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This covers computability theory, complexity theory, and automata theory. Alphabet. Boolean logic
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1 Finite Computation
Let’s first set up some notation. In computer science we deal sets—called an alphabet—consisting of elements
called characters.

Definition 1.1 (Alphabet)

A finite set Σ is called an alphabet, with its elements called characters. We can look at finite
sequences of characters, which is an element of

Σ∗ :=

∞⊔
k=1

Σk (1)

Functions of the form f : Σn → Σm with a finite domain and codomain are called finite functions, and if
Σ = {0, 1}, then it is said to be a Boolean function. Mathematical functions are an abstraction, and our goal
is to look for physical 1 or lexical models that can compute these functions, i.e. have some representation
that essentially behaves indistinguishably from the function. The two main categories of representations
that we will focus on are circuits and straight-line programs.

Considering the set of all finite functions f : {0, 1}n → {0, 1}m is too unstructured. Taking inspiration from
math, we wish to find nice decompositions of functions f into simpler ones. The most elementary functions
in boolean logic are the AND,OR, and NOT functions.

Definition 1.2 (AND Function)

The AND function is defined

AND : {0, 1}2 −→ {0, 1}, AND(a, b) = a ∧ b =

{
1 a = b = 1

0 else
(2)

Definition 1.3 (OR Function)

The OR function is defined

OR : {0, 1}2 −→ {0, 1}, OR(a, b) = a ∨ b =

{
0 a = b = 0

1 else
(3)

Definition 1.4 (NOT Function)

The NOT function is defined

NOT : {0, 1} −→ {0, 1}, NOT(a) = ¬a =

{
0 a = 1

1 a = 0
(4)

Great, so we have developed three rudimentary finite functions—one unary and two binary. We can use
these functions to build new functions by composing them. Mathematically, we can write out the symbols
as such, for example.

f(x, y) = AND(NOT(x),OR(x, y)) (5)

Many functions can be created when composing these extremely simple functions.
1as in, they can be realized by physical systems that we will build on in my computer architecture notes, through they are

still theoretical
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Example 1.1 (Majority Function)

Consider the function that outputs whatever the majority bit value is amongst its 3 inputs.

MAJ : {0, 1}3 −→ {0, 1}, MAJ(x) =

{
1 x0 + x1 + x2 ≥ 2

0 else
(6)

Since the OR of three conditions c0, c1, c2 can be written as OR(c0,OR(c1, c2)), we can now translate
this function into a formula as follows:

MAJ(x0, x1, x2) = OR
(
AND(x0, x1),OR(AND(x1, x2),AND(x0, x2))

)
(7)

=
(
(x0 ∧ x1) ∨ (x1 ∧ x2)

)
∨ (x0 ∧ x2) (8)

A natural question to ask is whether any finite function can be modeled as a composition of these three
functions.

Definition 1.5 (Universal Operation Set)

A set of boolean functions F is said to be universal if any finite boolean function f : {0, 1}n →
{0, 1}m can be written as a composition of functions in F .

Theorem 1.1 (AON Functions are Universal)

{AND,OR,NOT} is a universal function set. In fact, any function f : {0, 1}n −→ {0, 1}m can be
written as a composition of at most cm2n AON functions, for some constant c > 0.

Proof.

This may not be so surprising actually. After all, a finite function f : {0, 1}n −→ {0, 1}m can be represented
by simply the list of its outputs for each one of the 2n input values. So it makes sense that we could write a
composition of similar size to compute it.

This simplifies things. If we can make a computational model that can simulate the AND,OR,NOT functions,
this model will be able to compute every function.

1.1 Circuits
We introduce our first physical model in the form of circuits. Why a circuit? As we will see later in my
computer architecture notes, a nice way to physically realize such functions are through transistors, which
are similar to gates.

Definition 1.6 (Boolean Circuit)

Let n,m, s be positive integers with s ≥ m. A Boolean G-circuit with n inputs, m outputs, and s
gates, is a labeled directed acyclic graph (DAG) C = (V,E) with |V | = s+ n vertices satisfying the
following properties:

1. The n inputs refer to vertices that have no in-neighbors. Each input has at least one out-
neighbor and are labeled either as X[i] or not at all.

2. The other s vertices are known as gates g ∈ G. The size of C is s.
3. The m outputs refer to vertices v that have an out-neighbor u that is not an in-neighbor of

any other node. The out-neighbors are labeled either as Y [j] or not at all.
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X[3]

X[2]

X[1]

X[0]
Y[0]

n Inputs s Gates

m Outputs (Gates)

s ≥ m

Figure 1

Constructing a circuit is similar to composing elementary functions, and the analogue of such functions are
logic gates.2 Let’s define some elementary logic gates. Since we have seen that AON is universal, we can
define the analogue of the three to get another universal gate set.

Definition 1.7 (NOT Gate)

A NOT gate is a physical representation of the NOT function.

Figure 2: A helpful hint to remember that this is NOT. Think of the triangle shape as “doing nothing” and
pay attention to the circle at the tip, which represents negation.

Definition 1.8 (AND Gate)

A AND gate is a physical representation of the AND function.

Figure 3: A helpful hint to remember that this is AND. Think of the D-shape as requiring both inputs to be
1 for the output to be 1.

2Note that gates are not the same as functions, but a representation of them.
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Definition 1.9 (OR Gate)

A OR gate is a physical representation of the OR function.

Figure 4: A helpful hint to remember that this is OR. Think of the rounded shape as requiring at least one
input to be 1 for the output to be 1.

A circuit C : {0, 1}n → {0, 1}m can be thought of as a function from the way it behaves on an input
x ∈ {0, 1}n. Analogously to our mathematical model, we can define the representation power of circuits.

Definition 1.10 (Computability of Circuits)

Let C be a G-circuit with n inputs and m outputs, and let f : {0, 1}n → {0, 1}m be an arbitrary
function. C is said to compute f if C = f as functions.

Definition 1.11 (Universal Gate Set)

A set of gates G is said to be a universal gate set if every finite function f is computable by a
G-circuit.

Definition 1.12 (AON-CIRC)

An And/Or/Not circuit, abbreviated as AON-CIRC, is a circuit C made of AND,OR, and NOT
gates.

A

B

C

D

F

Figure 5: An example of an AON circuit. Circuits have wires connecting into (from the left) and out (from
the right) of each gate. Wires that are not connected to any gate from the left represent inputs to the circuit
and from the right represent outputs of the circuit.

Note that parallel edges are allowed. Having parallel edges means that an AND or OR gate u can have both
its in-neighbors be the same gate v. Since AND(a, a) = OR(a, a) = a for every a ∈ {0, 1}, such parallel
gates don’t help in computing new values in circuits with AND/OR/NOT gates.

It is immediate that AON-CIRC is universal by construction.
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Theorem 1.2 (AON-CIRC is Universal)

{AND,OR,NOT} is a universal gate set, i.e. every finite function f can be computed by an AON-
CIRC.

Proof.

Example 1.2 (All Equals Function)

Let us define the function ALLEQ : {0, 1}4 −→ {0, 1} to be the function that on input x ∈ {0, 1}4
outputs 1 if and only if x0 = x1 = x2 = x3.

X[3]

X[2]

X[1]

X[0]
Y[0]

Figure 6: The Boolean circuit for computing ALLEQ.

1.2 Straight Line Programs
Our second computational model will be lexical—rather than a physical—one. This is more closely related
to coding languages and has the advantage that it is often easier to work with for humans.

Definition 1.13 (Straight Line Program)

Let F = {f0, f1, ..., ft−1} be a finite collection of Boolean operatorsa fi : {0, 1}k −→ {0, 1}.
A F-straight line program is a program P composed of a finite set of operators f ∈ F . It consists
of a finite sequence of lines, each of which assigns to some variable the result of applying some fi ∈ F
to ki other variables.

v = f(w, . . . , u), f ∈ F (9)

In every line, the variables on the right-hand side of the assignment operators must either be input
variables or variables that have already been assigned a value.b X[i] and Y[j] denotes the input and
output variables.
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1 foo1 = f(bar,blah)
2 foo2 = g(bar,blah)
3 foo3 = h(bar)
4 ...

Figure 7: An example of a straight line program.

aWe can think of this as some abstraction from a physical implementation of a function.
bIt is called a straight-line program since it contains no loops or branching (e.g. if/then statements).

Again, a straight line program can be thought of as a function.

Definition 1.14 (Computability of Straight-Line Programs)

Let P be a F-straight line program with n inputs and m outputs, and let f : {0, 1}n → {0, 1}m be
an arbitrary function. P is said to compute f if P = f as functions.

Definition 1.15 (Universal Operator Set)

A set of operators F is said to be a universal gate set if every finite function f is computable by a
F-circuit.

Definition 1.16 (AON Straight Line Program)

The AON straight line program, abbreviated AON-SLP, is a straight line prgoram P with the
AND,OR, and NOT operators.

Again, it is immediate that AON straight line programs are universal since it models AON.

Theorem 1.3 (AON-SLP)

{AND,OR,NOT} is a universal operator set, i.e. every finite function f can be computed by an
AON-SLP.

Example 1.3 (XOR Function)

Let the XOR function be defined

XOR : {0, 1}2 −→ {0, 1}, XOR(a, b) = a+ b (mod 2) (10)

The Boolean circuit for computing XOR : {0, 1}2 −→ {0, 1} is:
X[0]

X[1]

Y[0]

This can be computed with the straight-line algorithm as such. Given (a, b) as inputs, we have
w1 = AND(a, b), w2 = NOT (w1), and w3 = OR(a, b). Then the algorithm returns AND(w2, w3). In
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Python, this can be programmed:

1 def AND(a, b): return a*b
2 def OR(a, b): return 1-(1-a)*(1-b)
3 def NOT(a): return 1-a
4

5 def XOR(a, b):
6 w1 = AND(a, b)
7 w2 = NOT(w1)
8 w3 = OR(a,b)
9 return AND(w2, w3)

10

11 print([f"XOR({a},{b})={XOR(a,b)}" for a in [0,1] for b in [0,1]])
12 # [’XOR(0,0)=0’, ’XOR(0,1)=1’, ’XOR(1,0)=1’, ’XOR(1,1)=0’]

1.3 NAND Circuits and Other Gate Sets
We have seen that both AON-CIRC and AON-SLP can both compute the same set of all finite functions,
i.e. they are equivalent in power.

Definition 1.17 (NAND Gate)

A NAND gate is defined as follows.a

NAND : {0, 1}2 −→ {0, 1}, NAND(a, b) = a ∧ b =

{
0 a = b = 1

1 else
(11)

Figure 8: A helpful hint to remember that this is NAND. Notice the D-shape of the AND gate with the circle
at the output representing negation (NOT).

aNAND is really the composition of the NOT and AND functions; that is, NAND(a, b) = (NOT ◦AND)(a, b).

Theorem 1.4 (NAND is Universal)

The NAND function is universal. It follows that NAND gates and operators are universal.
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Proof.

We can see that, using double negation,

NOT(a) = NOT(AND(a, a)) (12)
= NAND(a, a) (13)

AND(a, b) = NOT(NOT(AND(a, b))) (14)
= NOT(NAND(a, b)) (15)
= NAND(NAND(a, b),NAND(a, b)) (16)

OR(a, b) = NOT(AND(NOT(a),NOT(b))) (17)
= NOT(AND(NAND(a, a),NAND(b, b))) (18)
= NAND(NAND(a, a),NAND(b, b)) (19)

Just as we have defined the AON-CIRC program, we can define the notion of computation by a NAND-CIRC
program in the natural way.

Theorem 1.5 (Equivalence Between Circuits and Straight Line Programs)

AON/NAND circuits and AON/NAND straight-line programs are equivalent in power. Further-
more, for every sufficiently large s, n,m and f : {0, 1}n −→ {0, 1}m, the following conditions are all
equivalent to one another:

1. f can be computed by a Boolean circuit (with ∧,∨,¬ gates) of at most O(s) gates.
2. f can be computed by an AON-CIRC straight-line program of at most O(s) lines
3. f can be computed by a NAND circuit of at most O(s) gates.
4. f can be computed by a NAND-CIRC straight-line program of at most O(s) lines.

By O(s), we mean that the bound is at most c · s, where c is a constant that is independent of n.
For example, if f can be computed by a Boolean circuit of s gates, then it can be computed by a
NAND-CIRC program of at most 3s lines, and if f can be computed by a NAND circuit of s gates,
then it can be computed by an AON-CIRC program of at most 2s lines.

Definition 1.18 (NOR Gate)

A NOR gate is defined as follows.a

NOR : {0, 1}2 −→ {0, 1}, NOR(a, b) = a ∨ b =

{
1 a = b = 0

0 else
(20)

Figure 9: A helpful hint to remember that this is NOR. Notice the rounded shape of the OR gate with the
circle at the output representing negation (NOT).

aNOR is really the composition of the NOT and OR functions; that is, NOR(a, b) = (NOT ◦OR)(a, b).
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Definition 1.19 (XOR Gate)

A XOR gate is defined as follows.

XOR : {0, 1}2 −→ {0, 1}, XOR(a, b) = a⊕ b =

{
0 a = b

1 a ̸= b
(21)

Figure 10: A helpful hint to remember that this is XOR. Notice the additional curve on the OR gate shape,
indicating that exactly one input must be 1 for the output to be 1.

Example 1.4 (XOR from NAND)

XOR can be expressed in terms of other logic gates as follows:

XOR(a, b) = (a ∧ ¬b) ∨ (¬a ∧ b) (22)

We can create a NAND circuit of the XOR function that maps x0, x1 ∈ {0, 1} to x0 + x1 (mod 2).
X[0]

X[1]

Y[0]

There are some sets F that are more restricted in power. For example, it can be shown that if we use only
AND or OR gates (without NOT), then we do not get an equivalent model of computation.

1.4 Conditionals
Just as we have built the AND, OR, and NOT gates with the NAND gate, we can implement more complex
features using our basic building blocks, and then use these new features themselves as building blocks for even
more sophisticated features. This is known as syntactic sugar, since we are not modifying the underlying
programming model itself, but rather we merely implement new features by syntactically transforming a
program that uses such features into one that doesn’t. It makes the language "sweeter" for human use:
things can be expressed more clearly, more concisely, or in an alternative style that some may prefer.

In computer programming, we can define and then execute procedures or subroutines, which are often
known as functions.

Example 1.5 (Syntactic Sugar to Define Majority Function)

We can use syntactic sugar to compute the majority function MAJ as follows, by first defining the
procedures NOT, AND, and OR.

1 def MAJ(a,b,c):
2 and1 = AND(a,b)
3 and2 = AND(a,c)
4 and3 = AND(b,c)
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5 or1 = OR(and1,and2)
6 return OR(or1,and3)
7

8 print(MAJ(0,1,1)) # 1

Note that compared to writing out the full Boolean circuit without any syntactic sugar, one with sugar will
can be much simpler. It’s the difference between having access to only NAND, or all of NAND, AND, OR,
NOT.

Definition 1.20 (NAND-CIRC-PROC)

We call these the programming language NAND-CIRC augmented with the syntax above (for defining
procedures) a NAND-CIRC-PROC program. Note that NAND-CIRC-PROC only allows non-
recursive procedures (that is, procedures that do not take in its return value as its argument).

We can define conditional (if/then) statements using NAND operators. The idea is to compute the function
IF : {0, 1}3 −→ {0, 1} such that IF (a, b, c) equals b if a = 1 and c if a = 0.

Definition 1.21 (Multiplexor Gate)

A Multiplexor gate (MUX) is defined as follows.

MUX : {0, 1}3 −→ {0, 1}, MUX(a, b, s) =

{
a s = 0

b s = 1
(23)

A multiplexor can be expressed using basic logic gates as follows:

MUX(a, b, s) = (a ∧ ¬s) ∨ (b ∧ s) (24)

Definition 1.22 (Demultiplexor Gate)

A Demultiplexor gate (DEMUX) is defined as follows.

DEMUX : {0, 1}2 −→ {0, 1}2, DEMUX(d, s) = (y0, y1) where

{
y0 = d ∧ ¬s
y1 = d ∧ s

(25)

A demultiplexor routes the input d to one of two outputs based on the select signal s.

Definition 1.23 (Conditional Statement)

The IF function can be implemented from NANDs as follows:

1 def IF(cond, a, b);
2 notcond = NAND(cond, cond)
3 temp = NAND(b, notcond)
4 temp1 = NAND(a, cond)
5 return NAND(temp, temp1)

The IF function is also known as a multiplexing function, since cond can be thought of as a switch
that controls whether the output is connected to a or b.
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Proof.

Definition 1.24 (NAND-CIRC-IF)

Let NAND-CIRC-IF be the programming language NAND-CIRC augmented with if/then/else
statements for allowing code to be conditionally executed based on whether a variable is equal to 0
or 1.

Theorem 1.6 ()

For every NAND-CIRC-IF program P , there exists a standard (i.e. "sugar-free") NAND- CIRC
program P ′ that computes the same function as P .

Theorem 1.7 (Constant Plus Multiplexor is Universal)

Let F = {IF, ZERO,ONE} where

ZERO : {0, 1} −→ {0}, ONE : {0, 1} −→ {1} (26)

are the constant zero and one functions, and

IF : {0, 1}3 −→ {0, 1}, IF (a, b, c) =

{
b a = 1

c else
(27)

Then, F is universal.

Proof.

We can use the following formula to compute NAND:

NAND(a, b) = IF
(
a, IF (b, ZERO,ONE), ONE

)
(28)

1.5 Arithmetic
We can write the integer addition function as follows:

1 def ADD(A,B):
2 Result = [0]*(n+1)
3 Carry = [0]*(n+1)
4 Carry[0] = zero(A[0])
5 for i in range(n):
6 Result[i] = XOR(Carry[i],XOR(A[i],B[i]))
7 Carry[i+1] = MAJ(Carry[i],A[i],B[i]) Result[n] = Carry[n]
8 return Result
9

10 ADD([1,1,1,0,0],[1,0,0,0,0]) # [0, 0, 0, 1, 0, 0]

where zero is the zero function, and MAJ, XOR correspond to the majority and XOR functions respectively.
Note that in here, n is a fixed integer and so for every such n, ADD is a finite function that takes as input
2n bits and outputs n + 1 bits. Note that the for loop isn’t anything fancy at all; it is just shorthand
notation of simply repeating the code n times. By expanding out all the features, for every value of n we
can translate the above program into a standard ("sugar-free") NAND-CIRC program. Note that the sugar
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free NAND-CIRC program to adding two-digit binary numbers consists of 43 lines of code, with a Boolean
circuit of 15 layers.

We can in fact prove the following theorem that gives an upper bound on the addition algorithm.

Theorem 1.8 (Addition using NAND-CIRC programs)

For every n ∈ N, let
ADDn : {0, 1}2n −→ {0, 1}n+1 (29)

be the function that, given x, x′ ∈ {0, 1}n, computes the representation of the sum of the numbers
that x and x′ represent. Then, for every n there is a NAND-CIRC program to compute ADDn with
at most 9n lines.

Once we have addition, we can use grade-school algorithm of multiplication to obtain multiplication as well.

Theorem 1.9 (Muliplication using NAND-CIRC programs)

For every n, let
MULTn : {0, 1}2n −→ {0, 1}2n (30)

be the function that, given x, x′ ∈ {0, 1}n, computes the representation of the product of the numbers
that x and x′ represent. Then, there is a constant c such that for every n, there is a NAND-CIRC
program of at most cn2 that computes the function MULTn.a

aAs we have seen in DSA, Karatsuba’s algorithm allows us to actually compute that there is a NAND-CIRC program
of O(nlog2 3) lines to compute MULTn.

We can summarize the equivalence of these models below:

AON-Bool Circuit

AON-CIRC Program

NAND-Bool Circuit

NAND-CIRC Program

NAND-CIRC-PROC NAND-CIRC-IF

Syntactic Sugar

2 Code as Data, Data as Code
A program is simply a sequence of symbols, each of which can be encoded in binary using (for example) the
ASCII standard. Therefore, we can represent every NAND-CIRC program (and hence also every Boolean cir-
cuit) as a binary string. This means that we can treat circuits or NAND-CIRC programs both as instructions
to carrying computation and also as data that could potentially be used as inputs to other computations.
That is, a program is a piece of text, and so it can be fed as input to other programs.
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Definition 2.1 ()

For every n,m ∈ {1, 2, ..., 2s}, let SIZEn,m(s) denote the set of all functions f : {0, 1}n −→ {0, 1}m
such that f ∈ SIZE(s). We denote SIZEn(s) to be just SIZEn,1(s). For every integer s ≥ 1, we let

SIZE(s) =
⋃

n,m≤2s

SIZEn,m(s)

be the set of all functions f that can be computed by NAND circuits of at most s gates (or equivalently,
by NAND-CIRC programs of at most s lines).

2.1 Representing Programs as Strings
We can represent programs or circuits as strings in many ways. For example, since Boolean circuits are
labeled directed acyclic graphs, we can use the adjacency matrix representations. A simpler way is to just
interpret the program as a sequence of letters and symbols. For example, the NAND-CIRC program P :

1 temp_0 = NAND(X[0],X[1])
2 temp_1 = NAND(X[0],temp_0)
3 temp_2 = NAND(X[1],temp_0)
4 Y[0] = NAND(temp_1,temp_2)

is simply a string of 107 symbols which include lower and upper case letters, digits, the underscore character,
equality signs, punctuation marks, space, and the "new line" markers, all of which can be encoded in ASCII.
Since every symbol can be encoded as a string of 7 bits using the ASCII encoding, the program P can be
encoded as a string of length 7 · 107 = 749 bits. Therefore, we can prove that every NAND-CIRC program
can be represented as a string in {0, 1}∗.

Furthermore, since the names of the working variables of a NAND-CIRC program do not affect its func-
tionality, we can always transform a program to have the form of P ′, where all variables apart from the
inputs and outputs, have the form temp0, temp1, ... Moreover, if the program has s, lines, then we will
never need to use an index larger than 3s (since each line involves at most three variables), and similarly,
the indices of the input and output variables will all be at most 3s. Since a number between 0 and 3s can
be expressed using at most ⌈log10(3s+ 1)⌉ = O(log s) digits, each line in the program (which has the form
foo = NAND(bar, blah)), can be represented using O(1) +O(log s) = O(log s) symbols, each of which can
be represented by 7 bits. This results in the following theorem

Theorem 2.1 (Representing programs as strings)

There is a constant c such that for f ∈ SIZE(s), there exists a program P computing f whose string
representation has length at most cs log s.

2.2 Counting Programs
We can actually see that the number of programs of certain length is bounded by the number of strings that
represent them.

Theorem 2.2 (Counting programs)

For every s ∈ N,
|SIZE(s)| ≤ 2O(s log s)

That is, there are at most 2O(s log s) functions computed by NAND-CIRC programs of at most s lines.
This gives a limitation on NAND-CIRC programs running on at most a given number of s lines.
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Note that a function mapping {0, 1}2 −→ {0, 1} can be identified with a table of its four values on the inputs
00, 01, 10, 11. A function mapping {0, 1}3 −→ {0, 1} can be identified with the table of its 8 values on the
inputs 000, 001, 010, 011, 100, 101, 110, 111. More generally, every function

F : {0, 1}n −→ {0, 1}

is equal to the number of such tables which is 22
n

. Note that this is a double exponential in n, and hence
even form small values of n (e.g. n = 10), the number of functions from {0, 1}n −→ {0, 1} is large.

Theorem 2.3 (Counting argument lower bound)

The shortest NAND-CIRC program to compute f : {0, 1}n −→ {0, 1} requires more than δ · 2n/n
lines. That is, there exists a constant δ > 0 such that for every sufficiently large n, there exists
f : {0, 1}n −→ {0, 1} such that f ̸∈ SIZE

(
δ2n

n

)
. The constant δ can be proven to be arbitrarily

close to 1
2 .

We already know that every function mapping {0, 1}n to {0, 1} can be computed by an O(2n/n) line program.
The previous theorem shows that some functions do require an astronomical number of lines to compute.
That is, some functions f : {0, 1}n −→ {0, 1} cannot be computed by a Boolean circuit using fewer
than exponential (in n) number of gates.

2.3 Tuples Representation
ASCII is a fine representation of programs, but we can do better. That is, give a NAND-CIRC program
with lines of the form

1 blah = NAND(baz, boo)

We can encode each line as the triple (blah, baz, boo). Furthermore, we can associate each variable with
a number and encode the line with the 3-tuple (i, j, k). Expanding on this, we can associate every variable
with a number in the set

[t] = {0, 1, 2, ..., t− 1}

where the first n numbers {0, ..., n − 1} correspond to input variable, the last m numbers {t −m, ..., t − 1}
correspond to the output variables, and the intermediate numbers {n, ..., t − m − 1} correspond to the
remaining variables.

Definition 2.2 (List of tuples representation)

Let P be a NAND-CIRC program of n inputs, m outputs, and s lines, and let t be the number of
distinct variables used by P . The list of tuples representation of P is the triple (n,m,L), where
L is the list of triples of the form (i, j, k) for i, j, k ∈ [t]. We assign a number for a variable of P as
follows:

1. For every i ∈ [n], the variable X[i] is assigned to the number i.
2. For every j ∈ [m], the variable Y[j] is assigned to the number t−m+ j.
3. Every other variable is assigned a number in {n, n+ 1, ..., t−m− 1} in the order in which the

variable appears in the program P .
This is usually the default representation for NAND-CIRC programs, so we will call it "the represen-
tation" shorthand. The program could be represented as the list L instead of the triple (n,m,L).

Example 2.1 ()

To represent the XOR program of lines
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1 u = NAND(X[0], X[1])
2 v = NAND(X[0], u)
3 w = NAND(X[1], u)
4 Y[0] = NAND(v, w)

we represent it as the tuple

L =
(
(2, 0, 1), (3, 0, 2), (4, 1, 2), (5, 3, 4)

)
Note that the variables X[0], X[1] are given the indices 0, 1, the variable Y[0] is given the index 5,
and the variables u, v, w are given the indices 2, 3, 4.

So, if P is a program of size s, then the number t of variables is at most 3s. Therefore, we can encode every
variable index in [t] as a string of length l = ⌈log(3s)⌉ (in binary), by adding leading zeros as needed. Since
this is fixed-length encoding, it is prefix free, and so we can encode the list L of s triples as simply as the
string of length 3ls obtained by concatenating all of these encodings.

Letting S(s) be the length of the string representing the list L corresponding to a size s program, we get

S(s) = 3sl = 3s ⌈log(3s)⌉

2.4 NAND-CIRC Interpreter in NAND-CIRC
Since we can represent programs as strings, we can also think of a program as an input to a function. In
particular, for every natural number s, n,m > 0, we define the function

EV ALs,n,m : {0, 1}S(s)+n −→ {0, 1}m

as such: Given that px is the concatenation of two strings p ∈ {0, 1}S(s) representing a list of triples L that
represents a size-s NAND-CIRC program P , and x ∈ {0, 1}n is a string,

EV ALs,n,m(px) = P (x)

where P (x) is equal to the evaluation P (x) of the program P on input x. If p is not the list of tuples rep-
resentation of a NAND-CIRC program, then EV ALs,n,m = 0m (error message). Some important properties
of EVAL include:

1. EV ALs,n,m is a finite function takin a string of fixed length as input and outputting a string of fixed
length as output.

2. EV ALs,n,m is a single function, such that computing EV ALs,n,m allows us to evaluate arbitrary
NAND-CIRC programs of a certain lenfth on arbitrary inputs of the appropriate length.

3. EV ALs,n,m is a function, not a program. That is, EV ALs,n,m is a specification of what output is asso-
ciated with what input. The existence of a program that computes EV ALs,n,m (i.e. an implementation
for EV ALs,n,m) is a separate fact, which needs to be established.

Theorem 2.4 ()

For every s, n,m ∈ N with s ≥ m, there is a NAND-CIRC program Us,n,m that computes the function
EV ALs,n,m.

That is, the NAND-CIRC program Us,n,m takes the description of any other NAND-CIRC program P (of
the right length and inputs/outputs) and any input x, and computes the result of evaluating the program
P on the input x. Given the equivalence between NAND-CIRC programs and Boolean circuits, we can also
think of Us,n,m as a circuit that takes as inputs the description of other circuits and their inputs, and returns
their evaluation.
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Definition 2.3 ()

We call this NAND-CIRC program Us,n,m that computes EV ALs,n,m a bounded universal pro-
gram, or a universal circuit. It is "universal" in the sense that this is a single program that can
evaluate arbitrary code, where "bounded" stands for the fact that Us,n,m only evaluates programs of
bounded size.

This theorem is profound because it proves the existence of a NAND-CIRC program that takes in another
NAND-CIRC program along with its input. But it provides no explicit bound on the size of this program.
The following theorem takes care of that.

Theorem 2.5 (Efficient bounded universality of NAND-CIRC programs)

For every s, n,m ∈ N, there is a NAND-CIRC program of at most O(s2 log s) lines that computes the
function

EV ALs,n,m : {0, 1}S+n −→ {0, 1}m

defined above (where S is the number of bits needed to represent programs of s lines). This allows
us to place an upper bound on the size of Us,n,m that is polynomial in its input length.
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3 Regular Languages
We now extend our definition of computational tasks to consider functions with the unbounded domain.

Definition 3.1 (Set of Sequences)

Given a set A, the set A∗ is defined

A∗ ≡
∞⊔

n=1

An (31)

With this, the set of all binary numbers is {0, 1}∗.

The big takeaway from this chapter is that we can think of an algorithm as a "finite answer to an infinite
number of questions." To express an algorithm, we need to write down a finite set of instructions that will
enable us to compute on arbitrarily long inputs.

Example 3.1 ()

Note that the function XOR : {0, 1}∗ −→ {0, 1} equals 1 iff the number of 1’s in x is odd. At best,
we can compute XORn, the restriction of XOR to {0, 1}n with NAND-CIRC programs.

Example 3.2 ()

The multiplication function takes the binary representation of a pair of integers x, y ∈ N and outputs
the binary representation of the product x · y.

MULT : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗

Since we can represent a pair of strings as a single string, we will consider functions such as MULT
as

MULT : {0, 1}∗ −→ {0, 1}∗

Example 3.3 (Palindrome function)

Another example of an infinite function is

PALINDROME(x) =

{
1 ∀i ∈ ||x||, xi = x|x|−i

0 else

which outputs 1 if x is a (base-2) palindrome and 0 if not.

Definition 3.2 ()

Sometimes, we can obtain a Boolean variant of a non-Boolean function. This process is called
booleanizing.

Example 3.4 (Boolean variant of MULT)

The following is a boolean variant of MULT

BMULT (x, y, i) =

{
ith bit of x · y i < |x · y|
0 else
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Note that if we can compute BMULT , we can compute MULT as well, and vice versa.

3.1 Deterministic Finite Automata

Definition 3.3 ()

A single-pass constant-memory algorithm is an algorithm that computes an output from an
input via a combination of the following steps:

1. Read a bit from the input.
2. Update the state (working memory).
3. Repeat the first 2 steps to pass over the input.
4. Stop and produce an output.

It is called "single-pass" since it makes a single pass over the input and "constant-memory" since its
working memory is finite. Such an algorithm is also known as a Deterministic Finite Automaton
(DFA), or a finite state machine.
We can think of such an algorithm as a "machine" that can be in one of C states, for some constant
C. The machine starts in some initial state and then reads its input x ∈ {0, 1}∗ one bit at a time.
Whenever the machine reads a bit σ ∈ 0, 1, it transitions into a new state based on σ and its prior
state. The output of the machine is based on the final state. Every single-pass constant-memory
algorithm corresponds to such a machine. If an algorithm uses c bits of memory, then the contents
of its memory can be represented as a string of length c. Therefore such an algorithm can be in one
of at most 2c states at any point in the execution.
We can specify a DFA of C states by a list of 2C rules. Each rule will be of the form “If the DFA is in
state v and the bit read from the input is σ then the new state is v′”. At the end of the computation,
we will also have a rule of the form “If the final state is one of the following ... then output 1, otherwise
output 0”.

For example, the Python program above can be represented by a two-state automaton for computing XOR
of the following form:

1. Initialize in the state 0

2. For every state s ∈ {0, 1} and input bit σ read, if σ = 1, then change to state 1− s, otherwise stay in
state s

3. At the end, output 1 iff s = 1

It can also be represented in the following graph.

100

1

0

1

More generally, a C-state DFA can be represented as a labeled graph of C nodes. The set S of states on
which the automaton will output 1 at the end of the computation is known as the set of accepting states.
We formally summarize it below.

Definition 3.4 ()

A deterministic finite automaton (DFA) with C states over {0, 1} is a pair (T,S) with

T : [C]× {0, 1} −→ [C]

and S ⊂ [C]. The finite function T is known as the transition function of the DFA. The set S is

21/ 60



Muchang Bahng Spring 2025

known as the set of accepting states.
Let F : {0, 1}∗ −→ {0, 1} be a Boolean function with the infinite domain {0, 1}∗. We say that (T,S)
computes a function F : {0, 1}∗ −→ {0, 1} if for every n ∈ N and x ∈ {0, 1}n, if we define s0 = 0
and si+1 = T (si, xi) for every i ∈ [n], then

sn ∈ S ⇐⇒ F (x) = 1

Note that the transition function T is a finite function specifying the table of "rules" for which the graph
evolves. By defining the DFA C with (T,S), we have essentially reduced a specific type of infinite Boolean
function (a single-pass constant-memory algorithm) into a graph and a finite transition function.

When constructing a deterministic finite automaton, it helps to start by thinking of it as a single-pass
constant-memory algorithm, and then translate this program into a DFA.

Definition 3.5 ()

We say that a function F : {0, 1}∗ −→ {0, 1} is DFA computable if there exists some DFA that
computes F .

Theorem 3.1 ()

Let DFACOMP be the set of all Boolean functions F : {0, 1}∗ −→ {0, 1} such that there exists a
DFA computing F . Then, DFACOMP is countable.

Lemma 3.1 ()

The set of all Boolean functions {f | f : N −→ {0, 1}} are uncountable.

Corollary 3.1 (Existence of DFA-uncomputable functions)

There exists a Boolean function F : {0, 1}∗ −→ {0, 1} that is not computable by any DFA.

3.2 Regular Expressions
Searching for a piece of text is a common task in computing. At its heart, the search problem is quite simple.
We have a collection X = {x0, ..., xk} of strings (e.g. files on a hard-drive, or student records in a database),
and the user wants to find out the subset of all the x ∈ X that are matched by some pattern. In full generality,
we can allow the user to specify the pattern by specifying a (computable) function F : {0, 1}∗ −→ {0, 1},
where F (x) = 1 corresponds to the pattern matching x. That is, the user provides a program P and the
system returns all x ∈ X such that P (x) = 1.

However, we don’t want our system to get into an infinite loop just trying to evaluate the program P . For
this reason, typical systems for searching files or databases do not allow users to specify the patterns using
full-fledged programming languages. Rather, such systems use restricted computational models that on the
one hand are rich enough to capture many of the queries needed in practice, but on the other hand are
restricted enough so that queries can be evaluated very efficiently on huge files and in particular cannot
result in an infinite loop. One of the most popular such computational models is regular expressions.

Definition 3.6 ()

A regular expression e over an alphabet Σ is a string over Σ ∪ {(, ), |, ∗, ∅, ””} that has one of the
following forms:
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1. e = σ where σ ∈ Σ
2. e = (e′ | e′′) where e′, e′′ are regular expressions
3. e = (e′)(e′′) where e′, e′′ are regular expressions. The parentheses are often dropped, so this is

written e′ e′′

4. e = (e′)∗ where e′ is a regular expression
Finally, we also allow the following "edge cases": e = ∅ and e = ””. These are the regular expressions
corresponding to accepting no strings and accepting only the empty string, respectively.

Example 3.5 ()

The following are regular expressions over the alphabet {0, 1}.(
00(0∗)|11(1∗)

)∗
00∗|11

Every regular expression e corresponds to a function Φe : Σ∗ −→ {0, 1} where Φe(x) = 1 if x matches the
regular expression. The definition is tedious.

Definition 3.7 ()

Let e be a regular expression over the alphabet Σ. The function Φe : Σ∗ −→ {0, 1} is defined as
follows:

1. If e = σ, then Φe(x) = 1 iff x = σ
2. If e = (e′ | e′′), then Φe(x) = Φe′(x) ∨ Φe′′(x) where ∨ is the OR operator.
3. If e = (e′)(e′′), then Φe(x) = 1 iff there is some x′, x′′ ∈ Σ∗ such that x is the concatenation of

x′ and x′′ and Φe′(x
′) = Φe′′(x′′) = 1

4. If e = (e′)∗ then Φe(x) = 1 iff there is some k ∈ N and some x0, x1, ..., xk−1 ∈ Σ∗ such that x is
the concatenation x0, x1, ..., xk−1 and Φe′(xi) = 1 for every i ∈ [k].

5. For the edge cases, Φ∅ is the 0 function, and Φ”” is the function that only outputs 1 on the
empty string ””.

It is said that a regular expression e over Σ matches a string x ∈ Σ∗ if Φe(x) = 1.

A Boolean function is called regular if it outputs 1 on precisely the set of strings that are matched by some
regular expression.

Definition 3.8 ()

Let Σ be a finite set and F : Σ∗ −→ {0, 1} be a Boolean function. We say that F is regular if
F = Φe for some regular expression e.
Similarly, for every formal language L ⊂ Σ∗, we say that L is regular if and only if there is a regular
expression e such that x ∈ L iff e matches x.

Definition 3.9 ()

The set of functions computable by DFAs is the same as the set of languages that can be recognized
by regular expressions.
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4 Context Free Languages

4.1 Context Free Grammars
When a person designs a programming language, they need to determine its syntax. That is, the designer
decides which strings correspond to valid programs, and which ones do not (i.e. which strings contain a
syntax error). To ensure that a compiler or interpreter always halts when checking for syntax errors, language
designers typically do not use a general Turing-complete mechanism to express their syntax. Rather, they
use a restricted computational model, most often being context free grammars.

Consider the function ARITH : Σ∗ −→ {0, 1} that takes as input a string x over alphabet

Σ = {(, ),+,−,×,÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

and returns 1 if and only if the string x represents a valid arithmetic expression. Intuitively, we build expres-
sions by applying an operation such as +,−,×,÷ to smaller expressions or enclosing them in parentheses.
More precisely, we can make the following definitions:

1. A digit is one of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2. A number is a sequence of digits (we will drop the condition that the sequence does not have a leading
zero)

3. An operation is one of +,−,×,÷.

4. An expression has either the form

(a) "number"

(b) "sub-expression1 operation sub-expression2

(c) "(sub-expression1)"

where "sub-expression1" and "sub-expression2" are themselves expressions. Note that this is a recursive
function.

A context free grammar (CFG) is a formal way of specifying such conditions, consisting of a set of ruels that
tell us how to generate strings from smaller components.

Definition 4.1 (Context Free Grammar)

Let Σ be some finite set. A context free grammar (CFG) over Σ is a triple (V,R, s) such that:
1. V , known as the variables, is a set disjoint from Σ
2. s ∈ V is known as the initial variable
3. R is a set of rules. Each rule is a pair (v, z) with v ∈ V and z ∈ (Σ ∪ V )∗. We often write the

rule (v, z) as
v =⇒ z

and say that the string z can be derived from the variable v.

Example 4.1 ()

The example of well-formed arithmetic expressions can be captured formally by the following context
free grammar.

1. The alphabet Σ is {(, ),+,−,×,÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
2. The variables are V = {expression, number, digit, operation}
3. The rules are the set R containing the following 19 rules:

(a) 4 Rules: operation =⇒ +, operation =⇒ −, operation =⇒ ×, operation =⇒ ÷
(b) 10 Rules: digit =⇒ 0, digit =⇒ 1, ..., digit =⇒ 9
(c) Rule: number =⇒ digit
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(d) Rule: number =⇒ digitnumber
(e) Rule: expression =⇒ number
(f) Rule: expression =⇒ expression operation expression
(g) Rule: expression =⇒ (expression)

4. The starting variable is expression.
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5 Turing Machines
Similar to how a person does calculations by reading from and writing to a single cell of a paper at a time,
a Turing machine is a hypothetical machine that reads from its "work tape" a single symbol from a finite
alphabet Σ and uses that to update its state, write to tape, and possibly move to an adjacent cell. To
compute a function F using this machine, we initialize the tape with the input x ∈ {0, 1}∗ and our goal is to
ensure that the tape will contain the value F (x) at the end of the computation. Specifically, a computation
of a Turing machine M with k states and alphabet Σ on input x ∈ {0, 1}∗ is formally defined as follows.

Definition 5.1 (Turing Machine)

A (one tape) Turing machine with k states and alphabet Σ ⊃ {0, 1, ▷, ∅} is represented by a
transition function

δM : [k]× Σ −→ [k]× Σ× {L,R,S,H}

For every x ∈ {0, 1}∗, the output of M on input x, denoted by M(x), is the result of the following
process:

1. We initialize T to be the infinite sequence (also represented by a tape)

▷, x0, x1, ..., xn−1, ∅, ∅, ...

where n = |x|. That is, T [0] = ▷, T [i+ 1] = xi for i ∈ [n], and T [i] = ∅ for i > n.)
2. We also initialize i = 0 (the head is at the starting position) and we begin with the initial state

s = 0, s ∈ [k].
3. We then repeat the following process which is defined according to the transition function:

(a) Let (s′, σ′, D) = δM (s, T [i]).
(b) Set s → s′, T [i] → σ′

(c) If D = R, then set i → i+1, if D = L, then set i → max{i− 1, 0}. If D = S, then we keep
i the same.

(d) If D = H, then halt.
Colloquially, at each step, the machine reads the symbol σ ∈ T [i] that is in the ith location of
the tape. Bsaed on this symbol and its state s, the machine decides on
(a) What symbol σ′ to write on the tape
(b) Whether to move Left (i → i−1), Right (i → i+1), Stay in place, or Halt the computation
(c) What is going to be the new state s ∈ [k]

4. If the process above halts, then M ’s output, denoted by M(x) is the string y ∈ {0, 1}∗ obtained
by concatenating all the symbols in {0, 1} in positions T [0], ..., T [i] where i+1 is the first location
in the tape containing ∅.

5. If the Turing machine does not halt then we denote M(x) =⊥.

[k] states

tape alphabet Σ

Transition
Function δ

Initial
State

Halting
States

H

H

. . .σx0 xn−1 ∅

σ′

Input

Figure 11: We can visualize a Turing machine as a table and a tape labeled below.

In fact, all modern computing devices are Turing machines at heart. You input a string of bits, the machine
flips a bunch of switches, and outputs another string of bits.
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Example 5.1 (Turning Machine for Palindromes)

Let PAL be the function that on input x ∈ {0, 1}∗, outputs 1 if and only if x is an (even length)
palindrome, in the sense that

x = w0...wn−1wn−1wn−2...w0

for some n ∈ N and w ∈ {0, 1}∗. We will now describe a Turing machine that computes PAL. To
specify M , we need to specify

1. M ’s tape alphabet Σ which should contain at least the symbols 0, 1, ▷, and ∅, and
2. M ’s transition function which determines what action M takes when it reads a given symbol

while it is in a particular state.
For this specific Turing machine, we will use the alphabet {0, 1, ▷, ∅,×} and will have k = 13 states,
with the following labels for the numbers.

State Label State Label
0 START 7 ACCEPT
1 RIGHT_0 8 OUTPUT_0
2 RIGHT_1 9 OUTPUT_1
3 LOOK_FOR_0 10 0_AND_BLANK
4 LOOK_FOR_1 11 1_AND_BLANK
5 RETURN 12 BLANK_AND_STOP
6 REJECT

The operation of our Turning machine, in words, is as such:
1. M starts in the state START and goes right, looking for the first symbol that is 0 or 1. If it finds

∅ before it hits such a symbol then it moves to the OUTPUT_1 state.
2. Once M finds such a symbol b ∈ {0, 1}, M deletes b from the tape by writing the × symbol,

it enters either the RIGHT_0 or RIGHT_1 mode according to the value of b and starts moving
rightwards until it hits the first ∅ or × symbol.

3. Once M finds this symbol, it goes into the state LOOK_FOR_0 or LOOK_FOR_1 depending on
whether it was in the state RIGHT_0 or RIGHT_1 and makes one left move.

4. In the state LOOK_FOR_b, M checks whether the value on the tape is b. If it is, then M deletes
it by changing its value to ×, and moves to the state RETURN. Otherwise, it changes to the
OUTPUT_0 state.

5. The RETURN state means that M goes back to the beginning. Specifically, M moves leftward
until it hits the first symbol that is not 0 or 1, in which case it changes its state to START.

6. The OUTPUT_b states mean that M will eventually output the value b. In both the OUTPUT_0
and OUTPUT_1 states, M goes left until it hits ▷. Once it doe sso, it makes a right step and
changes to the 1_AND_BLANK or 0_AND_BLANK state respectively. In the latter states, M writes
the corresponding value, moves right and changes to the BLANK_AND_STOP state, in which it
writes ∅ to the tape and halts.

The above description can be turned into a table describing for each one of the 13·5 = 65 combinations
of state and symbol, what the Turing machine will do when it is in that state and it reads that symbol.
This table is the transition function of the Turing machine.

Definition 5.2 (Computable Functions)

Let F : {0, 1}∗ −→ {0, 1}∗ be a (total) function and let M be a Turing machine. We say that M
computes F if for every x ∈ {0, 1}∗, M(x) = F (x). We say that a function F is computable if
there exists a Turing machines M that computes it.

It turns out that being computable in the sense of a Turing machine is equivalent to being computable in
virtually any reasonable model of computation. This statement is known as the Church-Turing Thesis.
Therefore, this definition allows us to precisely define what it means for a function to be computable by any
possible algorithm.
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Definition 5.3 (The class R)

We define R to be the set of all computable functions F : {0, 1}∗ −→ {0, 1}.

5.1 NAND-TM Programs
In addition to having a physical interpretation, Turing machines can also be interpreted as programs.

1. The tape becomes a list or array that can hold values from the finite set Σ.

2. The head position can be thought of as an integer-valued variable that holds integers of unbounded
size.

3. The state is a local register that can hold one of a fixed number of values in [k].

In general, every Turing machine M is equivalent to a program similar to the following:

1 #Gets an array Tape initialized to [">", x_0,..., x_(n-1), " ", " ", ...]
2 def M(Tape):
3 state = 0
4 i = 0 #holds head location
5 while(True):
6 #Move head, modify state, write to tape based on current state and
7 #cell at head below are just examples for how program looks
8 #for a particular transition function
9 if Tape[i]=="0" and state==7: #T_M(7,"0")=(19,"1","R")

10 i += 1
11 Tape[i]="1"
12 state = 19
13 elif Tape[i]==">" and state == 13: #T_M(13,">")=(15,"0","S")
14 Tape[i] ="0"
15 state = 15
16 elif...
17 ...
18 elif Tape[i]==">" and state == 29: #T_M(29,">")=(.,.,"H")
19 break #Halt

If we were using Boolean variables, then we can encode the state variables using ⌈log k⌉ bits.

Note that in the code above, two new concepts are introduced:

1. Loops: NAND-CIRC is a straight line programming language. That is, a NAND-CIRC program of s
lines takes exactly s steps of computation and hence in particular, cannot even touch more than 3s
variables. Loops allow us to use a fixed-length program to encode the instructions for a computation
that can take an arbitrary amount of time.

2. Arrays: A NAND-CIRC program of s lines touches at most 3s variables. While we can use variables
with names such as Foo_17 or Bar[22] in NAND-CIRC, they are not true arrays, since the number
in the identifier is a constant that is not "hardwired" into the program. NAND-TM contains actual
arrays that can have a length that is not a priori bounded.

The following equation summarizes the concepts:

NAND-TM = NAND-CIRC + loops + arrays

Surprisingly, adding loops and arrays to NAND-CIRC is enough to capture the full power of all programming
languages. Hence, we could replace NAND-TM with any of Python, C, Javascript, etc.

Concretely, the NAND-TM programming language adds the following features on top of NAND-CIRC:
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1. We add a special integer valued variable i. All other variables in NAND-TM are Boolean valued (as
in NAND-CIRC).

2. Apart from i, NAND-TM has two kinds of varibales: scalars and arrays. Scalar variables hold one
bit (just as in NAND-CIRC). Array variables hold an unbounded number of bits. At any point in the
computation we can access the array variables at the location indexed by i using Foo[i]. We cannot
access the arrays at loctions other than the one pointed by i.

3. We use the convention that arrays always start with a capital letter, and scalar variables (which are
never indexed with i) start with lowercase letters. Hence, Foo is an array and foo is a scalar variable.

4. The input and output X and Y are not considered arrays with values of 0s and 1s.

5. We add a special MODANDJUMP instruction that takes two Boolean variables a, b as input and does the
following:

(a) If a = 1, b = 1, then MODANDJUMP(a, b) increments i by one and jumps to the first line of the
program.

(b) If a = 0, b = 1, then MODANDJUMP(a, b) decrements i by one and jumps to the first line of the
program. If i already equals 0, then it stays at 0.

(c) If a = 1, b = 0, then MODANDJUMP(a, b) jumps to the first line of the program without modifying i.

(d) If a = b = 0, then MODANDJUMP(a, b) halts execution of the program.

6. The MODANDJUMP instruction always appears in the last line of a NAND-TM program and nowhere else.

7. Turing machines have the special symbol ∅ to indicate that tape location is "blank" or "uninitialized."
In NAND-TM there is no such symbol, and all variables are Boolean, containing either 0 or 1. All
variables and locations either default to 0 if they have not been initialized to another value. To keep
track of whether a 0 in an array corresponds to a true 0 or to an uninitialized cell, a programmer can
always add to an array Foo a companion array Foo_nonblank and set Foo_nonblank[i] to 1 whenever
the ith location is initialized. In particular, we will use this convention for the input and output arrays
X and Y. Therefore, a NAND-TM program has four special arrays X, X_nonblank, Y, Y_nonblank.

Therefore, when a NAND-TM program is executed on input x ∈ {0, 1}∗ of length n, the first n cells of X are
initialized to x0, ..., xn−1 and the first n cells of X_noblank are initalized to 1 (all uninitialized cells default
to 0). The output of a NAND-TM program is the string Y[0], ..., Y[m-1] where m is the smallest integer
such that Y_nonblank[m] = 0.

We now formally define a NAND-TM program.

Definition 5.4 (NAND-TM Programs)

A NAND-TM program consists of a sequence of lines of the form foo = NAND(bar, blah) and
ending with a line of the form MODANDJMP(foo, bar), where foo, bar, blah are either scalar vari-
ables (sequence of letters, digits, and underscores) or array variables of the form Foo[i] (start-
ing with capital letters and indexed by i). The program has the array variables X, X_nonblank,
Y, Y_nonblank and the index variables i built in, and can use additional array and scalar variables.
If P is a NAND-TM program and x ∈ {0, 1}∗ is an input then an execution of P on x is the following
process:

1. The arrays X and X_nonblank are initialized by X[i] = xi and X_nonblank[i] = 1 for all
i ∈ [|x|]. All other variables and cells are initialized to 0. The index variable i is also initialized
to 0.

2. The program is executed line by line. When the last line MODANDJMP(foo, bar) is executed we
do as follows:
(a) If foo, bar = 1, 0, jump to the first line without modifying the value of i.
(b) If foo, bar = 1, 1, incremenet i by one and jump to the first line.
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(c) If foo, bar = 0, 1, then decrement i by one (unless it is already 0) and jump to the first
line.

(d) If foo, bar = 0, 0, halt and output Y[0], ..., Y[m-1] where m is the smallest integer
such that Y_nonblank[m] = 0.

Here are some components of Turing machines and their analogs in NAND-TM programs.

1. The state of a Turing machine is equivalent to the scalar-variables such as foo, bar, etc., each
taking values in {0, 1}.

2. The tape of a Turing machines is equivalent to the arrays, where the component of each array is either
0 or 1.

3. The head location is equivalent to the index variable

4. Accessing memory : At every step the Turing machine has access to its local state, but can only access
the tape at the position of the current head location. In a NAND-TM program, it has access to all the
scalar variables, but can only access the arrays at the location i of the index variable.

5. A Turing machine can move the head location by at most one position in each step, while a NAND-TM
program can modify the index i by at most one.

Theorem 5.1 (Equivalence of Turing Machines and NAND-TM programs)

For every function F : {0, 1}∗ −→ {0, 1}∗, F is computable by a NAND-TM program P if and only
if there is a Turing machine M that computes F .

Setting Specification Implentation
Finite Computation F : {0, 1}n → {0, 1}m Circuit, Straightline program
Infinite Computation F : {0, 1}∗ → {0, 1}∗ Algorithm, Turing Machine, Program

Finally, we can use syntactic sugar to make NAND-TM programs easier to write. For starters, we can use
all of the syntactic sugar of NAND-CIRC, such as macro definitions and conditionals (if/then). However,
we can go beyond this and achieve:

1. Inner loops such as the while and for operations common to many programming languages.

2. Multiple index variables (e.g. not just i but also j, k, etc.).

3. Arrays with more than one dimension (e.g., Foo[i][j]).

This means that the set of functions computable by NAND-TM with this feature is the same as the set of
functions computable by standard NAND-TM.

5.1.1 Uniformity of Computation

Definition 5.5 ()

The notion of a single algorithm that can compute functions of all input length is known as unifor-
mity of computation.

Hence we think of Turing machines and NAND-TM as uniform models of computation, as opposed to Boolean
circuits of NAND-CIRC, which are non-uniform models, in which we have to specify a different program
for every input length. This uniformity leads to another crucial difference between Turing machines and
circuits. Turing machines can have inputs and outputs that are longer than the description of the machine
as a string, and in particular there exists a Turing machine that can "self replicate" in the sense that it can
print its own code. This is extremely useful.

In summary, the main differences between uniform and non-uniform models are described as such:
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1. Non-uniform computational models: Examples are NAND-CIRC programs and Boolean circuits.
These are models where each individual program/circuit can compute a finite function

f : {0, 1}n −→ {0, 1}m

We have seen that every finite function can be computed by some program/circuit. To discuss com-
putation of an infinite function F : {0, 1}∗ −→ {0, 1}∗, we need to allow a sequence

{
Pn

}
n∈N of

programs/circuits (one for every input length), but this does not capture the notion of a single algo-
rithm to compute the function F .

2. Uniform computational models: Examples are Turing machines and NAND-TM programs. These
are models where a single program/Turing machine can take inputs of arbitrary length and hence
compute an infinite function

F : {0, 1}∗ −→ {0, 1}∗

The number of steps that a program/machine takes on some input is not a priori bounded in advance
and in particular there is a chance that it will enter into an infinite loop. Unlike the non-uniform case,
we have not shown that every infinite function can be computed by some NAND-TM program/Turing
machine.

5.2 RAM Machines and NAND-RAM Programs
Note that since Turing machines (and NAND-TM programs) can only access one locations of arrays/tape at
a time, they do not have RAM.

Definition 5.6 ()

The computational model that models access to such a memory is the RAM machine. The memory
of a RAM machine is an array of unbounded size where each cell can store a single word, which can
be thought of as a string in {0, 1}ω and also (equivalently) as a number in [2ω].

For example, many modern computing architectures use 64-bit words, in which every memory location holds
a string in {0, 1}64. The parameter ω is known as the word size. In addition to the memory array, a RAM
machine also contains a constant number of registers r0, r1, ..., rk−1, each of which can also contain a word.

The oeprations a RAM machine can carry out include:

1. Data movement: Load data from a certain cell in memory into a register or store the contents of a
register into a certain cell of memory. A RAM machine can directly access any cell of memory without
having to move the “head” (as Turing machines do) to that location. That is, in one step a RAM
machine can load into register ri the contents of the memory cell indexed by register rj , or store into
the memory cell indexed by register rj the contents of register ri.

2. Computation: RAM machines can carry out computation on registers such as arithmetic operations,
logical operations, and comparisons.

3. Control flow: As in the case of Turing machines, the chose of what instruction to perform next can
depend on the state of the RAM machine, which is captured by the contents of its register.

Just as the NAND-TM programming language models Turing machines, we can also define a NAND-RAM
programming language that models RAM machines. The NAND-RAM programming language extends
NAND-TM by adding the following features:

1. The variables of NAND-RAM are allowed to be (non-negative) integer valued rather than only Boolean.
That is, a scalar variable foo holds a nonnegative integer in N and an array variable Bar holds an array
of integers. As in the case of RAM machines, we will not allow integers of unbounded size.

2. We allow indexed access to arrays. If foo is a scalar and Bar is an array, then Bar[foo] refers to the
location of Bar indexed by the value of foo. Note that this means that we don’t need to have a special
index variable i anymore.
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3. We will assume that for Boolean operations such as NAND, a zero valued integer is considered as false,
and a nonzero valued integer is considered as true.

4. In addition to NAND, NAND-RAM also includes all the basic arithmetic operations of addition, sub-
traction, multiplication, integer division, as well as comparisions (equal, greater/less than, etc.).

5. NAND-RAM includes conditional statements if/then as a part of the language.

6. NAND-RAM contains looping constructs such as while and do as part of the language.

It is easy to see that NAND-RAM programs are clearly more powerful than NAND-TM, and so if a function
F is computable by a NAND-TM program then it can be computed by a NAND-RAM program. It turns
out to be true that if a function is computable by a NAND-RAM program, then it can also be computed by
a NAND-TM program.

Theorem 5.2 ()

Turing machines (aka NAND-TM programs) and RAM machines (aka NAND-RAM programs) are
equivalent. That is, for every function

F : {0, 1}∗ −→ {0, 1}∗,

F is computable by a NAND-TM program if and only if F is computable by a NAND-RAM program.
Therefore, all four models are equivalent to one another.

6 Turing Completeness and Equivalence
Even though the notion of computing a function using Turing machines is crucial in theory, it is not a
practical way of preforming computation. But in addition to defining computable functions with Turing
machines, there are many equivalent conditions of computability under a wide variety of computational
models. This notion is known as Turing completeness or Turing equivalence.

Any of the standard programming languages such as C, Java, Python, Pascal, Fortran, have very similar
operations to NAND-RAM. Indeed, ultimately, they can all be executed by machines which have a fixed
number of registers and a large memory array. Hence, with the equivalence theorem, we can simulate any
program in such a programming language by a NAND-TM program. In the other direction, it is a fairly easy
programming exercise to write an interpreter for NAND-TM in any of the above programming languages.
Hence we can also simulate NAND-TM programs (and Turing machines) using these programming languages.

Definition 6.1 ()

A computational system is said to be Turing-complete or computationally universal if it can
be be used to simulate any Turing machine or NAND-TM.
Very much related, the property of being equivalent in power to Turing machines/NAND-TM is called
Turing equivalent. That is, two computer P and Q are equivalent if P can simulate Q and Q can
simulate P . All known Turing complete systems are Turing equivalent.

The equivalence between Turing machines and RAM machines allows us to choose the most convenient
language for the task at hand:

1. When we want to prove a theorem about all programs/algorithms, we can use Turing machines (or
NAND-TM) since they are simpler and easier to analyze.

2. If we want to show that a certain function cannot be computed, then we will use Turing machines.

3. When we want to show that a function can be computed we can use RAM machines or NAND-RAM,
because they are easier to program in and correspond more closely to high level programming languages
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we are used to. In fact, we will often describe NAND-RAM programs in an informal manner, trusting
that the reader can fill in the details and translate the high level description to the precise program.
(This is just like the way people typically use informal or “pseudocode” descriptions of algorithms,
trusting that their audience will know to translate these descriptions to code if needed.)

A formal definition of Turing completeness is as follows. This is also referred to as Godel Numbering, which
is a function that assigns to each symbol and well-formed formula of some formal language a unique natural
number, called its Gödel number

Definition 6.2 (Turing Completeness and Equivalence)

Let F be the set of all partial functions from {0, 1}∗ to {0, 1}∗. A computational model is a map

M : {0, 1}∗ −→ F

We say that a program P ∈ {0, 1}∗ M-computes a function F ∈ F if

M(P ) = F

A computational model M is Turing complete if there is a computable map

ENCODEM : {0, 1}∗ −→ {0, 1}∗

such that for every Turing machine N (represented as a string), M(ENCODEM(N)) is equal to the
partial function computed by N .
A computational model M is Turing equivalent if it is Turing complete and there exists a
computable map DECODEM : {0, 1}∗ −→ {0, 1}∗ such that for every string P ∈ {0, 1}∗,
N = DECODEM(P ) is a string representation of a Turing machine that computes the function
M(P ).

6.1 Cellular Automata
Many physical systems can be described as consisting of a large number of elementary components that
interact with one another. One way to model such systems is using cellular automata. This is a system that
consists of a large (or even infinite) number of cells. Each cell only has a constant number of possible states.
At each time step, a cell updates to a new state by applying some simple rule to the state of itself and its
neighbors.

Definition 6.3 ()

An example of a cellular automaton is Conway’s Game of Life. In this automata the cells are
arranged in an infinite two dimensional grid. Each cell has only two states:

1. Dead: which we encode as a 0
2. Alive: which we encode as 1

The next state of a cell depends on its previous state and the states of its 8 adjacent neighbors, which
can be modeled with a transition function

r : Σ8 −→ Σ

A dead cell becomes alive only if exactly three of its neighbors are alive. A live cell continues to live
if it has two or three live neighbors.

Even though the number of cells is potentially infinite, we can encode the state using a finite-length string
by only keeping track of the live cells. If we initialize the system in a configuration with a finite number of
live cells, then the number of live cells will stay finite in all future steps. Note that this is a discrete time
Markov chain.
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Since the cells in the game of life are arranged in an infinite two-dimensional grid, it is an example of a two
dimensional cellular automaton. We can get even simpler by setting a one dimensional cellular automaton,
where the cells are arranged in an infinite line.

Theorem 6.1 ()

Conway’s Game of Life is Turing complete.

6.1.1 One-Dimensional Cellular Automata

Definition 6.4 ()

Let Σ = {0, 1, ∅}. A one-dimensional cellular automaton of alphabet Σ is described by a
transition rule

r : Σ3 −→ Σ

A configuration of the automaton r is a function A : Z −→ Σ; that is, A just represents an infinite
sequence of letters in the alphabet Σ. If an automaton with rule r is in configuration A, then its next
configuration A′ = NEXTr(A), is the function A′ such that

A′(i) = r
(
A(i− 1), A(i), A(i+ 1)

)
In other words, the next state of the automaton r at point i is obtained by applying the rule r to the
values of A at i and its two neighbors.
It is also said that a configuration of an automaton r is finite if there is only some finite number of
indices i0, ..., ij−1 in Z such that A(ij) ̸= ∅.

If the alphabet is only {0, 1}, then there can be a total of 28 = 256 total possible one dimensional cellular
automata. For example, the cellular automaton with the transition rule

r(L,C,R) ≡ C +R+ CR+ LCR (mod 2)

can be expressed with the table (called rule 110)

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0

However, many of them are trivially equivalent to each other up to a simple transformation of the underlying
geometry, such as with reflections, translations, or rotations. This reduces the possible unique automata to
88, only one of which is Turing complete.

Theorem 6.2 ()

The Rule 110 cellular automaton is Turing complete. That is, any calculation or computer program
can be simulated using this automaton.

Definition 6.5 (Configuration of Turing Machines)

Let M be a Turing machine with tape alphabet Σ and state space [k]. A configuration of M is a
string

α ∈ Σ
∗
, where Σ = Σ×

(
{·} ∪ [k]

)
that satisfies that there is exactly one coordinate i for which αi = (σ, s) for some σ ∈ Σ and s ∈ [k].
For all other coordinates j, αj = (σ′, ·) for some σ′ ∈ Σ. A configuration of α ∈ Σ

∗
of M corresponds

to the following staet of its execution:
1. M ’s tape contains αj,0 for all j < |α| and contains ∅ for all positions that are at least |α|, where
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we let αj,0 be the value σ such that αj = (σ, t) with σ ∈ Σ and t ∈ {·} ∪ [k]. In other words,
since αj is a pair of an alphebet symbol σ and either a state in [k] or the symbol ·, αj,0 is the
first component σ of this pair.

2. M ’s head is in the unique position i for which αi has the form (σ, s) for s ∈ [k], and M ’s state
is equal to s.

Informally, a configuration can be interpreted simply as a string that encodes a snapshot of the Turing
machine at a given point in the execution. It is also called a core dump. Such a snapshot must encode
the following components:

1. The current head position.
2. The full contents of the large scale memory, that is the tape.
3. The contents of the "local registers," that is the state of the machine.

6.2 Lambda Calculus
The Lambda calculus is an abstract mathematical theory of computation, involving λ functions. It is a
Turing complete language. λ calculus allows us to define "anonymous" functions. For example, instead of
giving a name f to a function and defining it as

f(x) = x2

we can write it anonymously (without naming it at all) as

x 7→ x2, or equivalently, λx.x2

so (λx.x2)(7) = 49, or by dropping the parentheses, (λx.x2)7 = 49. That is, we can interpret λx.exp(x),
where exp is some expression as a way of specifying the anonymous function x 7→ exp(x). This notation occurs
in many programming languages, such as Python, where the squaring function is written lambda x: x*x.

Furthermore, in λ calculus functions are first-class objects, meaning that we can use functions as arguments
to other functions. However, all functions must take one input.

Expressions can be thought of as programs in the language of lambda calculus. Given the notion of
a variable, denoted by x, y, z, ... we recursively define an expression inductively in terms of abstractions
(anonymous functions) and applications as follows:

Definition 6.6 (λ expression)

Let Λ be the set of λ expressions. Then
1. Identifier: If x is a variable, then x ∈ Λ
2. Abstractions: If x is a variable and M ∈ Λ, then (λx.M) ∈ Λ
3. Applications: If M ∈ Λ and N ∈ Λ, then M N ∈ Λ
4. Grouping: If M is an expression, then (M) ∈ Λ

Here are two important conventions:
1. Function application is left associative, unless stated otherwise by parentheses:

S1S2S3 ≡
(
(S1S2)S3

)
2. Consecutive abstractions can be uncurried, e.g.

λxyz.M ≡ λx.λy.λz.M

3. The body of the abstraction extends to the right as far as possible

λx.M N ≡ λx.(M N )
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6.2.1 Applications

The notation for applying a function to a certain input is modeled by juxtaposition. That is,

f(a) =⇒ f a

where f a means the function f applied on input a. However, since functions themselves could be inputs
and outputs to other functions, we can use a method called currying to create multivariate functions. In
the one below,

f a b , which stands for f(a)(b)

this does not model a multivariate function f that takes two inputs. Rather, f takes one input a and outputs
a function that takes one input b!

Example 6.1 ()

The addition function add(a)(b) can be modeled with 2 steps.
1. It takes the first argument a and outputs a function adda that takes another argument.

add : a 7→ adda

2. adda takes argument b and adds b to the predetermined number a.

adda : b 7→ a+ b

Additionally, the expression
(f a) b , which stands for

(
f(a)

)
(b)

is equivalent to f a b since we have stated that function application is left associative. However,

f (a b) , which stands for f
(
a(b)

)
is a different expression, since now we are applying a onto b first, getting the output, and then applying f
onto the output.

For example

((λx.(λy.x))2)9 = (λy.2) = 9

Using a method called currying, we can actually create multivariate functions. For example, the function

λx.(λy.x+ y)

maps x to the function y 7→ x+ y, which is equivalent to a function mapping (x, y) 7→ x+ y.

6.2.2 Abstractions

To understand abstractions, observe the four examples below (where =⇒ means mapped to).

λ a.b a =⇒ b

λ a.b x a =⇒ b(x)

λ a.(b x) a =⇒
(
b(x)

)
(λ a.b) x (a =⇒ b)(x)

In the second example, note that since the body of the abstraction extends to the far right as possible (i.e.
the λ abstraction is greedy), it outputs the entire b x. The extra parentheses in the third line is not needed
because of this convention. However, the parentheses in the fourth line is nontrivial. It says that λ a.b
outputs a function that acts on x. Finally, we are allowed to nest functions as such:

λ a.λ b.a a =⇒ b =⇒ a

The outermost λ takes in an a and returns a function that takes in a b, which in turn outputs the a. Note
that λ a.λ b.a = λ a.(λ b.a).
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6.2.3 Beta Reduction

β-reduction refers to the process in simplifying a λ expression.

Example 6.2 ()

We can β reduce the expression into its simplest form, called the beta normal form.

((λ a.a) λ b.λ c.b)(x) λ e.f = (λ b.λ c.b)(x) λe.f

= (λ c.x) λ e.f

= x

6.2.4 Combinators

Like transistors and Boolean gates, combinators are the atoms of more complicated functions in lambda
calculus. We list five of them. Note that the cardinal can be build from other combinators.

Smyb Bird λ-Calculus Use
I Idiot λ a.a identity
M Mockingbird λ f.ff self-application
K Kestrel λ ab.a first, const
KI Kite λ ab.b = KI = CK second
C Cardinal λ fab.fba reverse arguments

6.2.5 Free and Bound Variables

In an abstraction like λx.x, the variable x is something that has no original meaning but is a placeholder
(i.e. it only has meaning within the λ function). We say that x is a variable bound to the λ. On the
other hand, in λx.y i.e. a function which always returns y whatever it takes, y is a free variable since it has
an independent meaning by itself. Because a variable is bound in some sub-expression does not mean it is
bound everywhere. For example, the following is a valid expression (an example of application)

(λx.x)(λy.yx)

Here, the x in the second parenthesis has nothing to do with the one in the first. Formally,

Definition 6.7 ()

x is free...
1. in the expression x
2. in the expression λy.M if x ̸= y and x is free in M
3. in M N if x is free in M or if it is free in N

x bound...
1. in the expression λx.M
2. in M N if x is bound in M or if it is bound in N

Note that a variable can be both bound and free but they represent different things. An expression with no
free variables is called a closed expression.

In addition, the concept of α equivalence states that any bound variable is a placeholder and can be replaced
with a different variable, provided there are no clashes. A simple example is

λx.x =α λy.y

However,
λx.(λx.x) =α λy.(λx.x) but not to λy.(λx.y)

37/ 60



Muchang Bahng Spring 2025

Example 6.3 ()

The following λ expression can be simplified as such:(
λx.(λx.x)

)
y =α λy.y =α λx.x

6.2.6 Booleans as Functions

Note that we can now define Booleans as functions! We can define a function f that outputs, one element if
it is the True function and outputs another element if it is the False function. This can be done by defining:

T (a, b) = λx.λy.x(a)(b) = a (the Kestrel!)
F (a, b) = λx.λy.y(a)(b) = b (the Kite!)

Similarly, we can define the not function using the Cardinal.

Symb Name λ-Calculus Use
T True λ ab.a = K encoding for True
F False λ ab.b encoding for False

Not λ p.pFT = C negation

It is easy to see C as the negation function since

K(a)(b) = a =⇒ CK(a)(b) = b

KI(a)(b) = b =⇒ CKI(a)(b) = a

With this, we can build more complex logic gates, making the lambda calculus equivalent in computing power
to NAND-CIRC programs. Similarly, we can cleverly implement recursion and arrays into this language,
therefore making the lambda calculus Turing complete. To implement infinite loops, consider the λ expression

λx.xx λx.xx

If we try to simply this expression by invoking the left hand function on the right one, then we just get
another copy of this expression.

The Turing equivalence of the computing models we have talked about can be visualized below:

Turing Machines

RAM Machines

1,2-dim. cellular automata

λ-calculus

NAND-RAM Programs

NAND-TM Programs

General Purpose programs

Syntactic Sugar

7 Universality
It turns out that uniform models such as Turing machines or NAND-TM programs allow us to obtain a
truly universal Turing machine U that can evaluate all other machines, including machines that are more
complex than U itself. Similarly, there is a Universal NAND-TM program U ′ that can evaluate all NAND-TM
programs, including programs that have more lines than U ′.
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The existence of such a universal program/machine underlies the technological advances made up to now.
Rather than producing special purpose calculating devices such as the abacus, the slide ruler, and machines
that compute various trigonometric series, this universal property allows us to build a machine that, via
software, can be extended to do arbitrary computations, i.e. a general purpose computer.

Theorem 7.1 (Universal Turing Machine)

There exists a Turing machine U such that on every string M which represents a Turing machine
and x ∈ {0, 1}∗,

U(M,x) = M(x)

That is, if the machine M halts on x and outputs some y ∈ {0, 1}∗, then U(M,x) = y and if M does
not halt on x (i.e. M(x) =⊥), then U(M,x) =⊥.

There is more than one Turing machine U that satisfies the theorem above.

Definition 7.1 (String representation of Turing machine)

Let M be a Turing machine with k states and size l alphabet

Σ = {σ0, σ1, ..., σl−1}

(We use the convention σ0 = 0, σ1 = 1, σ2 = ∅, σ3 = ▷. We represent M as the triple (k, l, T ), where
T is the table of valies for δM :

T =
(
δM (0, σ0), δM (0, σ1), ..., δM (k − 1, σl−1)

)
where each value δM (s, σ) is a triple (s′, σ′, d) with s′ ∈ [k], σ′ ∈ Σ, and d a number in {0, 1, 2, 3}
encoding one of {L,R,S,H}. Thus, such a machine M is encoded by a list of 2+3k · l natural numbers.
The string representation of M is obtained by concatenating prefix-free representations of all these
integers. If a string α ∈ {0, 1}∗ does not represent a list of integers in the form above, then we treat
it as representing the trivial Turing machine with one state that immediately halts on every input.

The big takeways so far are:

1. We can represent every Turing machine as a string.

2. Given the string representation of a Turing machine M and an input x, we can simulate M ’s execution
on the input x. That is, if we want to simulate a new Turing machine M , we do not need to build a
new physical machine, but rather can represent M as a string (i.e. using code) and then input M to
the universal machine U .
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8 Time Complexity
The Big O notation is a mathematical notation that describes the limiting behavior of a function when
the argument tends towards a particular value of infinity. That is, if the time it takes for an algorithm to
complete a problem with input size n is given by f(n), then we say that the computational complexity is of
the order O(f(n)). More formally, we can define it as such:

Definition 8.1 (Big-O Notation)

Let f and g be (nonnegative) real-valued functions both defined on the positive integers, and let g(x)
be strictly positive for all large enough values of x. One writes

f(x) = O
(
g(x)

)
as x → ∞

if the absolute value of f(x) is at most a positive constant multiple of g(x) for all sufficiently large
values of x. That is, f(x) = O

(
g(x)

)
if there exist positive integers M and n0 such that

f(n) ≤ Mg(n) for all n ≥ n0

In many contexts, the assumption that we are interested in the growth rate as the variable x goes to
infinity is left unstated, and one write more simply that

f(x) = O
(
g(x)

)
Example 8.1 (Simple Runtime Calulation for Polynomials)

Let there be a program that given input with length x, takes f(x) = 6x4 − 2x3 + 5 steps to solve
whatever problem needs to be solved. Then, using the simplification steps above, we have

f(x) = O(x4) (32)

When talking about running time, what we care about is the scaling behavior of the number of steps as the
input size grows (as opposed to a fixed number).

8.1 Formally Defining Running Time
We can informally define what it means for a function F : {0, 1}∗ −→ {0, 1}∗ to be computable in time T (n)
steps, where T is some function mapping the length n of the input to the number of computation steps
allowed.

Definition 8.2 ()

Let T : N −→ N be some function. We say that a function F : {0, 1}∗ −→ {0, 1}∗ is computable in
T (n) Turing Machine time (TM-time for short) if there exists a Turing machine M such that
for every sufficiently large n and every x ∈ {0, 1}n, the machine halts after executing at most T (n)
steps and outputs F (x).
We define TIMETM

(
T (n)

)
to be the set of Boolean functions ({0, 1}∗ −→ {0, 1}) that are computable

in T (n) TM time. Note that TIMETM

(
T (n)

)
is a class of functions, not machines.

With this, we can formally define what is means for function F : {0, 1}∗ −→ {0, 1} to be computable in time
at most T (n) where n is the size of the input. Furthermore, the property of considering only "sufficiently
large" n’s is not very important but it is convenient since it allows us to avoid dealing explicitly with
uninteresting "edge cases." We have also defined computability with Boolean functions for simplicity, but
we can generalize this further.
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8.1.1 Polynomial and Exponential Time

Definition 8.3 ()

A decision problem is a problem that can be posed as a yes-no question on an infinite set of inputs.
A method for solving a decision problem, given in the form of an algorithm, is called a decision
procedure for that problem. A decision problem which can be solved by an algorithm is called
decidable.

It is traditional to define the decision problem as the set of possible inputs together with the set of inputs
for which the answer is yes, and the set of inputs (i.e. the domain) can be numbers, floats, strings, etc.

Example 8.2 ()

Two examples of decision problems are:
1. Deciding whether a given natural number is prime.
2. Given two numbers x and y, does x evenly divide y? The decision procedure can be long

division.

Definition 8.4 ()

The two main time complexity classes are defined:
1. Polynomial time: A function F : {0, 1}∗ −→ {0, 1} is computable in polynomial time if

it is in the class
P =

⋃
c∈{1,...m}

TIMETM

(
nc

)
, m ∈ N

That is, F ∈ P if there is an algorithm to compute F that runs in time at most polynomial in
the length of the input.

2. Exponential time: A function F : {0, 1}∗ −→ {0, 1} is computable in exponential time
if it is in the class

EXP =
⋃

c∈{1,...,m}

TIMETM

(
2n

c)
That is, F ∈ EXP if there is an algorithm to compute F that runs in time at most exponential
in the length of the input.

Summarizing this, we say that F ∈ P if there is a polynomial p : N −→ R and a Turing machine M
such that for every x ∈ {0, 1}∗, when given input x, the Turing machine halts within at most p(|x|)
steps and outputs F (x).
We say that F ∈ EXP if there is a polynomial p : N −→ R and a Turing machine M such that for
every x ∈ {0, 1}∗, when given input x, M halts within at most 2p(|x|) steps and outputs F (x).

Lemma 8.1 ()

Since exponential time is much larger than polynomial time,

P ⊂ EXP

Time complexity for the previous algorithms are as follows:
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P EXP (not known to be P)
Shortest path Longest path
Min cut Max cut
2SAT 3SAT
Linear eqs Quad eqs
Zerosum Nash
Determinant Permanent
Primality Factoring

Many technological developments are centered around these facts. For example, the exponential time com-
plexity of factoring algorithms is what makes the RSA-encryption so secure. If a polynomial time algorithm
for factoring were to be discovered, RSA-encryption would be rendered obsolete.

8.2 Modeling Running Time Using RAM Machines/NAND-RAM
Despite the theoretical elegance of Turing machines, RAM machines and NAND-RAM programs are much
more closely related to actual computing architecture. For example, even a "merge sort" program cannot
be implemented on a Turing machines in O(n log n) time. We can define running time with respect to
NAND-RAM programs just as we did for Turing machines.

Definition 8.5 ()

Let T : N −→ N. We say that a function F : {0, 1}∗ −→ {0, 1}∗ is computable in T(n) RAM time
(RAM-time for short) if there exists a NAND-RAM program P such that for every sufficiently
large n and every x ∈ {0, 1}n, when given input x, the program P halts after executing at most T (n)
lines and outputs F (x).
We define TIMERAM

(
T (n)

)
to be the set of Boolean functions ({0, 1}∗ −→ {0, 1}) that are com-

putable in T (n) RAM time.

We will use TIME
(
T (n)

)
to denote TIMERAM

(
T (M)

)
. However, as long as we only care about the difference

between exponential and polynomial time, the model of running time we use does not make much difference.
The reason is that Turing machines can simulate NAND-RAM programs with at most a polynomial overhead.

Theorem 8.1 (Relating RAM and Turing machines)

Let T : N −→ N be a function such that T (n) ≥ n for every n and the map n 7→ T (n) can be
computed by a Turing machine in time O(T (n)). Then,

TIMETM

(
T (n)

)
⊆ TIMERAM

(
10 · T (n)

)
⊆ TIMETM

(
T (n)4

)
We can visually see this classification as

TIMETM

(
T (n)

)
TIMERAM

(
T (n)

)
TIMETM

(
T (n)4

)

With this, we could have equally defined P as the class of functions computable by NAND-RAM pro-
grams (instead of Turing machines) that run in polynomial time in the length of the input. Similarly, with
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T (n) = 2n
a

, we see that the class EXP can also be defined as the set of functions computable by NAND-
RAM programs in time at most 2p(n) where p is some polynomial. This justifies the choice of P as capturing
a technology-independent notion of tractability. Therefore, all "reasonable" computational models are equiv-
alent if we only care about the distinction between polynomial and exponential, with reasonable referring to
all scalable computational models that have been implemented except possibly quantum computers.

When considering general time bounds, we need to make sure to rule out some "exceptional" cases such as
functions T that don’t give enough time for the algorithm to even read the input, or functions where the
time bound itself is uncomputable. More precisely, T must be a nice function.

Definition 8.6 ()

That is why we say that the function T : N −→ N is a nice time bound function (nice function
for short) if

1. for every n ∈ N T (n) ≥ n (T allows enough time to read the input)
2. for every n′ ≥ n, T (n′) ≥ T (n) (T allows more time on longer inputs)
3. the map F (x) = 1T (|x|) (i.e. mapping a string of length n to a sequence of T (n) ones) can be

computed by a NAND-RAM program in O(T (n)) time

So, the following are examples of polynomially equivalent models:

1. Turing machines

2. NAND-RAM programs/RAM machines

3. All standard programming languages, including C/Python/Javascript...

4. The λ calculus

5. Cellular automata

6. Parallel computers

7. Biological computing devices such as DNA-based computers

The Extended Church Turing Thesis is the statement that this is true for all physically realizable computing
models. In other words, the extended Church Turing thesis says that for every scalable computing device C
(which has a finite description but can be in principle used to run computation on arbitrarily large inputs),
there is some constant a such that for every function F : {0, 1}∗ −→ {0, 1} that C can compute on n length
inputs using an S(n) amount of physical resources. This is a strengthening of the plain Church Turing
Thesis, which states that the set of computable functions is the same for all physically realizable models,
but without requiring the overhead in the simulation between different models to be at most polynomial.

Like the Church-Turing thesis itself, the extended Church-Turing thesis is in the asymptotic setting and does
not directly yield an experimentally testable prediction. However, it can be instantiated with more concrete
bounds on the overhead, yielding experimentally- testable predictions such as the Physical Extended Church-
Turing Thesis.

8.3 Efficient Universal Machine: A NAND-RAM Interpreter in NAND-RAM
We can now see that the universal Turing machine U , which can compute every Turing machine M , has a
polynomial overhead for simulating a NAND − TM program. That is, it can simulate T steps of a given
NAND − TM (or NAND − RAM) program P on an input x in O(T 4) steps. But in fact, by directly
simulating NAND −RAM programs we can do better with only a constant multiplicative overhead.
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Theorem 8.2 (Efficient Universality of NAND-RAM)

There exists a NAND-RAM program U satisfying the following:
1. U is a universal NAND-RAM program: For every NAND-RAM program P and input x,

U(P, x) = P (x) where by U(P, x) we denote the output of U on a string encoding the pair
(P, x).

2. U is efficient : There are some constants a, b such that for every NAND − RAM program P ,
if P halts on input x after most T steps, then U(P, x) halts after at most C · T steps where
C ≤ a|P |b.

This leads to a corollary. Given any Turing machine M , input x, and step budget T , we can simulate the
execution for M for T steps in time that is polynomial in T . Formally, we define a function TIMEDEV AL
that takes the three parameters M,x, and the time budget, and outputs M(x) if M halts within at most T
steps, and outputs 0 otherwise. That is, let TIMEDEV AL : {0, 1}∗ −→ {0, 1}∗ be the function defined as

TIMEDEV AL(M,x, 1T ) =

{
M(x) M halts within ≤ T steps on x

0 else

Then, TIMEDEV AL ∈ P, i.e. the timed universal Turing machine computes TIMEDEV AL in polynomial
time.

8.4 The Time Hierarchy Theorem
Some functions are uncomputable, but are there functions that can be computed, but only at an exorbitant
cost? For example, is there a function that can be computed in time 2n, but cannot be computed in time
20.9n? It turns out that the answer is yes.

Theorem 8.3 (Time Hierarchy Theorem)

For every nice function T : N −→ N, there is a function F : {0, 1}∗ −→ {0, 1} in

TIME
(
T (n) log n

)
\ TIME

(
T (n)

)
There is nothing special about log n. We could have used any other efficiently computable function
that ends to infinity with n.

8.5 Non-Uniform Computation

9 Polynomial-Time Reductions
Let us redefine some of the problems into decision problems.

3SAT The 3SAT problem can be phrased as the function 3SAT : {0, 1}∗ −→ {0, 1} that takes as an input
a 3CNF formula φ (i.e. a formula of the form C0 ∧ ... ∧ Cm−1 where each Ci of the OR of three iterables)
and maps φ to 1 if there exists some assignment to the variables of φ that causes it to evaluate to true and
to 0 otherwise. For example,

3SAT
(
(x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x0 ∨ x2 ∨ x3)

)
= 1

since the assignment x = 1101 satisfies the input formula.

Quadratic Equations The quadratic equations problem corresponds to the function QUADEQ : {0, 1}∗ −→
{0, 1} that maps a set of quadratic equations E to 1 if there is an assignment x that satisfies all equations
and to 0 otherwise.
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Longest Path The longest path problem correpsonds to the function LONGPATH : {0, 1}∗ −→ {0, 1}∗
that maps a graph G and a number k to 1 if there is a simple path in G of length at least k, and maps (G, k)
to 0 otherwise.

Maximum Cut The maximum cut problem corresponds to the function MAXCUT : {0, 1}∗ −→ {0, 1}
that maps a graph G and a number k to 1 if there is a cut in G that cuts at least k edges, and maps (G, k)
to 0 otherwise.

All of these problems above are in EXP but it is not known whether or not they are in P. However, we can
reduce these problems to ones that are in P, proving that they are indeed in P.

9.1 Polynomial-Time Reductions
Suppose that that F,G : {0, 1}∗ −→ {0, 1} are two Boolean functions. A polynomial-time reduction (or
reduction) from F to G is a way to sho that F is "no harder" than G in the sense that a polynomial-time
algorithm for G implies a polynomial-time algorithm for F .

Definition 9.1 (Polynomial-time reductions)

Let F,G : {0, 1}∗ −→ {0, 1}. We say that F reduces to G, denoted by F ≤p G, if there is a
polynomial-time computable R : {0, 1}∗ −→ {0, 1}∗ such that for every x ∈ {0, 1}∗,

F (x) = G
(
R(x)

)
We say that F and G have equivalent complexity if F ≤p G and G ≤p F . Clearly, ≤p is a
transitive property.

9.2 Reducing 3SAT to Zero-One and Quadratic Equations

Definition 9.2 ()

The Zero-One Linear Equations problem corresponds to the function

01EQ : {0, 1}∗ −→ {0, 1}

whose input is a collection E of linear equations in variables x0, ..., xn−1, and the output is 1 iff there
is an assignment x ∈ {0, 1}n satisfying the matrix equation

Ax = b, A ∈ Mat(m× n, {0, 1}), b ∈ Nm

For example, if E is a string encoding the set of equations

x0 + x1 + x2 = 2

x0 + x2 = 1

x1 + x2 = 2

then 01EQ(E) = 1 since the assignment x = 011 satisfies all three equations.

Note that if we extended the field to R, then this can be solved using Gaussian elimination in polynomial
time, but there is no known efficiently algorithm to solve 01EQ. This is stated in the following theorem.

Theorem 9.1 (Hardness of 01 Linear Equations)

3SAT ≤p 01EQ
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This means that finding an efficient algorithm to solve 01EQ would imply an algorithm for 3SAT . We can
further use this to reduce 3SAT to the quadratic equations problem, where QUADEQ(p0, ..., pm−1) = 1 if
and only if there is a solution x ∈ Rn to the equations pi(x) = 0 for i = 0, ...,m − 1. For example, the
following is a set of quadratic equations over the variables x0, x1, x2:

x2
0 − x0 = 0

x2
1 − x1 = 0

x2
2 − x2 = 0

1− x0 − x1 + x0x1 = 0

Theorem 9.2 (Hardness of Quadratic Equations)

3SAT ≤p QUADEQ

9.3 Independent Set and Other Graph Problems

Definition 9.3 ()

For a graph G = (V,E), an independent set, also known as a stable set, is a subset S ⊆ V such
that there are no edges with both endpoints in S (in other words, E(S, S) = ∅). Trivially, every
singleton (of one point) is an independent set.

The maximum independent set problem is the task of finding the largest independent set in the graph.
The independent set problem is naturally related to scheduling problem: if we put an edge between two
conflicting tasks, then an independent set corresponds to a set of tasks that can all be scheduled together
without conflicts.

Theorem 9.3 (Hardness of Independent Set)

3SAT ≤p ISET

Definition 9.4 ()

A vertex cover in a graph G = (V,E) is a subset S ⊆ V of vertices that touches all edges of G. For
example, the following blue nodes is a vertex cover of the graph.

1

2

3

4

5

6

7

The vertex cover problem is the task to determine, given a graph G and a number k, whether

46/ 60



Muchang Bahng Spring 2025

there exists a vertex cover in the graph with at most k vertices. Formally, this is the function

V C : {0, 1}∗ −→ {0, 1}

such that for every G = (V,E) and k ∈ N, V C(G, k) = 1 if and only if there exists a vertex cover
S ⊂ V such that |S| ≤ k.

Theorem 9.4 ()

3SAT ≤p V C

Definition 9.5 ()

A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the
graph are adjacent, i.e. connected by an edge.
The maximum clique problem corresponds to the function

CLIQUE : {0, 1}∗ −→ {0, 1}

such that for a graph G and a number k, CLIQUE(G, k) = 1 iff there is a subset S of k vertices
such that for every distinct u, v ∈ S, the edge u, v is in G. For example, in the graph below, the left
subset of 4 vertices is indeed a clique, while the right subset of 4 is not since the edge connecting 6
to 7 is not present.

1

2

3

4 5

6

7

8

Theorem 9.5 ()

CLIQUE ≤p ISET and ISET ≤p CLIQUE

Definition 9.6 ()

A dominating set in a graph G = (V,E) is a subset S ⊂ V of vertices such that for every u ∈ V \S
is a neighbor in G

9.3.1 Anatomy of a Reduction

A reduction from problem F to a problem G is an algorithm that maps an input x for F to an input R(x)
for G. To show that the reduction is correct we need to show the properties of:

1. efficiency : algorithm R runs in polynomial time
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2. completeness: if F (x) = 1, then G(R(x)) = 1

3. soundness: if F (R(x)) = 1, then G(x) = 1

Therefore, proving that problem G is a reduction of problem F is equivalent to showing the three properties
above.

We finally reduce the 3SAT problem to the longest path problem.

Theorem 9.6 (Hardness of Longest Path)

3SAT ≤p LONGPATH

That is, an efficient algorithm for the longest path problem would imply a polynomial-time algorithm for
3SAT. Therefore, we have shown that 3SAT is no harder than Quadratic Equations, Independent Set,
Maximum Cut, and Longest Path.

10 NP, NP Completeness, and Cook-Levin Theorem
All of the problems that we have talked about are search problems, where the goal is to decide, given an
instance x, whether there exists a solution y that satisfies some condition that can verified in polynomial
time. For example, in 3SAT, the instance is a formula and the solution is an assignment to the variable; in
Max-Cut the instance is a graph and the solution is a cut in the graph; and so on and so forth. It turns out
that every such search problem can be reduced to 3SAT.

10.1 The Class NP
Intuitively, the class NP corresponds to the class of problems where it is easy to verify a solution (i.e.
verification can be done by a polynomial-time algorithm). For example, finding a satisfying assignment to a
2SAT or 3SAT formula is such a problem, since if we are given an assignment to the variables of a 2SAT or
3SAT formula then we can efficiently verify that it satisfies all constraints.

That is, a Boolean function F is in NP if F has the form that on input string x, F (x) = 1 if and only if there
exists a "solution" string w such that the pair (x,w) satisfies some polynomial-time checkable condition.

Definition 10.1 (NP - Nondeterministic Polynomial Time)

We say that F : {0, 1}∗ −→ {0, 1} is in NP if there exists some integer a > 0 and V : {0, 1}∗ −→ {0, 1}
such that V ∈ P and for every x ∈ {0, 1}n,

F (x) = 1 ⇐⇒ there exists w ∈ {0, 1}n
a

s.t. V (xw) = 1

That is, for F to be in NP, there needs to exist some polynomial time computable verification function
V such that if F (x) = 1, then there must exist w (of length polynomial in |x|) such that V (xw) = 1,
and if F (x) = 0 then for every such w, V (xw) = 0. Since the existence of this string w certifies that
F (x) = 1, w is often called the certificate, witness, or proof that F (x) = 1.

Some problems that are NP are:

1. 3SAT ∈ NP since for every l-variable formula φ, 3SAT (φ) = 1 if and only there exists a satisfying
assignment x ∈ {0, 1}l such that φ(x) = 1, and we can check this condition in polynomial time.

2. QUADEQ ∈ NP since for every l-variable instance of quadratic equations E, QUADEQ(E) = 1 if
and only if there exists an assignment x ∈ {0, 1}l that satisfies E. We can check the condition that x
satisfies E in polynomial time by enumerating over all the equations in E, and for each such equation
e, plug in the values of x and verify that e is satisfied.
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3. ISET ∈ NP since for every graph G and integer k, ISET (G, k) = 1 if and only if there exists a
set S of k vertices that contains no pair of neighbors in G. We can check the condition that S is an
independent set of size ≥ k in polynomial time by first checking that |S| ≥ k and then enumerating
over all edges {u, v} in G, and for each such edge verify that either u ̸= S or v ̸= S.

4. LONGPATH ∈ NP since for every graph G and integer k, LONGPATH(G, k) = 1 if and only if
there exists a simple path P in G that is of length at least k. We can check the condition that P is a
simple path of length k in polynomial time by checking that it has the form (v0, v1, ..., vk) where each
vi is a vertex in G, no vi is repeated, and for every i ∈ [k], the edge {vi, vi+1} is present in the graph.

5. MAXCUT ∈ NP since for every graph G and integer k, MAXCUT (G, k) = 1 if and only if there
exists a cut (S, S) in G that cuts at least k edges. We can check that condition that (S, S) is a cut
of value at least k in polynomial time by checking that S is a subset of G’s vertices and enumerating
over all the edges {u, v} of G, counting those edges such that u ∈ S and v ̸∈ S or vice versa.

Theorem 10.1 ()

Verifying is no harder than solving:
P ⊆ NP

Furthermore,
P ⊆ NP ⊆ EXP

P

NP

EXP

Proof.

Suppose that F ∈ P. Define the following function V :

V (x0n) =

{
1 iff n = |x|, F (x) = 1

0 else

Since F ∈ P, we can clearly compute V in polynomial time as well. Let x ∈ {0, 1}n be some string.
If F (x) = 1 then V (x0n) = 1. On the other hand, if F (x) = 0 then for every w ∈ {0, 1}n, V (xw) = 0.
Therefore, setting a = 1 (i.e. w ∈ {0, 1}n1

), we see that V satisfies the NP condition.

10.2 NP Hard and NP Complete Problems
There are countless examples of problems for which we do not know if their best algorithm is polynomial
or exponential, but we can show that they are in NP; that is, we don’t know if they are easy to solve, but
we do know that it is easy to verify a given solution. There are many other functions that we would like to
compute that are easily shown to be in NP. In fact, it we can solve 3SAT then we can solve all of them!
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Theorem 10.2 (Cook-Levin Theorem)

For every F ∈ NP,
F ≤p 3SAT

This immediately implies that QUADEQ,LONGPATH, and MAXCUT (and really, every F ∈ NP) all
reduce to 3SAT , meaning that all these problems are equivalent! All of these problems are the "hardest in
NP" since an efficient algorithm for any one of them would imply an efficient algorithm for all the problems
in NP.

Definition 10.2 ()

Let G : {0, 1}∗ −→ {0, 1}. We say that G is NP hard if for every F ∈ NP, F ≤p G. We say that G
is NP complete if G is NP hard and G ∈ NP.

Therefore, despite their differences, 3SAT, quadratic equations, longest path, independent set, maximum
cut, and thousands of other problems are all NP complete. Again, this means that if a single NP complete
problem has a polynomial-time algorithm, then there is such a polynomial-time algorithm for every decision
problem that corresponds to the existence of an efficiently verifiable solution (i.e. is NP), which would imply
that P = NP.

10.3 P = NP?
However, a polynomial-time algorithm for even a single one of the NP complete problems has even been
found, proving support that P ̸= NP

One of the mysteries of computation is that people have observed a certain empirical “zero-one law” or
“dichotomy” in the computational complexity of natural problems, in the sense that many natural problems
are either in P (often in TIME(O(n)) or TIME(O(n2))), or they are NP hard. This is related to the fact
that for most natural problems, the best known algorithm is either exponential or polynomial, rather than
any strange function in between.

However, it is believed that there exist problems in NP that are neither in P nor are NP complete, and in
fact a result known as Lander’s Theorem shows that if P ̸= NP, then this is indeed the case. Therefore,
we are left with two cases:

1. If P ̸= NP, meaning that P is a strict subset of NP and by Lander’s theorem, NP complete problems
do not cover all of NP \P. (left)

2. If P = NP, meaning that P = NP = NP complete. (right)

P NP-Complete

P = NP =

NP-complete

problem that is neither P nor NP complete (by Lander’s Theorem)
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10.4 NANDSAT, 3NAND Problems

Definition 10.3 ()

The function NANDSAT : {0, 1}∗ −→ {0, 1} is defined as follows:
1. The input to NANDSAT is a string Q representing a NAND-CIRC program (or equivalently,

a circuit with NAND gates)
2. The output of NANDSAT on input Q is 1 if and only if there exists a string w ∈ {0, 1}n

(where n is the number of inputs to Q) such that Q(w) = 1.

Definition 10.4 ()

The 3NAND problem is defined as follows:
1. The input is a logical formula Ψ on a set of variables z0, ..., zr−1 which is an AND of constraints

of the form zi = NAND(zj , zk).
2. The output is 1 is and only if there is an input z ∈ {0, 1}r that satisfies all of the constraints.

Example 10.1 ()

The following is a 3NAND formula with 5 variables and 3 constraints:

Ψ =
(
z3 = NAND(z0, z2)

)
∧
(
z1 = NAND(z0, z2)

)
∧
(
z4 = NAND(z3, z1)

)
In this case 3NAND(Ψ) = 1, since the assignment z = 01010 satisfies it. Given a 3NAND formula
Ψ of r variables and an assignment z ∈ {0, 1}r, we can check in polynomial time whether Ψ(z) = 1,
and hence 3NAND ∈ NP.

Theorem 10.3 ()

NANDSAT and 3NAND is NP complete.
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11 Intractability

11.1 Uncomputable Functions
Even though NAND-CIRC programs can compute every finite function f : {0, 1}n −→ {0, 1}, NAND-TM
programs can not compute every function F : {0, 1}∗ −→ {0, 1}. That is, there exists such a function that
is uncomputable!

Definition 11.1 ()

Let HALT : {0, 1}∗ −→ {0, 1} be the function such that for every string M ∈ {0, 1}∗, HALT (M,x) =
1 if Turing machine M halts on the input x and HALT (M,x) = 0 otherwise.

Theorem 11.1 ()

The HALT function is not computable. This leads to many other functions also being uncomputable.

It is surprising that such a simple program is actually uncomputable. That is, there is no general procedure
that would determine for an arbitrary program P whether it halts or not.

11.2 Impossibility of General Software Verification

Definition 11.2 ()

Let there be a program P that computes a function. A semantic property or semantic specifi-
cation of a program means properties of the function that the program computes, as opposed to the
properties that depend on the particular syntax/code used by the program.

Example 11.1 ()

A semantic property of a program P is the property that whenever P is given an input string with an
even number of 1’s, it outputs 0. Another example is the property that P will always halt whenever
the input ends with a 1.
In contrast the property that a C program contains a comment before every function declaration is
not a semantic property, since it depends on the actual source code as opposed to the input/output
relation.

Example 11.2 ()

Consider the following two C programs:

1 int First(int n) {
2 if (n<0) return 0;
3 return 2*n;
4 }
5

6 int Second(int n) {
7 int i = 0;
8 int j = 0
9 if (n<0) return 0;

10 while (j<n) {
11 i = i + 2;
12 j= j + 1;
13 }
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14 return i;
15 }

First and Second are two distinct C programs, but they compute the same function. Therefore, a
semantic property would either be true for both programs or false for both, since it depends on the
function the programs compute. One example of a semantic property is: The program P computes a
function f mapping integers to integers satisfying that f(n) ≥ n for every input n.
A property is not semantic if it depends on the source code rather than the input/output behavior.
An example of this would be: The program contains the variable k or the program uses the while
operation.

Definition 11.3 (Semantic properties)

A pair of Turing machines M and M ′ are functionally equivalent if for every x ∈ {0, 1}∗, M(x) =
M ′(x) (including when the function outputs ⊥).
A function F : {0, 1}∗ −→ {0, 1} is semantic if for every pair of strings M,M ′ that represent
functionally equivalent Turing machines, F (M) = F (M ′). Note that we assume that every string
represents some Turing machine.

We now present a theorem concerning the Halting problem (the problem of determining whether a Turing
machine will halt or not on any arbitrary input). The Halting problem also turns out to be a linchpin of
uncomputability.

Theorem 11.2 (Rice’s Theorem)

Let F : {0, 1}∗ −→ {0, 1}. If F is semantic and nontrivial, then it is uncomputable.

Corollary 11.1 ()

The following function is uncomputable:

COMPUTES − PARITY (P ) =

{
1 P computes the parity function
0 else

Therefore, we can see that the set R of computable Boolean functions is a proper subset of the set of all
functions mapping {0, 1}∗ −→ {0, 1}.
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12 Probabilistic Computation
It turns out that randomness can actually be a resource for computation, enabling us to achieve tasks much
more efficiently than previously known. This advantage comes from the idea that calculating the statistics
of a system could be done much faster by running several randomized simulations rather than explicit
calculations, and these types of randomized algorithms are known as Monte Carlo algorithms.

12.1 Finding Approximately Good Maximum Cuts
Recall the maximum cut problem of finding, given a graph G = (V,E), the cut that maximizes the number
of edges. This problem is NP-hard, which means that we do not know of any efficient algorithm that can
solve it, but randomization enables a simple algorithm that can cut at least half of the edges.

Theorem 12.1 (Approximating Max Cut)

There is an efficient probabilistic algorithm that on input an n-vertex m-edge graph G, outputs a cut
(S, S) that cuts at least m/2 of the edges of G in expectation.

Proof.

We simply choose a random cut : we choose a subset S of vertices by choosing every vertex v to be a
member of S with probability 1/2 independently. More specifically, upon input of a graph G = (V,E)
with vertices (v0, ..., vn−1), we do

1. Pick x uniformly at random in {0, 1}n
2. Let S ⊆ V be the set {vi | xi = 1, i ∈ [n]} that includes all vertices corresponding to coordinates

of x where xi = 1.
3. Output the cut (S, S).

We claim that the expected number of edges cut by the algorithm is m/2. Indeed, for every edge e ∈ E, let
Xe be the random variable such that Xe(x) = 1 if the edge is cut by x, and let Xe(x) = 0 otherwise. It is
not hard to see that the probability of Xe(x) = 1 is 1

2 (when exactly one of the vertices are in S), and hence

E(Xe) = 1/2

Summing this over all edges and by linearity of expectation, we get

E(X) =
∑
e∈E

E(Xe) = m · 1
2
=

m

2

In fact, for every graph G, the algorithm is guaranteed to cut half of the edges of the input graph in
expectation.

12.1.1 Amplifying the success of randomized algorithms

But note that expectation does not imply concentration. Luckily, we can amplify the probability of success
by repeating the process several times and outputting the best cut we find. We assume that the probability
that the algorithm above succeeds in cutting at least m/2 edges is not too tiny.

Lemma 12.1 ()

The probability that a random cut in an m edge graph cuts at least m/2 edges is at least 1
2m .
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Proof.

This is quite trivial when looking at specific cases. For example, take the case when m = 1000 edges.
In this case, one can shot that we will cut at least 500 edges with probability at least 0.001 (and
so in particular larger then 1

2m = 1
2000 ). Specifically, if we assume otherwise, then this means that

with probability more than 0.999 the algorithm cuts 499 or fewer edges. But since we can never cut
more than the total of 1000 edges, given this assumption, the highest value of the expected number
of edges cut is if we cut exactly 499 edges with probability 0.999 and cut 1000 edges with probability
0.001. But this leads to the expectation being

0.999 · 499 + 0.001 · 1000 < 500

which contradicts the fact that the expectation to be at least 500 in the previous theorem. General-
izing this to m edges, we find that the expected number of edges cut is

pm+ (1− p)
(m
2

− 1

2

)
≤ pm+

m

2
− 1

2

But since p < 1
2m =⇒ pm < 0.5, the right hand side is smaller than m/2, contradicting the fact

that the expected number of edges cut is at least m/2.

12.1.2 Success Amplification

To increase the chances of success, we simply need to repeat our program many times, with fresh randomness
each time, and output the best cut we get in one of these repetitions. It turns our that if we repeat this
experiment 2000m times, then by using the inequality(

1− 1

k

)k

≤ 1

e
≤ 1

2

we can show that the probability that we will never cut at least m/2 edges is at most(
1− 1

2m

)2000m

≤ 2−1000

This can be generalized in the following lemma.

Lemma 12.2 ()

There is an algorithm that on input graph G = (V,E) and a number k, runs in polynomial time in
|V | and k and outputs a cut (SS) such that

P
(
number of edges cut by (S, S) ≥ |E|

2

)
≥ 1− 2−k

Proof.

Just repeat the previous algorithm 200km times and compute the probability of failure.

12.1.3 Two-sided Amplification

The analysis above relied on the fact that the maximum has one sided error ; that is, if we get a cut of size
at least m/2 then we know we have succeeded. This is common for randomized algorithms, but it is not the
only case. In particular, consider the task of computing some Boolean function F : {0, 1}∗ −→ {0, 1}. A
randomized algorithm A for computing F , given input x, might toss coins and succeed in outputting F (x)
with probability, say 0.9. We say that A has two sided errors if there is a positive probability that A(x)
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outputs 1 when F (x) = 0 and positive probability that A(x) outputs 0 when F (x) = 1. So, we cannot simply
repeat it k times and output 1 if a single one of those repetitions resulted in 1, nor can we output 0 if a
single one of the repetitions resulted in 0. But we can output the majority value of these repetitions: the
probability that the fraction of the repetitions where A will output F (x) will be at least, say 0.89, will be
exceptionally close to 1 and in such cases we will output the correct answer.

Theorem 12.2 ()

If F : {0, 1}∗ −→ {0, 1} is a function such that there is a polynomial-time algorithm A satisfying

P
(
A(x) = F (x)

)
≥ 0.51

for every x ∈ {0, 1}∗, then there is a polynomial time algorithm B satisfying

P
(
B(x) = F (x)

)
≥ 1− 2−|x|

for every x ∈ {0, 1}∗.

12.1.4 Solving SAT through Randomization

The 3SAT problem is NP hard, and so it is unlikely that it has a polynomial (or even subexponential)
time algorithm. But this does not mean that we can’t do at least somewhat better than the trivial 2n

algorithm for n-variable 3SAT. The best known worst-case algorithms are randomized and are at their base
the following simple algorithm. In this algorithm, called WalkSAT, the input is an n variable 3CNF formula
φ, the parameters are any numbers T, S ∈ N, and the operation is:

1. Repeat the following T steps:

(a) Choose a random assignment x ∈ {0, 1}n and repeat the following for S steps:

i. If x satisfies φ, then output x.

ii. Otherwise, choose a random clause (li∨ lj∨ lk) that x does not satisfy, choose a random literal
in li ∨ lj ∨ lk and modify x to satisfy this literal.

2. If all the T ·S repetitions above did not result in a satisfying assignment, then output Unsatisfiable.

Note that we are only going though at most S · T configurations of x ∈ {0, 1}n, and the running time of
this algorithm is S · T · poly(n). The fact that this algorithm is efficient is taken care of, so now the key
question is how small we can make S and T so that the probability that WalkSAT outputs Unsatisfiable
on a satisfiable formula φ is small. It is known that we can do with

ST = Õ
(
(4/3)n

)
= Õ(1.3

n
)

However, we will prove a weaker bound in the following theorem (which is still much better than the 2n

bound).

Theorem 12.3 (WalkSAT simple analysis)

If we set T = 100
√
3
n

and S = n/2, then the probability we output Unsatisfiable for a satisfiable
φ is at most 1

2 .
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12.1.5 Bipartite Matching

Definition 12.1 ()

A bipartite graph G = (L ∪R,E) has 2n vertices partitioned into n-sized sets L and R, where all
edges have one endpoint in L and the other in R.

1

2

3

4

a 5

6

7

8

L R

A matching problem is a type of problem where we match nodes to each other with edges. One variant of
it is called the bipartite perfect matching. The goal is to determine whether there is a perfect matching, a
subset M ⊆ E of n disjoint edges that connects every vertex L to a unique vertex in R.

It turns out that by reducing this problem of finding a matching in G to finding a maximum flow (or
equivalently, a minimum s, t cut) in a related graph G′ (below), we can solve it in polynomial time.

1

2

3

4

a 5

6

7

8

S T

However, there is a different probabilistic algorithm to do this. Let G’s vertices be labeled as L = {l0, ..., ln−1}
and R = {r0, ..., rn−1}. A matching M corresponds to a permutation π ∈ Sn where for ever i ∈ [n], we define
π(i) to be the unique j such that M contains the edge {li, rj}. Define an n × n matrix A = A(G) where
Ai,j = 1 if and only if {li, rj} is present and Ai,j = 0 otherwise. The correspondence between matchings and
permutations implies the following claim.
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Lemma 12.3 (Matching polynomial)

Define P = P (G) to be the polynomial mapping Rn2

to R where

P (x0,0, ..., xn−1,n−1 =
∑
π∈Sn

( n−1∏
i=0

sign(π)Ai,π(i)

) n−1∏
i=0

xi,π(i)

In fact, given the matrix A representing the graph, the polynomial above is the determinant of the
matrix A(x), which is obtained by replaying Ai,j with Ai,jxi,j . Then G has a perfect matching if and
only if P is not identically zero (i.e. if there exists some assignment x = (xi,j)i,j∈[n] ∈ Rn2

such that
P (x) ̸= 0.

This reduces testing perfect matching to testing whether a given polynomial P (·) is identically 0 or not. The
kernel of most multivariate nonzero polynomials form a strictly lower dimensional space than the total space,
so in order to do this, we just choose a "random" input x and check if P (x) ̸= 0. However, to transform this
into an actual algorithm, we can’t work in the real numbers with our finite computational power. We use
the following.

Theorem 12.4 (Schwartz-Zippel Lemma)

For every integer q and polynomial P : Rn −→ R with integer coefficients, if P has degree at most d
and is not identically zero, then it has at most dqn−1 roots in the set

[q]n =
{
(x0, ..., xn−1) | xi ∈ {0, 1, ..., q − 1}

}
Therefore, upon an input of a bipartite graph G on 2n vertices {l0, ..., ln−1, r0, ..., rn−1}, the Perfect-Matching
algorithm can be divided into these steps:

1. For every i, j ∈ [n], choose xi,j independently at random from [2n] = {0, ..., 2n− 1}.

2. Compute the determinant of the matrix A(x) whose i, jth entry equals xi,j if the edge {li, rj} is present
and 0 otherwise.

3. Output no perfect matching if determinant is 0, and output perfect matching otherwise.

12.2 Modeling Randomized Computation
While we have described randomized algorithms in an informal way, we haven’t addressed two questions:

1. How do we actually efficiently obtain random strings in the physical world?

2. What is the mathematical model for randomized computations, and is it more powerful than deter-
ministic computation?

The first question is important, but we will assume that there are various physical sources of random or
unpredictable data, such as a user’s mouse movements, network latency, thermal noise, and radioactive decay.
For example, many Intel chips come with a random number generator built in. We will focus on the second
question.

Modeling randomized computation is actually quite easy. We can add the operation

foo = RAND()

in addition to things like the NAND operator to any programming language such as NAND-TM, NAND-
RAM, NAND-CIRC, etc., where foo is assigned to a random bit in {0, 1} independently every time it is
called. These are called RNAND-TM, RNAND-RAM, and RNAND-CIRC, respectively.
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Similarly, we can easily define randomized Turing machines as Turing machines in which the transition
function δ gets an extra input (in addition to the current state and symbol read from the tape) a bit b that
in each step is chosen at random in {0, 1}. Of course the function can ignore this bit (and have the same
output regardless of whether b = 0 or b = 1) and hence randomized Turing machines generalize deterministic
Turing machines.

We can use the RAND() operation to define the notion of a function being computed by a randomized T (n)
time algorithm for every nice time bound T : N −→ N, but we will only define the class of functions that are
computable by randomized algorithms running in polynomial time.

Definition 12.2 (The class BPP)

Let F : {0, 1}∗ −→ {0, 1}. We say that F ∈ BPP if there exist constants a, b ∈ N and a RNAND-TM
program P such that for every x ∈ {0, 1}∗, on input x, the program P halts within at most a|x|b
steps and

P
(
P (x) = F (x)

)
≥ 2

3

where this probabilty is taken over the result of the RAND operations of P . Note that this probability
is taken only over the random choices in the execution of P and not over the choice of the input x.
That is, BPP is still a worst case complexity class, in the sense that if F is in BPP then there
is a polynomial-time randomized algorithm that computes F with probability at least 2/3 on every
possible (and not just random) input.

We will use the name polynomial time randomized algorithm to denote a computation that can be modeled
by a polynomial-time RNAND-TM program, RNAND-RAM program, or a randomized Turing machine.

Alternatively, we can think of a randomized algorithm A as a deterministic algorithm A′ that takes two
inputs x and r where the input r is chosen at random from {0, 1}m for some m ∈ N. The equivalence to the
previous definition is shown in the following theorem:

Definition 12.3 (Alternative characterization of BPP)

Let F : {0, 1}∗ −→ {0, 1}. Then F ∈ BPP if and only if there exists a, b ∈ N and G : {0, 1}∗ −→ {0, 1}
such that G is in P and for every x ∈ {0, 1}∗,

P
(
G(xr) = F (x)

)
≥ 2

3

where r is chosen at random from {0, 1}a|x|b . As such, if A is a randomized algorithm that on inputs
of length n makes at most m coin tosses, we will often use the notation A(x; r) (where x ∈ {0, 1}n
and r ∈ {0, 1}m to refer to the result of executing x when the coin tosses of A correspond to the
coordinates of r. This second input r is sometimes called a random tape.

The relationship between BPP and NP is not known, but we do know the following.

Theorem 12.5 (Sipser-Gacs Theorem)

If P = NP then BPP = P.

12.2.1 Success Amplification of two-sided error algorithms

The number 2/3 may seem arbitrary, but it can be amplified to our liking.
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Theorem 12.6 (Amplification)

Let F : {0, 1}∗ −→ {0, 1} be a Boolean function such that there is a polynomial p : N −→ N and a
polynomial-time randomized algorithm A satisfying that for every x ∈ {0, 1}n,

P
(
A(x) = F (x)

)
≥ 1

2
+

1

p(n)

Then for every polynomial q : N −→ N, there is a polynomial-time randomized algorithm B satisfying
for every x ∈ {0, 1}n,

P
(
B(x) = F (x)

)
≥ 1− 2−q(n)

12.2.2 BPP and NP Completeness

The theory of NP completeness still applies to probabilistic algorithms.

Theorem 12.7 ()

Suppose that F is NP hard and F ∈ BPP. Then

NP ⊆ BPP

That is, if there was a randomized polynomial time algorithm for any NP complete problem such as
3SAT, ISET, etc., then there would be such an algorithm for every problem in NP.

12.3 The Power of Randomization
To find out whether randomization can add power to computation (does BPP=P?), we prove a few state-
ments about the relationship of BPP with other complexity classes.

Theorem 12.8 (Simulating randomized algorithms in exponential time)

BPP ⊆ EXP

Proof.

We can just enumerate over all the (exponentially many) choices for the random coins.

Furthermore,
P ⊆ BPP ⊆ EXP
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