgrade =
20 #NoExtract =
21

22 # Misc options
23 #UseSyslog
24 #Color
25 #NoProgressBar
26 CheckSpace
27 #VerbosePkgLists
28 ParallelDownloads = 5
29 ILoveCandy

Figure 5: Subset of contents of the /etc/pacman.conf file

1 Server = https://archlinux.mailtunnel.eu/$repo/os/$arch
2 Server = https://mirror.cyberbits.eu/archlinux/$repo/os/$arch
3 Server = https://mirror.theo546.fr/archlinux/$repo/os/$arch
4 Server = https://mirror.sunred.org/archlinux/$repo/os/$arch
5 Server = https://mirror.f4st.host/archlinux/$repo/os/$arch
6 Server = https://md.mirrors.hacktegic.com/archlinux/$repo/os/$arch
7 Server = https://mirrors.neusoft.edu.cn/archlinux/$repo/os/$arch
8 Server = https://mirror.moson.org/arch/$repo/os/$arch
9 Server = https://archlinux.thaller.ws/$repo/os/$arch

Figure 6: Contents of the /etc/pacman.d/mirrorlist file

42/ 53

Development Tools Muchang Bahng Fall 2024

1. Install a package: sudo pacman -S pkg1 (-s stands for synchronize)

2. Remove a package: sudo pacman -R pkg

• remove dependencies also: -s (recursive)

• also remove configuration files: -n (no save)

• also removes children packages: -c (cascade)

3. Update all packages: sudo pacman -Syu

• synchronize: -S

• refresh package databases: -y (completely refresh: -yy)

• system upgrade: -u

4. List installed packages: pacman -Q

• List detailed info about a package: pacman -Qi pkg

• List all files provided by a package: pacman -Ql pkg

• List all orphaned packages: pacman -Qdt

• List all packages that have updates available: pacman -Qu

• List all explicitly installed packages: pacman -Qet

• Display the dependency tree of a package: pactree pkg (from the pacman-contrib package)

• List last 20 installed packages:

1 expac --timefmt=’%Y-%m-%d %T’ ’%l\t%n’ | sort | tail -n 20

5. To check size of current packages and dependencies, download expac and run expac -H M ’%m
t%n’ | sort -h

6. The package cache stored in /var/cache/pacman/pkg/ keeps old or uninstalled versions of packages
automatically. This is helpful since it also keeps older versions of packages in the cache, and you can
manually downgrade in case some packages break.

• We can delete all cached versions of installed and uninstalled packages, except for the most recent
3, by running paccache -r (provided by the pacman-contrib package).

• To remove all cached packages not currently installed, run pacman -Sc

• To remove all cached aggressively, run pacman -Scc

• To downgrade, you go into the package cache directory and say you want to see which versions of
neovim you have installed. You can ls the directory to see the following.

1 neovim-0.9.5-1-x86_64.pkg.tar.zst
2 neovim-0.9.5-1-x86_64.pkg.tar.zst.sig
3 neovim-0.9.5-2-x86_64.pkg.tar.zst
4 neovim-0.9.5-2-x86_64.pkg.tar.zst.sig

We have an older version of neovim installed, and to roll it back we can use

1 pacman -U neovim-0.9.5-1-x86_64.pkg.tar.zst

43/ 53

Development Tools Muchang Bahng Fall 2024

The pacman log (/var/log/pacman.log) is also useful since it logs all pacman outputs when you do anything
with pacman. So if you are looking for the packages that have been installed in the latest pacman -Syu,
then you can use this to individually see each package that has been upgraded.

7.7 Yay
Yay is used to install from the Arch User repository and must be updated separately. To run this, you can
either run yay -Syu or you can just run yay. Since this is not officially maintained, these packages are more
likely to break something. The yay logs are not stored separately can can be accessed in the pacman logs.

7.8 Dpkg and Deb files
Ubuntu is a Linux distribution within the family of Debian-based systems (with Debian, Linux Mint, etc.).
File of the .deb format is used to distribute and install software packages on these systems. A deb package
contains the files for a particular software application or library, along with metadata that describes the
package and instructions on how to install or remove it. The package format follows a specific structure and
includes files such as control files, data files, and scripts. Therefore, many downloaded packages may come
in this format, similar to how a file is zipped before we have to extract it.

Dpkg is the primary package manager for Debian based systems. It installs, builds, removes, configures, and
retrieves information for Debian packages of the .deb format. Given that we have some file package.deb
downloaded, the command

1 dpkg -i package.deb

installs the specified package from the package.deb file. Removing it is just (note without the suffix)

1 dpkg -r package

7.9 Apt
read more here

While dpkg is the native package manager for Debian based systems, apt is just a built-in Ubuntu tool to help
install these Debian packages and manage dependencies. To run apt commands, we must have root privilege,
so we should always use sudo. When these command are run, you should get a confirmation question asking
whether you want to continue, with [Y/n]. The capital letter is the default, so you can either enter in ‘y’ or
just press ENTER.

1. The update command connects to various URLs to download a list of available packages. Periodically,
new packages are introduced to Debian and Ubunutu repositories all the time, so this command re-
freshes the index so that it knows what packages are available and at what versions. It is a good idea
to run this before you use apt commands for the day.

1 sudo apt update

2. The upgrade command just updates all packages and their dependencies to their latest versions. How-
ever, this does not update packages which require the installation of additional packages.

1 sudo apt upgrade

3. The dist upgrade updates packages including those that need installation of new dependencies. So it
is a good idea to run upgrade first and then dist-upgrade after.

1 sudo apt dist-upgrade

44/ 53

https://www.reddit.com/r/Ubuntu/comments/9awvip/eli5_snap_and_flatpak_how_are_they_differ_from_apt/

Development Tools Muchang Bahng Fall 2024

Installing and removing packages is easy.

1. We can install from the apt repository with

1 sudo apt install htop

2. We can remove it with

1 sudo apt remove htop

If you don’t know the name of the application or package you want to install, then you can search for a
keyword with apt search. Say that you want to install vim but you don’t know what the actual package
name is called. You can just type

1 apt search vim

The central location where apt gets its updates from is contained in the /etc/apt/sources.list file. Here
is a snippet of it in my system.

1 # deb cdrom:[Ubuntu 22.04.1 LTS _Jammy Jellyfish_ - Release amd64 (20220809.1)]/
2 jammy main restricted
3

4 # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
5 # newer versions of the distribution.
6 deb http://us.archive.ubuntu.com/ubuntu/ jammy main restricted
7 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy main restricted
8

9 ## Major bug fix updates produced after the final release of the
10 ## distribution.
11 deb http://us.archive.ubuntu.com/ubuntu/ jammy-updates main restricted
12 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy-updates main restricted
13

14 ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
15 ## team. Also, please note that software in universe WILL NOT receive any
16 ## review or updates from the Ubuntu security team.
17 deb http://us.archive.ubuntu.com/ubuntu/ jammy universe
18 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy universe
19 deb http://us.archive.ubuntu.com/ubuntu/ jammy-updates universe
20 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy-updates universe
21 ...

7.10 Snap and Flatpak
Other package managers that you may need to use often are snap and flatpak, which can both be installed
with

1 sudo apt install snap flatpak

7.11 Windows Managers and Desktop Environments
These days, the terms window managers (WMs) and Desktop Environments (DEs) are used interchangeably,
but they mean slightly different things. A window manager is the display software that determines how the
pixels for each window overlaps with other and their movement. This is generally divided into two paradigms
with the most familiar being floating WMs and the other being tiling WMs. Even before I knew about

45/ 53

Development Tools Muchang Bahng Fall 2024

tiling WMs, I found myself manually tiling windows on floating WMs, so the move to tiling WMs was a
no-brainer.

Some DEs and WMs are:

1. GNOME

2. KDE Plasma

3. Qtile

7.12 Shells and Terminals
Beginners may think of the shell and the terminal to be the same thing, but they are different. The shell
is a command line interpreter, a layer that sits on top of the kernel in which the user can interact with.
It is essentially the only API to the kernel where the user can input commands and processes them. The
terminal emulator is a wrapper program that runs a shell and allows us to access the API. It may be
useful to think of the shell as like a programming language and the terminal as a text editor like VSCode.

The three most common shells are the following:

1. Bash:

2. Zsh:

3. Fish:

Some common terminal emulators (most of which comes as a part of the desktop environment) are the
following:

1. Kitty:

2. Alacritty:

3. Gnome-Terminal:

7.12.1 Crontab

To schedule jobs, you run crontab -e, which will give you a text file for which you can list jobs. It looks
like

1 # Edit this file to introduce tasks to be run by cron.
2 #
3 # Each task to run has to be defined through a single line
4 # indicating with different fields when the task will be run
5 # and what command to run for the task
6 #
7 # To define the time you can provide concrete values for
8 # minute (m), hour (h), day of month (dom), month (mon),
9 # and day of week (dow) or use ’*’ in these fields (for ’any’).

10 #
11 # Notice that tasks will be started based on the cron’s system
12 # daemon’s notion of time and timezones.
13 #
14 # Output of the crontab jobs (including errors) is sent through
15 # email to the user the crontab file belongs to (unless redirected).
16 #
17 # For example, you can run a backup of all your user accounts
18 # at 5 a.m every week with:
19 # 0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
20 #
21 # For more information see the manual pages of crontab(5) and cron(8)

46/ 53

Development Tools Muchang Bahng Fall 2024

22 #
23 # m h dom mon dow command

In the bottom line, we can add the following to run sudo apt update every minute. The 5 columns refer
to minute (0-59), hour (0-24), date of month (1-31), month (1-12), and date of week (0-7, where 0 and 7 is
Sunday). The asterick means every instance of.

1 # Run every minute
2 * * * * * sudo apt update
3

4 # Run at 9:15am every first day of the month
5 15 9 1 * * sudo apt update
6

7 # Run for every minute of every hour for the 13th day of every month if it is Friday
8 * * 13 * 5 sudo apt update

You get the idea.

7.13 Graphics Drivers
Note that one type of data we must store on memory is the individual pixels in a computer screen. Say that
in a 1920 × 1080 resolution computer, there are about 1920 × 1080 × 3 ≈ 2 million bytes of data that we
have to store. This isn’t that much data (only 2MB), but we must update it quite fast since our screens are
always updating. This is why all computer which have a GUI comes with a built-in graphics driver. To see
the GPU hardware specifications, install lshw.

Definition 7.5 (Graphics Processing Unit)

The GPU is a specialized processing unit that is designed to handle the rendering of images and
videos. It is designed to handle the rendering of images and videos, and is optimized for parallel
processing. Like the CPU, it has some common metrics:

1. Clock Speed: The speed at which the GPU can execute instructions. This is usually measured
in MHz or GHz.

2. Memory: The amount of memory that the GPU has. This is usually measured in GB.
3. Memory Bandwidth: The speed at which the GPU can read and write to its memory. This

is usually measured in GB/s.
4. Cores: The number of cores that the GPU has. This is usually measured in thousands, which

allows for parallel processing.
You can check which GPUs you have by running lspci | grep VGA or neofetch. There are generally
two types of GPUs:

1. Integrated GPU: This type of GPU is built into the same chip as the CPU (Central Processing
Unit). It shares resources with the CPU, including memory, which can lead to reduced perfor-
mance for graphics-intensive tasks. However, its integrated nature makes it more power-efficient
and cost-effective.

2. Discrete GPU: This is a separate component from the CPU and comes with its own RAM
(usually called VRAM or Video RAM). It is typically installed in a dedicated slot on the moth-
erboard. Because it operates independently of the CPU, a discrete GPU can offer significantly
better performance for graphics processing, gaming, or deep learning.

Definition 7.6 (Monitor)

Furthermore, your computer monitor, which actually displays these pixels to you, must also have
metrics that match the GPU. Some properties:

47/ 53

Development Tools Muchang Bahng Fall 2024

1. The resolution is the number of pixels that the monitor can display, and is usually measured
in pixels.

2. The refresh rate is the number of times the monitor can refresh the image on the screen per
second, and is usually measured in Hz.

To see these metrics for all monitors connected to your computer, run xrandr, which lists all the
resolutions and possible refresh rates for each resolution.

Definition 7.7 (Graphics Driver)

In order for your operating system to communicate with your GPU, you need a graphics driver.
This is a piece of software that allows the operating system to communicate with the GPU. There
are two main types of graphics drivers:

1. Open Source Drivers: These are drivers that are developed and maintained by the open
source community. They are usually included with the Linux kernel, and are generally stable
and reliable.

2. Proprietary Drivers: These are drivers that are developed and maintained by the GPU
manufacturer. They are usually not included with the Linux kernel, and are generally more
feature-rich and performant than open source drivers.

Intel drivers are open source, but Nvidia drivers are proprietary (which is why Linus Torvalds has
beef with Nvidia).a

Some popular graphics drivers include mesa for Intel and nvidia drivers for NVIDIA.

7.13.1 Multiple GPUs

Everything is pretty straightforward when you have one graphics card, but when you have multiple graphics
cards, you have to specify which one you want to use. If you want to only use one GPU, you can just disable
the other one in the BIOS. However, if you have an Intel/Nvidia dual driver and want to use both, install
Nvidia Optimius (for Ubuntu, it is supported through nvidia-prime).5,6

Now make sure that the systemd daemon is running, and you can call optimus-manager –switch hybrid
to enable hybrid graphics. This will log you out.

7.14 Peripheral Devices
Peripheral devices refer to other devices outside of the motherboard, including mice, keyboards for input,
monitors, printers, network managers, and usb ports. Even the GPU is considered a peripheral device. These
must be connected to the motherboard in some way to be managed by the operating system, and similar
to the databus connecting the CPU and memory, there are buses that connect the motherboard and these
peripheral devices.

Definition 7.8 (PCI Bus)

The PCI (Peripheral Component Interconnect) bus is a high-speed bus that connects the
motherboard to peripheral devices. It is used to connect devices like network cards, sound cards, and
graphics cards to the motherboard. PCI buses operated based on the PCI standard, which is a set
of specifications that define the physical and electrical characteristics of the bus.

The command to use to enumerate all PCI devices is sudo lspci (with -v for verbose).
aA video of Linus Torvalds saying “fuck you” to Nvidia: https://www.youtube.com/watch?v=iYWzMvlj2RQ
5This wiki article (https://github.com/Askannz/optimus-manager/wiki) provides a good overview of this matter.
6Installation instructions here: https://github.com/Askannz/optimus-manager?tab=readme-ov-file

48/ 53

Development Tools Muchang Bahng Fall 2024

1 00:00.0 Host bridge: Intel Corporation 10th Gen Core Processor
2 00:01.0 PCI bridge: Intel Corporation 6th-10th Gen Core Processor
3 00:02.0 VGA compatible controller: Intel Corporation CometLake-H
4 00:04.0 Signal processing controller: Intel Corporation Xeon
5 00:08.0 System peripheral: Intel Corporation Xeon E3-1200 v5/v6
6 00:12.0 Signal processing controller: Intel Corporation Comet
7 00:13.0 Serial controller: Intel Corporation Device 06fc
8 00:14.0 USB controller: Intel Corporation Comet Lake USB 3.1
9 00:14.2 RAM memory: Intel Corporation Comet Lake PCH Shared

10 00:14.3 Network controller: Intel Corporation Comet Lake PCH
11 00:15.0 Serial bus controller: Intel Corporation Comet Lake
12 00:15.1 Serial bus controller: Intel Corporation Comet Lake
13 00:16.0 Communication controller: Intel Corporation Comet
14 00:1c.0 PCI bridge: Intel Corporation Device 06b8 (rev f0)
15 00:1c.6 PCI bridge: Intel Corporation Device 06be (rev f0)
16 00:1d.0 PCI bridge: Intel Corporation Comet Lake PCI Express
17 00:1e.0 Communication controller: Intel Corporation Comet Lake
18 00:1f.0 ISA bridge: Intel Corporation Device 068e
19 00:1f.3 Audio device: Intel Corporation Comet Lake PCH cAVS
20 00:1f.4 SMBus: Intel Corporation Comet Lake PCH SMBus Controller
21 00:1f.5 Serial bus controller: Intel Corporation Comet Lake
22 01:00.0 3D controller: NVIDIA Corporation TU117M [GeForce GTX 1650
23 02:00.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
24 03:00.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
25 03:01.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
26 03:02.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
27 03:04.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
28 04:00.0 System peripheral: Intel Corporation JHL7540 Thunderbolt
29 38:00.0 USB controller: Intel Corporation JHL7540 Thunderbolt 3
30 6c:00.0 Unassigned class [ff00]: Realtek Semiconductor Co., Ltd.
31 6d:00.0 Non-Volatile memory controller: Samsung Electronics Co

Figure 7: This is the following output of lspci on my personal computer.

7.15 Architecture
Arch Linux states on their website that they have official packages optimized for the x86-64 architecture.7

By running cat /proc/cpuinfo, you can see the specs of each CPU core you have. This includes the model
name (clock cycle), cache size, flags, and microcode. The flags are the most important, since they tell
you what features your CPU has.8

1. lm: 64 bit architecture.

2. vmx (Intel) or svm (AMD): Hardware virtualization .

3. aes: Accelerate AES encryption.

4. fpu: Floating Point Unit, which is used for floating point operations.

5. vme: Virtual 8086 mode enhancements, which is used for virtualization.

6. de: Debugging extensions, which is used for debugging.

7. pse: Page Size Extensions, which is used for larger page sizes.

8. tsc: Time Stamp Counter, which is used for timing.
7https://archlinux.org/
8The entire list of flags and what they can do is mentioned in the Arch kernel source code, which is a good reference:

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/include/asm/cpufeatures.h

49/ 53

Development Tools Muchang Bahng Fall 2024

9. msr: Model Specific Registers, which is used for model specific operations.

10. mce: Machine Check Exception, which is used for error checking.

11. pae: Physical Address Extensions, which is used for larger memory.

12. mce: Machine Check Exception, which is used for error checking.

7.16 System Hardware

50/ 53

Development Tools Muchang Bahng Fall 2024

8 Remote Access
This is about remote accessing, mainly with SSH.

Definition 8.1 (SSH Configuration File)

In $HOME/.ssh/, you will see some public-private key files. You may be logging into remote servers
as such.

1 > ssh username@123.123.123.123
2 > ssh username@login.duke.edu

This can be quite tedious, so you can create a $HOME/.ssh/config file to store shortcuts.

1 Host server1
2 HostName 123.123.123.123
3 User username

and then you can connect as such.

1 > ssh server1

Definition 8.2 (Installing Packages without Sudo)

Most likely when you are SSHing into a remote server, it is a computing cluster that you do not
have admin access to, and you cannot thus include global packages. Therefore, the default method of
installing binaries is by building them from source. You should therefore have a designated directory
where you put all of your binaries in (I use $HOME/.local/bin) and include it in $PATH.

8.1 Clipboard
Clipboards have been a pain in the ass for me. Say that you connect to a remote server from your local
machine, and then you open neovim in your remote machine. You can use y or d to copy/cut things and p to
paste them in other buffers within the server, but you cannot easily copy/paste between your local machine
and remote server. This becomes a pain when you need to paste some code on the remote server to GPT or
when you take a code snippet from github and try to paste it on the buffer in the remote session. To fix this,
you need a clipboard provider on the remote server. Do the following. I did this when my local machine has
MacOS with ARM64 architecture, connecting to a remote machine running Ubuntu 22.04 with x86. Given
the differences, the following steps should work.

1. You may not have to do this step, but I did this while troubleshooting. Install xclip on the remote
server. If you don’t have sudo access, then just build it from source. Then add the binary to somewhere
in $PATH.

2. Install lemonade on both your local machine and the remote server. Make sure they are both in your
$PATH.

3. Make a script on your local machine for sanity checking, call it remote or something, and add it to
path. It should have the following. Note that the -Rflag is important.9

1 #!/bin/bash
2 ps cax | grep lemonade> /dev/null
3 if [$? -eq 0]; then
4 echo "lemonade is running."

9https://gist.github.com/bketelsen/27c2cd5b1376e72e240321baa0fbc81a

51/ 53

Development Tools Muchang Bahng Fall 2024

5 else
6 echo "lemonade is not running."
7 nohup lemonade server &
8 fi
9 ssh -R 2489:127.0.0.1:2489 mb625@123.123.123.123

4. Make sure to put the following in your config file. I put it in both your local and remote.10

1 ForwardX11 yes
2 ForwardX11Trusted yes

5. You may also have to set clipboard=unnamedplus. I had this on by default.

6. Make sure that you do not have the keymaps y to +y enabled.

We are done. Run :checkhealth on neovim in your remote server and confirm that lemonade is detected.

10https://github.com/neovim/neovim/issues/8028

52/ 53

Development Tools Muchang Bahng Fall 2024

9 Research

53/ 53

	Text Editing with Neovim
	Configuration Files
	Troubleshooting
	Language Service Providers
	Snippets

	LaTeX
	TLMGR
	PDF Viewers
	Compilation and Debugging
	Macros
	Figures and Tikz

	Version Control with Git
	Local Git Repository
	Conflicts
	Interactive Rebasing
	Branches
	Working Between Branches
	Integrating Branches

	Remote Trees
	Reflog
	Pull Requests and Forking

	Continuous Integration (CI) with Git Actions and Docker
	Unit and Integration Tests
	Structure of Unit Tests
	Output Based Testing
	State Based Testing
	Communication Based Testing

	Package Management
	Pip
	Conda
	Using Pip with Conda
	Mamba

	Linux Desktop
	Systemd
	systemctl: Managing systemd
	Targets
	Systemd Logging

	Directory Structure
	Users and Permission

	Display Servers
	Package Management
	Wget
	Pacman
	Yay
	Dpkg and Deb files
	Apt
	Snap and Flatpak
	Windows Managers and Desktop Environments
	Shells and Terminals
	Crontab

	Graphics Drivers
	Multiple GPUs

	Peripheral Devices
	Architecture
	System Hardware

	Remote Access
	Clipboard

	Research

