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Up until now, we’ve seen the dynamics of how one program works in a computer system. The code, which
first resides in the disk, is fetched (through blocks) into memory, and after compiling (precomiling, compiling,
assembling, linking), we have a binary. The binary is then loaded into memory in the stack frame, and the
CPU executes the instructions. The CPU also has a cache, which stores the most frequently accessed data
during the process, taking advantage of locality for efficiency.

Our computer obvious does not just run one program. It runs several, and to run several, we need some
control mechanism to manage how these programs interact with the CPU, memory, and disk. For example,
one problem is that if we download application A and application B and run their binaries, how do we know
whether they share memory addresses and consequently overwrite each other’s data?1 The operating system
takes care of these, which manages processes that each have their own virtual memory space.

Furthermore, consider some of the components of the computer: the RAM, disk, and IO devices like your
keyboard and monitor. For security reasons, it is not wise to let the user applications (e.g. Chrome or Slack)
control these devices completely. Their power must be restricted in some way.

1. When you have a Chrome window and resize it, Chrome should not be able to modify the pixels outside
that window.

2. When you want to print some statement using printf,

3. When you’re editing a code file with VSCode, you want to limit the application to save to certain parts
of the disk.

4. When you are running Chrome and Slack together, you don’t want them to read each other’s data
directly.

This is also for convenience. Say that if you are creating an application that has the option to save files to
disk, you don’t want to write the hardware backend to write to the disk. You want to just call a function
that writes to the disk, and the OS will take care of the rest.

Definition 0.1 (Operating System)

A common confusion is that people think that the operating system describes the computer itself,
but it is really just another piece of software. What makes this piece of software so special is that it
manages every other software in the computer. It provides generally three services:

1. It multiplexes the hardware resources. Since there are many applications/programs with finite
CPU resources (number of cores) and shared access to storage devices, the OS schedules some
sharing mechanism for execution time on CPU cores and manages access to storage devices.

2. It abstracts the hardware platform. Since each CPU core simply executes a sequence of
instructions, the OS introduces processes and thread abstractions. Furthermore, it introduces
filesystems (file/directories) on top of raw storage devices.

3. It protects software principals from each other. Since many applications from various users
are using the CPU, the OS provides isolation between them. It enforces user access permission
(read/write) for files.

The OS is booted by the system firmware (BIOS or UEFI), which lives in ROM (sRAM and therefore non-
volatile) and copies the OS from a fixed part of the disk, called the bootloader, into the RAM, which itself
then loads the OS into memory. Once the OS starts running, it loads the rest of itself from disk, discovers
and initializes hardware resources, and initializes its data structures and abstractions to make the system
ready for users.

1This is different from linking, where we have relocation tables to ensure that object files do not conflict with each other.
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Definition 0.2 (Kernel)

The kernel is the actual binary that is loaded into RAM that runs the OS. The kernel code and
data resides in a fixed and protected range of addresses, called the kernel space, and user programs
cannot access kernel space.

1 Process Management

1.1 Control Flow
When we worked with jumps (conditional and unconditional), calls, and returns in assmebly, all of these
operations were with respect to the program state, which is the isolated environment that the program
is in. One program doesn’t have any clue of what is going on anywhere else, such as other programs or
input/output signals. This means that given what we have learned,

1. programs cannot to write files to the disk (since that is outside the program).

2. programs cannot be terminated by pressing CTRL + C on the keyboard.

3. programs cannot receive data that arrives from the disk.

4. programs cannot send data to the monitor to display.

5. programs cannot react accordingly when there is an instruction to divide by 0.2

To do all these things, we need to have access to the global system state, which the OS has access to.

It turns out that it is impossible for jumps and procedure calls to achieve this, and rather the system needs
mechanisms for exceptional control flow (i.e. control flow that is not within the regular program state),
or commonly referred to as exceptions. This requires the CPU to enter into a more powerful state than its
current place in the program state, called the kernel state. The actual thing that triggers this is called an
interrupt, which can come from both the hardware and software. In the kernel state, the CPU can access
the hardware and perform operations that the program state cannot to handle these exceptions.

Example 1.1 (Interrupts)

Some examples of how the OS can be interrupted is:
1. when one’s WiFi card detects a signal.
2. a hard disk drive may interrupt the OS if a read fails due to a bad sector.
3. an application may request a system call to open a file.
4. If you have 10 applications running on 1 CPU core, you may want the CPU core to run to the

next application every 10 milliseconds. So, there may be a system call every 10 milliseconds in
each program to the OS to switch to the next application.

Definition 1.1 (Execution Modes)

The CPU helps with this by providing two execution modes, which is determined by a special bit in
the CPU called the mode bit.

1. In user mode, the CPU executes only user-level instructions and accesses only the memory
locations that the OS makes available to it. It also restricts which hardware components the
CPU can directly access.

2. In kernel mode, the CPU executes any instructions and accesses any memory location (includ-
ing those that store OS instructions and data). It can also directly access hardware components
and execute special instructions.

2I guess you can use a conditional jump to check if the divisor is 0 and then jump to a different part of the code.
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Note that the execution mode is property of the CPU !

Example 1.2 (Monitor)

A monitor is really just some device that scans a certain portion of memory at a certain frequency
that is higher than the human eye can detect. In user mode, if you try to access this memory buffer,
you get an exception. No user mode can access this memory buffer.

Example 1.3 (Amazon.com)

When you are on Amazon to search up some product, you want to type in some keyword in the search
bar. The web browser, say Chrome, that you are running it on, runs in user mode. When you type in
the keyword, Chrome sends a system call to the OS, triggering the kernel mode which retrieves the
keys that you pressed, and redirects it to Chrome. The same goes with the location of your mouse.
When you move and click on a product, Chrome sends a system call to the OS, which then receives
the mouse location and sends it back to Chrome. The application has no way to directly access the
hardware.

Now specifically, how does one enter in this kernel mode? We’ve already hinted at it before, but to elaborate,
there are 4 types of exceptions.

Definition 1.2 (Types of Exceptions/Interrupts)

As we have mentioned, we go into kernel mode through exceptional control flows. To go back from
the kernel mode to the user mode after the exception handling is done, the kernel must explicitly
give back the control to the user program, which is done with a special instruction, which changes
the CPU to the user mode again. At this point, it can return back to user mode at the current
instruction, next instruction, or abort it.

1. These control flows can either by synchronous (caused by an instruction) or asynchronous
(caused by some other event external to the processor). Asynchronous interrupts are indicated
by setting the processor’s interrupt pins.

2. Furthermore, intentional exceptions transfer control to the OS to perform some function, and
unintentional exceptions happen when there is a bug.

This gives us 4 categories of exceptions.
1. Intentional synchronous exceptions are system calls, aka traps (e.g. printf, open, close,

write, breakpoint traps, special instructions). It returns control to the next instruction.
2. Unintentional synchronous exceptions are faults (possibly recoverable) or aborts (unrecover-

able) (e.g. invalid or protected address or opcode, page fault, overflow, divide by zero). This
automatically triggers the kernel mode which then uses an exception handler to kill the process.

3. Intentional asynchronous exceptions are software interrupts, which is when software requests
an interrupt to be delivered at a later time (e.g. there’s some task you want the kernel to do
later).

4. Unintentional asynchronous exceptions are hardware interrupts caused by an external event
(e.g. IO such as CTRL + C, op completed, timers which may switch to another application every
10ms, power fail, keyboard, mouse click, disk, receiving a network packet). Unlike system calls,
which come from executing program instructions, hardware interrupts are delivered to the CPU
on an interrupt bus.

Once a system call or hardware interrupt is finished, the program continues to resume back in user
mode.
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Figure 1: The CPU and interrupts. User code running on the CPU is interrupted (at time X on the time
line), and OS interrupt handler code runs. After the OS is done handling the interrupt, user code execution
is resumed (at time Y on the time line).

Now the question arises: how does the CPU know where to go when an system call or interrupt occurs?
These are done through tables that map some unique ID number to some functionality. These tables are
stored in a protected memory space reserved by the kernel.

Definition 1.3 (System Call Table)

This is done through the system call table, which is a table of addresses in memory that the CPU
can jump to when a system call occurs. Each system call has a unique number k, and the handler
function k is called each time system call k occurs.

Example 1.4 (Common System Calls)

Some common system calls, or syscalls, are shown below with their unique ID number (in Linux
x64).

Table 1: System Call Functions

Number Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

Example 1.5 (Syscalls of Open)

Look at the following objdump file below. The corresponding C code just calls open(filename,
options) and the corresponding syscall ID is 0x2. We are simply loading the syscall ID into the
%eax register (only needs last 32 bits since the syscall IDs are quite small), which is then executed
by the syscall instruction to go into the kernel mode.

1 00000000000e5d70 <__open>:
2 ...
3 e5d79: b8 02 00 00 00 mov $0x2,%eax # 2 is the open syscall number
4 e5d7e: 0f 05 syscall # return value in %rax
5 e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
6 ...
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A negative number in %eax gives an error corresponding to negative errorno. It is also worth
mentioning that %eax is used rather than %rdi or %rsi because we need these two parameter registers
as arguments for the open function itself.

Note that whether we are in the program stack or the kernel stack, we always have stack pointers and other
registers to navigate them. In fact, for every CPU core, it has its own set of registers and its own kernel
stack.

Example 1.6 (Syscall of Read)

If we have read syscall, then
1. We use the syscall table to go to the trap handler for the read syscall.
2. The handler identifies the block and allocates a buffer.
3. Then it reads the block from the disk, which may take a while (in CPU time) since it is extremely

slow for all IO tasks. The CPU, while waiting, can be put to sleep for other processes to run
on the CPU. When the disk is done reading, it (the hardware) can send a hardware interrupt
to the CPU, telling it that it is done.

4. Then it copies the block to the user buffer and returns from the syscall back into the user mode
in the program state.

Definition 1.4 (Exception Table)

This is done through the exception table, which is a table of addresses in memory that the CPU
can jump to when an exception occurs. Each type of event has a unique exception number k, and
the handler function k is called each time exception k occurs.a

Figure 2: System call table is stored in a protected memory space reserved by the kernel.

Example 1.7 (Common Exception Numbers)

Some common exception numbers are listed below.

Table 2: Exception Summary

Exception Number Description Exception Class
0 Divide Error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort

32-255 OS-defined Interrupt or trap

From the application’s point of view, even if an interrupt happens, it just thinks it is running line by line.

aThis is similar to a hardware implementation of a switch statement in C.
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Definition 1.5 (Process Address Space)

Interrupts can happen at any time, and one way to efficiently support this execution context switch
from user mode to kernel mode is to do the following. At boot time, the OS loads its kernel code at a
fixed location in RAM. Every time you create a new program state, the OS initializes a CPU register
with the starting address of the OS handler function. On an interrupt, the CPU switches to kernel
mode and executes OS interrupt handler code instructions that are accessible at the top addresses
in every process’s address space. Because every process has the OS mapped to the same location at
the top of its address space, the OS interrupt handler code is able to execute quickly in the context
of any process that is running on the CPU when an interrupt occurs. This OS code can be accessed
only in kernel mode, protecting the OS from user-mode accesses; during regular execution a process
runs in user mode and cannot read or write to the OS addresses mapped into the top of its address
space.a

Figure 3: Process address space: the OS kernel is mapped into the top of every process’s address space.

In summary, a good visual is that each program runs as independent processes, with its own virtual address
space (elaborated next) and the OS mediates access to shared resources.

Figure 4: Multiple programs running and controlled by an operating system.

Each process can be in one of three states. It can either be currently running on the state, ready to run,
or if there is a long IO operation, it can be blocked, which is then unblocked with a hardware interrupt.
Usually anything that involves IO puts the state to blocked (e.g. reading data from disk, the keyboard, or
the internet). The pool of processes that are concurrently running is the running and ready states.

aHowever, due to security reasons where the user space can read kernel space data, this is obsolete.
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Figure 5: Three states that a single process can be in. The pool of processes that are concurrently running is the
running and ready states. The blocked state is waiting to be put back into this pool by a hardware interrupt.

Example 1.8 (Running a Binary)

Therefore, to run a binary file a.out,
1. The kernel first loads the binary file from disk into RAM.
2. Then the OS kernel creates a new process with its own virtual memory stack and its global

variables, etc.
3. Then the CPU’s %rip register point to the address of the main function.
4. The kernel’s virtual memory space is mapped to the top of the process’s virtual memory space,

where it is not visible to the user mode.

Figure 6: The kernel’s virtual memory space is mapped to the top of the process’s virtual memory space.
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2 Thread Management

3 Concurrency and Synchronization
So far, we’ve talked about everything as a sequential process of instructions. In practicality, we have improved
this from the memory perspective by implementing caches, virtual memory, and swapping, but in the CPU
perspective. In CPUs, we can’t just simply increase the clock frequency indefinitely since there are physical
limitations.3 The current trend is to increase parallelism to compute faster, which is implemented with cores
and threads. Let’s clear some of these definitions up.

Definition 3.1 (Processors, Cores)

In almost every consumer computer, there exists one processor (CPU) in it. The CPU can have
multiple cores. Each core has its own set of registers, L1/L2 cache, and possibly even a shared L3
cache.

Now these cores must run a certain program. Let’s define what this means exactly.

Definition 3.2 (Program, Process)

A program can be thought of as a binary executable produced after linking. A process is a running
instance of some program.

1. It is identified by a process ID (PID) number.
2. It is run on a CPU core, with its own registers.
3. It has its own virtual address space, containing the code (instructions), heap, and pagetable

that maps it to physical memory.

Example 3.1 (Where to look for PIDs)

We can see the PIDs either by using htop (for UNIX systems) or by looking at the /proc directory
in Linux systems. Each directory name represents the PID of the process.

3It turns out that power consumption increases faster than clock frequency, so it scales badly.
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1 ubuntu@passionate-blesbok:/proc$ ls
2 1 118 1368 26 44 590 762 cpuinfo modules
3 10 119 1369 27 448 599 763 crypto mounts
4 101 12 1370 28 45 6 764 devices net
5 1012 120 1371 29 46 605 765 diskstats pagetypeinfo
6 102 1232 138 3 467 608 769 driver partitions
7 103 1234 139 30 468 611 796 execdomains pressure
8 1031 1261 14 309 47 612 8 fb sched_debug
9 1037 129 15 31 471 613 801 filesystems schedstat

10 1038 13 16 32 473 629 810 fs scsi
11 104 132 17 33 474 638 822 interrupts self
12 1043 1342 18 34 475 651 836 iomem slabinfo
13 105 1353 180 35 48 666 850 ioports softirqs
14 106 1354 19 356 49 696 872 irq stat

(a) You can see the PIDs of the process by looking at the /proc directory. This changes quite often as processes
are destroyed and created often, so to maybe track this in real time you might want to run watch -n 0.1 ’ls’.

(b) You can see the PID number of each process (binary) running on the left column when running htop on UNIX
systems.

Figure 7: Two different ways to see the PIDs of all current processes.

There is a specific numbering to each process.
1. The process with PID 1 is always the kernel process.
2. The smaller PIDs (perhaps less than 300) are also reserved for the kernel, so don’t kill it.

If you go into each process, you can see a few things.
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1 ubuntu@passionate-blesbok:/proc/750$ sudo ls
2 attr comm fd map_files net pagemap sessionid statm

uid_map
3 autogroup coredump_filter fdinfo maps ns personality setgroups

status wchan
4 auxv cpuset gid_map mem numa_maps projid_map smaps syscall
5 cgroup cwd io mountinfo oom_adj root smaps_rollup

task
6 clear_refs environ limits mounts oom_score sched stack

timers
7 cmdline exe loginuid mountstats oom_score_adj schedstat stat

timerslack_ns

Figure 8: There are many files in each PID folder that tells you about the process.

1. To get information about the status of this process, you can cat status.
2. The virtual address space is stored in pagemap. If you’re on an 64-bit machine, this file will

be extremely big, so just cat pagemap won’t work. Therefore you should try cat maps, which
shows you something like the following.

1 ubuntu@passionate-blesbok:/proc/750$ sudo cat maps
2 aaaac673c000-aaaac67e3000 r-xp 00000000 08:01 2576

/usr/sbin/rsyslogd
3 aaaac67f3000-aaaac67f6000 r--p 000a7000 08:01 2576

/usr/sbin/rsyslogd
4 aaaac67f6000-aaaac67fd000 rw-p 000aa000 08:01 2576

/usr/sbin/rsyslogd
5 aaaac67fd000-aaaac67fe000 rw-p 00000000 00:00 0
6 aaaadfe94000-aaaadfed7000 rw-p 00000000 00:00 0 [heap]

In here, you can see that the lefthand column represents the range of virtual memory address.
The next column gives us the permissions (read, write, executable, shared/private).

3.1 Process Level Concurrency

Definition 3.3 (Context Switch)

Let us first start off with a single core system. At this point, everything is sequential, and to run all
these processes at oncea we want to use system calls to transition between these processes. This is
called a context switch.
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Figure 9: 5 processes may be executed as such on a single core.

Note that due to context switches, the CPU time, which is the time is takes to run a process on
a CPU, is much shorter than the wall-clock time, which is the time a human perceives a process
takes to complete.

Note that context switches are expensive. To do one, you must essentially replace two things.

1. First, you need to clear out all the register values. This can be done by storing them in the current
stack at the VAS, which then gets mapped through the page table into the physical address space.

2. Now the register values (like the instruction and stack pointers) are stored safely in the stack in the
VAS, the actual page table must be swapped out too since each process must have its own virtual
address space.

Since it is quite expensive to context switch all the time, the simplest thing to do is add more cores, which
gives us the double benefit of distributing the process workload and having to do less context switches. This
is called physical concurrency, and given the same workload, it speeds up our computation absolutely.
However, this can physically take us so far due to the limited number of cores, and we must go further and
use logical concurrency.

3.2 Thread Level Concurrency
It turns out that it is much more expensive to reload the page table of a new process rather than clearing
out the register values. So, perhaps maybe we can try to implement multiple related “processes” that share
the same VAS, but have their own execution stream (i.e. own stack and registers). This is precisely the
concept of a thread.

Definition 3.4 (Threads)

Threads are multiple execution streams within a single process. To summarize them, a thread is an
execution context within a process that has a...

1. thread ID
2. its own stack frame
3. its own register contexta

This is all that is really needed to execute some computation. Now, given that there are some number
of threads in process K, they share the same virtual address space (VAS), are all under the same
PID, share the same code, static data, heap, and file table. The individual stacks living within the
VAS are protected from each other to avoid stack overflow.

anot programs, since there can be multiple instances of one program, like two Chrome instances. In fact, Chrome produces
multiple processes to help run each part of the browser, so one program may translate to multiple processes.
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Figure 10: When there are two threads of a single process, the threads share the same virtual memory
space. However, they each have their own set of registers. For example, they each have their own instruction
pointer that points to the next line of code, along with their own stack pointer. Furthermore, to prevent
stack overflow, there are protection mechanisms that prevent one stack from growing past a certain limit into
another stack owned by a different thread.

Therefore, we can speed up our program in two ways.
1. If we have one core, we can do context switching faster between each thread (since we only have

to load the register values).
2. If we have multiple cores, we can take thread 1 and have it run on one core while taking thread

2 and running it on another core. This is really analogous to having two separate processes on
two cores, but these two processes simply share the same VAS, with the same code, data, and
heap.

Threads are advantageous for multiple reasons. First, by utilizing multiple cores we can speed up our
program to reduce our CPU time. However, if we are sharing threads between one core, we’re not actually
speeding up anything at all but rather reducing our wall-clock time. The main speedup that we will feel is
that latency heavy tasks will get offloaded to other threads, while more relevant programs can be run on the
main thread. This is explained more in the following example.

Example 3.2 (Mobile Application)

If we have a single threaded messaging mobile app, then this is painfully slow since if we want to
scroll down our messages while also sending and receiving messages, then we would have to wait for
the message to receive from the server, into our disk, and into our memory, before the app responds
when scrolling.

aThis does not mean that each process has its own physical registers. It has its own value that is loaded into the registers.
The physical number of registers is determined by the number of CPU cores.
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Figure 11: Single threaded app.

However, if we have a multithreaded app with one thread for the app UI and the other one for the
server through a background thread, then we can have good UI response time.

Figure 12: Multithreaded app. Methods on the UI thread must be fast to ensure user satisfaction while
anything slow can run on a background thread.

The following law gives us a certain bound on how much parallelization can help us. Note that this does
not talk about the responsiveness of an application due to clever thread sharing. It just says given a certain
amount of computational task, how much can we reduce the CPU time with parallelization?

Theorem 3.1 (Amdahl’s Law)

Say that we have code that runs in 1 second. Given that proportion f of our code can be parallelized,
and the speedup for that portion is N , then the new time that our program will take is

Tnew = (1− f) + f/N (1)

since the sequential part 1−f cannot be sped up, and the remaining parallel part f can be sped up by
distributing over N cores. Therefore, defining the speedup as Tnew/Told, we get our total parallelized
speedup is

1

(1− f) + f/N
(2)

Note that it is bounded by the sequential portion as N → ∞.
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Figure 13: Amdahl’s law for different f ’s over multiple number of processors N .

This is implemented in C with the pthread.h library, which is included in the standard library directory
and follows the POSIX (Portable Operating System Interface) standard. Essentially, we want to do the
following:

1. Define a function that will be called for each thread. It must return a void pointer void * and its
arguments must also be a void pointer void *. Think of this as our new main function for each stack
that will be created from each thread.4 Since we are only restricted to a function taking in one void
pointer argument, it is common to define a new struct like arg_t that contains all the parameters you
need to run each thread. The void pointer can be typecast into the struct pointer at the beginning of
each thread function.

2. We create pthread_t objects, which are the thread objects.

3. We call the pthread_create function that takes in the pointer of the thread object, some settings, the
function to be called, and its arguments. At this point, the operating system will determine how these
threads will be run, so you can’t make any sequential assumptions about them.

4. Then we join them using pthread_join, which basically waits until all the threads are complete before
main continues.

We will show two examples that go over this process. But more importantly, the concurrency of these two
examples will show unpredictable behavior.

Example 3.3 (Simply Print out Thread Number)

We can make threads to print out the number. But these aren’t really in the same order.

4Called a function pointer?
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1 #include <stdio.h>
2 #include <pthread.h>
3 #include <stdlib.h>
4

5 void* thread(void* args) {
6 printf("Thread %d\n", *(int*)args);
7 return NULL;
8 }
9

10 int main(int argc, char *argv[]) {
11 int size = 10;
12 pthread_t threads[size];
13 int rc, i;
14

15 // thread creation
16 for (i = 0; i < size; i++) {
17 rc = pthread_create(&threads[i], NULL, thread, &i);
18 }
19

20 // join waits for the threads to finish
21 for (i = 0; i < size; i++) {
22 rc = pthread_join(threads[i], NULL);
23 }
24 return 0;
25 }

1 Thread 1
2 Thread 2
3 Thread 6
4 Thread 3
5 Thread 8
6 Thread 5
7 Thread 2
8 Thread 4
9 Thread 3

10 Thread 3
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .

Figure 14: Threads output shows that the order in which the functions are called cannot be predicted.

3.3 Atomicity Violation Bugs and Mutex Locks
We see that there are some parts of the code that are not meant to be parallelized.

Definition 3.5 (Atomicity-Violation Bugs)

This bug happens when the desired atomicity (indivisibility) among multiple memory accesses is
violated.

Example 3.4 (Atomicity-Violation in SQL)

For example, if we have two threads doing the following (in MySQL):

1 Thread1::
2 if (thd-> proc_info) {
3 ...
4 fputs(thd->proc_info);
5 ...
6 }
7

8 Thread2::
9 thd->proc_info = NULL;

If we pass the if statement but within it, thd->proc_info becomes NULL, then this would be very
bad. Therefore, we should put locks around.
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1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2

3 Thread1::
4 pthread_mutex_lock(&lock);
5 if (thd-> proc_info) {
6 ...
7 fputs(thd->proc_info);
8 ...
9 }

10 pthread_mutex_unlock(&lock);
11

12 Thread2::
13 pthread_mutex_lock(&lock);
14 thd->proc_info = NULL;
15 pthread_mutex_unlock(&lock);

Example 3.5 (Incrementing Shared Counter between Two Threads)

The volatile keyword for counter means that it can be changed by all threads.

17/ 45



Operating Systems Muchang Bahng Summer 2025

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <stdlib.h>
4

5 static volatile int counter = 0;
6

7 void* thread(void* args) {
8 printf("%s : Start \n", (char*)args);
9

10 for (int i = 0; i < 10 * 1000 * 1000; i++) {
11 counter += 1;
12 }
13

14 printf("%s : End \n", (char*)args);
15 return NULL;
16 }
17

18 int main(int argc, char *argv[]) {
19 pthread_t thread1, thread2;
20

21 int rc;
22 rc = pthread_create(&thread1, NULL, thread, "A");
23 rc = pthread_create(&thread2, NULL, thread, "B");
24

25 rc = pthread_join(thread1, NULL);
26 rc = pthread_join(thread2, NULL);
27

28 printf("Counter : %d\n", counter);
29 return 0;
30 }

1 A : Start
2 B : Start
3 A : End
4 B : End
5 Counter : 10229646
6 .
7 .
8 A : Start
9 B : Start

10 B : End
11 A : End
12 Counter : 14965289
13 .
14 .
15 A : Start
16 B : Start
17 A : End
18 B : End
19 Counter : 10086690
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .

Figure 15: From looking at the behavior, we can see that the start and end times of thread A and thread B
is complete unpredictable. It is only within the sequential nature within each thread (i.e. X : start must
come before X : End that is predictable. More so, after all the increments, the total sum collected by counter
isn’t even 20 million!). The actual speed and ordering of this is determined at runtime.

To really see what’s going on here, we must look into the assmebly code behind this. If we focus on
line 11 when the counter is incremented and look at its assembly, we see

1 7a7: 8b 05 0a 0b 20 00 mov 0x200b0a(%rip),%eax # 200c1c <counter>
2 7ad: 83 c0 01 add $0x1,%eax
3 7b0: 89 05 01 0b 20 00 mov %eax,0x200b01(%rip) # 200c1c <counter>

What this means is that every thread consists of loading the counter value from the instruction
pointer plus an offset into %eax, then adding 1 to it, and then storing it back to the same memory
location (the rip changes, so the memory address between the 1st and 3rd line will be slightly different,
but they are the same address). If we have threads 1 and 2, we can have the following possible
interweavings:

1. (1 loads, 1 adds, 1 stores, 2 loads, 2 adds, 2 stores). This would result in a +2.
2. (1 loads, 1 adds, 2 loads, 2 adds, 2 stores, 1 stores). This would result in a +1 since thread 2

loads before 1 could store the incremented version.
3. (1 loads, 2 loads, 1 adds, 2 adds, 1 stores, 2 stores). This would also result in a +1 for the same

reasons as before.

There is a big problem here: it seems that these things overwrite each other.
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Definition 3.6 (Data Race)

We have just seen an example of a data race, which occurs if two or more threads concurrently
accesses the same memory location with at least one write. The section of code where a data race
can occur is called the critical section.

So how do we address this challenge of concurrency? This is where locks and mutexes come in.

Definition 3.7 (Lock)

A lock is a construct to enforce mutual exclusion in conflicting code sections (critical sections). It is
implemented as a special data object in memory. We can use the API methods

1. acquire() or lock() is called when going into a critical section.
2. and release() or unlock() is called when going out of a critical section.

If the lock is already acquired by a thread and not released yet, then other threads will not be able to
acquire the lock and execute the next instructions. There are two ways this is implemented. First, an
incoming thread can wait if another thread holds the lock, called a spinlock,a or it can be blocked,
called a mutex (mutual exclusion).bc

To implement this in C, there’s a few things that we have to do.

1. First, make a pthread_mutex_t global variable.

2. Then, make initialize the mutex before you create the threads and destroy the mutex after you join
the threads in the main function.

3. Finally, put the specific locks and unlocks in the locations of the functions that the thread calls.

There are few strategies to correct the counter example above, which all produce the correct output Counter:
20000000.

1. We can put the lock around the entire for loop of the thread function. However, this essentially takes
us back to the sequential regime.

aThis is mainly implemented through kernel and used almost exclusively for OS development, not application development.
bThis is mainly implemented in user space.
cThis has a FIFO queue.
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1 static volatile int counter = 0;
2 pthread_mutex_t mutex; // global declaration of mutex
3

4 void* thread(void* args) {
5 pthread_mutex_lock(&mutex); //acquire the mutex lock
6 for (int i = 0; i < 10 * 1000 * 1000; i++) {
7 counter += 1;
8 }
9 pthread_mutex_unlock(&mutex); //release the mutex lock

10 return NULL;
11 }
12

13 int main(int argc, char *argv[]) {
14 pthread_t thread1, thread2;
15 int rc;
16 rc = pthread_mutex_init(&mutex, NULL); //initialize the mutex
17 rc = pthread_create(&thread1, NULL, thread, "A");
18 rc = pthread_create(&thread2, NULL, thread, "B");
19 rc = pthread_join(thread1, NULL);
20 rc = pthread_join(thread2, NULL);
21 pthread_mutex_destroy(&mutex); //destroy (free) the mutex
22 printf("Counter : %d\n", counter);
23 return 0;
24 }

Figure 16: Putting the mutex locks around the entire for loop.

2. A better idea to actually implement parallelization is to put the locks around the line that says counter
+= 1;. This is the critical code that loads the counter value from the stack into the register, increments
it by 1, and sends it back to the stack. We should isolate this so that no other threads can execute
during these 3 assembly lines.
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1 static volatile int counter = 0;
2 pthread_mutex_t mutex; // global declaration of mutex
3

4 void* thread(void* args) {
5 for (int i = 0; i < 10 * 1000 * 1000; i++) {
6 pthread_mutex_lock(&mutex); //acquire the mutex lock
7 counter += 1;
8 pthread_mutex_unlock(&mutex); //release the mutex lock
9 }

10 return NULL;
11 }
12

13 int main(int argc, char *argv[]) {
14 pthread_t thread1, thread2;
15 int rc;
16 rc = pthread_mutex_init(&mutex, NULL); //initialize the mutex
17 rc = pthread_create(&thread1, NULL, thread, "A");
18 rc = pthread_create(&thread2, NULL, thread, "B");
19 rc = pthread_join(thread1, NULL);
20 rc = pthread_join(thread2, NULL);
21 pthread_mutex_destroy(&mutex); //destroy (free) the mutex
22 printf("Counter : %d\n", counter);
23 return 0;
24 }

Figure 17: Now we put the locks within the counter. However, this is much slower since locking and unlocking are
relatively expensive. It runs in 0.274s.

3. The first two tries are not ideal, but what we can do is have each thread store its local work all within
each of its stack, and then when it communicates with the shared memory on counter, this is where
the locks should come in place. This has the double benefit of locking/unlocking very few times, along
with protecting the critical section of the code.
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1 static volatile int counter = 0;
2 pthread_mutex_t mutex; // global declaration of mutex
3

4 void* thread(void* args) {
5 int my_counter = 0;
6 for (int i = 0; i < 10 * 1000 * 1000; i++) {
7 my_counter += 1;
8 }
9 pthread_mutex_lock(&mutex); //acquire the mutex lock

10 counter += my_counter;
11 pthread_mutex_unlock(&mutex); //release the mutex lock
12 return NULL;
13 }
14

15 int main(int argc, char *argv[]) {
16 pthread_t thread1, thread2;
17 int rc;
18 rc = pthread_mutex_init(&mutex, NULL); //initialize the mutex
19 rc = pthread_create(&thread1, NULL, thread, "A");
20 rc = pthread_create(&thread2, NULL, thread, "B");
21 rc = pthread_join(thread1, NULL);
22 rc = pthread_join(thread2, NULL);
23 pthread_mutex_destroy(&mutex); //destroy (free) the mutex
24 printf("Counter : %d\n", counter);
25 return 0;
26 }

Figure 18: In here, we have each thread increment its own local version of the counter and store it in my_counter.
Then, we increment the global counter by the total my_counter, which will require one mutex lock. It runs in 0.049s.

Example 3.6 (Inserting into Linked List)

Inserting into a linked list is a sequential process, but what if we want to parallelize it with multiple
threads? Consider the following code.

1 typedef struct __node_t {
2 int key;
3 struct __node_t *next;
4 } node_t;
5

6 typedef struct __list_t {
7 node_t *head;
8 } list_t;
9

10 void List_Init(list_t *L) {
11 L -> head = NULL;
12 }
13

14 void List_Insert(list_t *L, int key) {
15 // insert a new node with the key value at the beginning of the list
16 node_t *new = malloc(sizeof(node_t));
17 assert(new);
18 new -> key = key;
19 new -> next = L -> head;
20 L -> head = new;
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21 }
22

23 int main(void) {
24 list_t L;
25 list_t *Lp = &L;
26 List_Init(Lp);
27 for (int i = 0; i < 10; i++) {
28 List_Insert(Lp, i);
29 }
30 return 0;
31 }

Say that we want to parallelize the creation of the length 10 linked list. Simply initializing some
threads and calling List_Insert 10 times won’t properly create this linked list. This is because two
threads may overwrite where L -> head points to. The most naive thing to do is to put locks around
the whole function, but now we are back to the sequential regime! If we think about it, the malloc
calls, asserting that there is viable memory, and assigning the input key value to new -> key does
not overwrite anything else. It is only when we assign new -> next to the head value of L that things
may get overwritten, so we put the locks shown below, while slightly modifying the list struct to
have the pthread_mutex_t attribute.

1 typedef struct __list_t {
2 node_t *head;
3 pthread_mutex_t lock;
4 } list_t;
5

6 void List_Init(list_t *L) {
7 L -> head = NULL;
8 pthread_mutex_init(&L -> lock, NULL);
9 }

10

11 void List_Insert(list_t *L, int key) {
12 // insert a new node with the key value at the beginning of the list
13 node_t *new = malloc(sizeof(node_t));
14 assert(new);
15 new -> key = key;
16 pthread_mutex_lock(&L->lock)
17 new -> next = L -> head;
18 L -> head = new;
19 pthrea_mutex_unlock(&L->lock)
20 }

3.4 Deadlock Bugs
Locks are extremely useful to segment out a portion of code that should be uninterrupted. However, there
are many consequences of misusing it.

Definition 3.8 (Deadlock Bugs)

A deadlock bug happens when you make locks such that the program cannot run anymore. These
aren’t specific to threads, but also processes as well. They require the four preconditions:

1. Mutual exclusion: you must have a lock to begin with to have a deadlock, so this is trivial.
2. Hold and Wait: Threads must have the ability to hold resources (e.g. the philosophers must

hold forks which prevent others from taking them) .
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3. No Preemption: Preemption refers to the ability to take the fork out of someone else’s hand.
So if you have a thread, you can first take lock A, then look at whether lock B is available. If
not, then unlock A and try again. However, this can lead to a bunch of threads just simply
picking up and putting down forks, causing a livelock.

4. Circular Wait: That is, there exists a circular chain of threads such that each thread holds a
resource needed by the next thread. A strategy is too define a fixed acquisition order for locks
(e.g. lock A always before lock B).

You shouldn’t try to hold multiple locks at once, but if you must, you should have a strategy to avoid
deadlock. Choosing a lock order is the recommended way.

Example 3.7 (Bank Accounts)

Let’s go through an example. Suppose we had the following code below.

1 struct account {
2 pthread_mutex_t lock;
3 int balance;
4 };
5

6 struct arg_t {
7 struct account fromAcct;
8 struct account toAcct;
9 int amt;

10 };
11

12 pthread_mutex_t mutex; // global declaration of mutex
13

14 void* Transfer(void* args) {
15

16 struct arg_t* data = (struct arg_t*)args;
17

18 struct account* fromAcct = &(data -> fromAcct);
19 struct account* toAcct = &(data -> toAcct);
20 int amt = data -> amt;
21

22

23 pthread_mutex_lock(&fromAcct->lock);
24 pthread_mutex_lock(&toAcct->lock);
25

26 fromAcct->balance -= amt;
27 toAcct->balance += amt;
28

29 pthread_mutex_unlock(&fromAcct->lock);
30 pthread_mutex_unlock(&toAcct->lock);
31

32 return NULL;
33 }

Suppose that Threads 0 and 1 are executing concurrently and represent users A and B, respectively.
Now consider the situation in which A and B want to transfer money to each other: A wants to
transfer 20 dollars to B, while B wants to transfer 40 to A.
Both threads concurrently execute the Transfer function. Thread 0 acquires the lock of acctA while
Thread 1 acquires the lock of acctB. Now consider what happens. To continue executing, Thread 0
needs to acquire the lock on acctB, which Thread 1 holds. Likewise, Thread 1 needs to acquire the
lock on acctA to continue executing, which Thread 0 holds. Since both threads are blocked on each
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other, they are in deadlock.
This can be simply fixed by rearranging the locks so that each lock/unlock pair surrounds only the
balance update statement associated with it.

1 void *Transfer(void *args){
2 //argument passing removed to increase readability
3 //...
4

5 pthread_mutex_lock(&fromAcct->lock);
6 fromAcct->balance -= amt;
7 pthread_mutex_unlock(&fromAcct->lock);
8

9 pthread_mutex_lock(&toAcct->lock);
10 toAcct->balance += amt;
11 pthread_mutex_unlock(&toAcct->lock);
12

13 return NULL;
14 }

Example 3.8 (Dining Philosopher’s Problem)

There are 5 philosophers at a roundtable with 5 plates of food with 5 forks. Each philosopher needs
two forks (both on their left and on their right) to start eating their plate. However, there can be a
deadlock if every philosopher takes the fork on their right and is always waiting for the left fork (this
happens due to a circular dependency).

1. One way to resolve this issue is to set an ID to every fork and have the philosophers always
take the lower ID fork first before trying to take the higher ID. Then this resolves and at least
one philosopher can eat.

Example 3.9 (Set-Intersection Problem)

Again, like the bank account section, we have the following code that can create deadlocks if there is
a code that attempts to compute A ∩B and B ∩A at similar times.

1 set_t *set_intersection(set_t *s1, set_t *s2) {
2 set_t *result = set_create();
3 pthread_mutex_lock(&s1->lock);
4 pthread_mutex_lock(&s2->lock);
5

6 for (int i = 0; i < s1->size; i++) {
7 if (set_contains(s2, s1->data[i])) {
8 set_add(result, s1->data[i]);
9 }

10 }
11

12 pthread_mutex_unlock(&s2->lock);
13 pthread_mutex_unlock(&s1->lock);
14 return result;
15 }

Like using the IDs and ordering, we can resolve this by grabbing locks in a defined order, say from
high to low. Therefore, we replace the locks as such.

1 if (&m1 > &m2) {

25/ 45



Operating Systems Muchang Bahng Summer 2025

2 pthread_mutex_lock(&m1);
3 pthread_mutex_lock(&m2);
4 } else {
5 pthread_mutex_lock(&m2);
6 pthread_mutex_lock(&m1);
7 }

However, this still creates a deadlock if we compute A ∩A, so we should place a deadlock.

It turns out that we can make logically equivalent code without locks! By using atomic primitives that have
implementations in C, we can create wait-free algorithms. For example, consider the int CompAndSwap(int*
addr, int expected, int new) function. If *addr == expected, then we set *addr to new and return 1.
Otherwise, we do nothing and return 0. Then, the two pieces of code are equivalent, but the advantage of
the RHS is that there is never a deadlock.

1. In the left, we pass by pointer to increment a variable.

2. In the right, we first set old to the value of val, and if the value of val is equal to old (which may not
always be true if some other thread modifies this value), then we set old = *val again and increment
it by amt.

1 void add(int *val, int amt) {
2 pthread_mutex_lock(&m);
3 *val += amt;
4 pthread_mutex_unlock(&m);
5 }
6 .

1 void add(int *val, int amt) {
2 do {
3 int old = *val;
4 }
5 while(!CompAndSwap(val, old, old+amt));
6 }

However, the left hand, despite the risk of deadlocks, is still recommended. The mutex API allows for better
distribution of CPU.

3.5 Order Violation Bugs and Condition Variables

Definition 3.9 (Order Violation Bugs)

An order violation bug happens when the desired order between two memory accesses is flipped,
i.e. A should always be executed before B, but the order is not enforced during execution.

1. For example, one thread that acts on a linked list may already assume that the linked list is
initialized when it is not. Therefore, we should have these threads wait until initialization.

2. Another example is if there is a set of producers and consumers that manage the flow of items
through a buffer. If there is no good, then consumers cannot consume and they must wait. If
the supply is full then the producers must wait. This also requires some process of waiting.

We can use a regular conditional to check, but this may not be efficient due to the following example.

Example 3.10 (Condition Checks with Vanilla While Loops)

Say that you want to call the following function on a linked list, but you must wait until the list is
not NULL.

1 int getItem(list_t *list) {
2 pthread_mutex_lock(&list -> m);
3 // TODO: wait until list is non-empty
4 int item = list -> head -> item;
5 list -> head = list -> head -> next;
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6 pthread_mutex_unlock(&list -> m);
7 return item;
8 }

To check whether list is not a null pointer, we can simply use a while loop to check.

1 int tryGetItem(list_t *list, int *out) {
2 int success = 0;
3 ptherad_mutex_lock(&list -> m);
4 if (list -> head) {
5 success = 1;
6 *out = list -> head -> item;
7 list -> head = list -> head -> next;
8 }
9 pthread_mutex_unlock(&list -> m);

10 return success;
11 }
12 .
13 .

1 int getItem( list_t *list) {
2 pthread_mutex_lock(&list -> m);
3 // TODO: wait until list is non-empty
4 while (list -> head == NULL) {
5 pthread_mutex_unlock(&list -> m);
6 yield(); // optional
7 pthread_mutex_lock(&list -> m);
8 }
9 int item = list -> head -> item;

10 list -> head = list -> head -> next;
11 pthread_mutex_unlock(&list -> m);
12 return item;
13 }

Figure 19: On the LHS, this returns 0 if the retrieval is not successful, and so you must wrap this function
within some while loop to check if it is actually successful. On the RHS, we can use the yield() function
which gives control to the OS to schedule another thread.

This constant checking through a while loop leads to a waste of CPU resources. Therefore, we want
to put the thread to sleep while there is no element in list so other processes can use the CPU core.
This is the motivation behind conditional variables.

Definition 3.10 (Condition Variables)

Condition Variables force a thread to be blocked until a particular condition is reached. This
construct is useful for scenarios in which a condition must be met before the thread does some work.

1. Every CV is bound to exactly one mutex. This is because the state of a condition, even if
true on one thread, can be changed immediately by another thread, so some sort of locking is
needed.

2. Condition variables have the type pthread_cond_t.
3. To initialize a condition variable, use the pthread_cond_init function.
4. To destroy it, use pthread_cond_destroy.
5. pthread_cond_wait(&cond, &mutex) takes the address of a condition variable cond and a

mutex mutex as its arguments. It causes the calling thread to block on the condition variable
cond until another thread signals it (or "wakes" it up).

6. The pthread_cond_signal(&cond) function causes the calling thread to unblock (or signal)
another thread that is waiting on the condition variable cond (based on scheduling priority).
If no threads are currently blocked on the condition, then the function has no effect. Unlike
pthread_cond_wait, the pthread_cond_signal function can be called by a thread regardless
of whether or not it owns the mutex in which pthread_cond_wait is called.

It is important to know about the states that a thread can be in. It can either be currently running/active,
ready to run (perhaps through a syscall), or blocked.
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Figure 20: Note that the only way a thread can be blocked is if it is waiting for a condition to happen. If that
condition happened and a signal arrives at the thread, then it “wakes up.” Condition variables allow these thread to
go in and out of the blocked state.

With this, the general design pattern is as such.

Theorem 3.2 (Condition Variable Design Pattern)

To implement this effectively, we must first identify a state that will be accessed by 2+ threads
concurrently and add locks to protect the shared state. If we need to wait on some condition, we use
condition variables.

1 methodThatWaits() {
2 pthread_mutex_lock(&m);
3

4 // Read/write shared state
5

6 while (!checkSharedState()) {
7 pthread_cond_wait(&cv, &m);
8 }
9

10 // Read/write shared state
11

12 pthread_mutex_unlock(&m);
13 }

1 methodThatSignals() {
2 ptherad_mutex_lock(&m);
3

4 // Read/write shared state
5

6 // If checkSharedState() is now true
7 pthread_cond_signal(&cv);
8

9 // Read/write shared state
10

11 pthread_mutex_unlock(&m);
12 }
13 .

The implementation is quite complex at first, so let’s go through an example.

Example 3.11 (Soda Machine)

Say that we want to model a soda machine, with consumers taking soda from the machine and
producers filling the machine up.

1. We’d like to create some variables that encode the state of the soda machine. This is the shared
state.

1 static volatile int numSodas;
2 #define MaxSodas 100;

2. We also want to implement one lock to protect all shared states, say

1 pthread_mutex_t sodaLock;

This allows us to implement mutual exclusion so that only one thread can manipulate the
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machine (state) at a time.
3. The ordering constraints are that the consumer must wait if the machine is empty (CV

hasSoda), and the producer must wait if the machine is full (CV hasRoom).
4. The first thing we must do is make sure that the consumer and producer function has a lock

and unlock over its body since both functions modify the vending machine.

1 consumer() {
2 pthread_mutex_lock(&sodaLock);
3

4 // take a soda from machine
5

6 pthread_mutex_unlock(&sodaLock);
7 }

1 producer() {
2 pthread_mutex_lock(&sodaLock);
3

4 // add a soda to machine
5

6 pthread_mutex_unlock(&sodaLock);
7 }

5. Moreover, the consumer and producer’s actions of taking or adding soda is dependent on the
state already. For the consumer, it should wait if the machine is empty for a signal that notifiies
that it is not empty. Once the consumer receives the signal, it takes a soda and can send a
signal that the machine is not full to the producer function.

1 consumer() {
2 pthread_mutex_lock(&sodaLock);
3 // wait if empty
4 // take a soda from machine
5 // notify that it is not full
6 pthread_mutex_unlock(&sodaLock);
7 }

1 producer() {
2 pthread_mutex_lock(&sodaLock);
3 // wait if full
4 // add a soda to machine
5 // notify that it is not empty
6 pthread_mutex_unlock(&sodaLock);
7 }

6. To put this into code, we finally have

1 consumer() {
2 pthread_mutex_lock(&sodaLock);
3

4 while (numSodas == 0) {
5 // while empty
6 wait(sodaLock, hasSoda);
7 }
8 numSodas -= 1; // take soda
9 signal(hasRoom);

10 pthread_mutex_unlock(&sodaLock);
11 }

1 producer() {
2 pthread_mutex_lock(&sodaLock);
3

4 while (numSodas == MaxSodas) {
5 wait(sodaLock, hasRoom);
6 }
7

8 numSodas += 1; // add soda
9 signal(hasSoda);

10 pthread_mutex_unlock(&sodaLock);
11 }

Let’s go through this. From the consumer function, we have:
1. The consumer function can start by first acquiring a lock on the sodaLock mutex using

pthread_mutex_lock(). This ensures that only one consumer thread can access the shared
resources (e.g., numSodas) at a time.

2. It then enters a while loopa that checks if numSodas is zero. If numSodas is zero, it means there
are no sodas available for consumption. In this case, the consumer thread calls the wait()
function, which unlocks the sodaLock mutex and waits for a signal on the hasSoda condition
variable. This allows other threads to acquire the lock and proceed.

3. When the consumer thread receives a signal indicating that sodas are available (hasSoda con-
dition variable), it wakes up and reacquires the lock on sodaLock.

4. The consumer thread then decrements numSodas by 1, indicating the consumption of a soda.
5. After consuming a soda, the consumer thread signals the hasRoom condition variable using the

signal() function. This notifies any waiting producer threads that there is now room available
in the soda buffer.

6. Finally, the consumer thread unlocks the sodaLock mutex using pthread_mutex_unlock(),
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allowing other threads to access the shared resources.
From the producer function, we have:

1. The producer function can start by first acquiring a lock on the sodaLock mutex using
pthread_mutex_lock(). This ensures that only one producer thread can access the shared
resources at a time.

2. It then enters a while loop that checks if numSodas is equal to MaxSodas. If numSodas is equal
to MaxSodas, it means the soda buffer is full, and the producer cannot add more sodas. In this
case, the producer thread calls the wait() function, which unlocks the sodaLock mutex and
waits for a signal on the hasRoom condition variable. This allows other threads to acquire the
lock and proceed.

3. When the producer thread receives a signal indicating that there is room available in the soda
buffer (hasRoom condition variable), it wakes up and reacquires the lock on sodaLock.

4. The producer thread then increments numSodas by 1, indicating the production of a new soda.
5. After producing a soda, the producer thread signals the hasSoda condition variable using the

signal() function. This notifies any waiting consumer threads that a soda is now available for
consumption.

6. Finally, the producer thread unlocks the sodaLock mutex using pthread_mutex_unlock(),
allowing other threads to access the shared resources.

Note that we must have a while loop since if the producer ended up broadcasting the hasSoda
condition to say 10 threads when there are 5 sodas, then 5 of those threads will get a soda while 5
may not, and this possibility should be detected by the while loop.

4 Memory Management

4.1 Virtual Memory
We have mentioned that there is a problem where two different application developers, who have linked their
own C files to create binaries, can be installed on one computer and run at the same time. However, the
linking has already been finished and the memory addresses of the symbols in each executable are fixed.
This can be a problem if there are overlaps in the memory addresses.

Definition 4.1 (Virtual Memory)

The actual main memory of our system is referred to as the physical memory. To prevent such
overlaps, the kernel and each user process has its own virtual memory. That is, there exists a
memory management unit (MMU) in the CPU that translates virtual addresses to physical
addresses through a hashmap.

aWe want this to be a while loop since we want to reevaluate the condition even after reacquiring the lock.
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Figure 21: Memory management unit maps each virtual address to a physical address.

This allows the kernel to map the virtual memory of each process to the physical memory.

Figure 22: Each process has its own virtual memory space, which is mapped by the MMU to the physical
memory space.

Example 4.1 (Virtual and Physical Memory Size)

Given a n-bit machine with 2m-bytes of memory, n > m and so there are more virtual addresses than
physical addresses. If we have a 64-bit machine with 16GB of memory, then there are 264 virtual
addresses and 23 · 234 = 237 bits of physical memory. If there are 8 processes running then there are
8 · 264 = 267 bits of virtual memory.

There are many properties of virtual memory that solves a lot of problems and makes things more convenient.
The main property is called indirection which means that the virtual memory is not the actual physical
memory.

1. The first problem is that there are much more virtual addresses than physical addresses. Even storing
a table for one process would take up more than all of your RAM. Therefore, for every byte in main
memory, there exists one physical address (PA) and zero, one, or more virtual addresses (VA). We will
elaborate on the specifics of this implementation later.

2. We also need to have memory management. Every process has its own stack, heap, .text, and .data
sections. We must be able to allocate and deallocate memory and fit this accordingly.

3. We also need to have protection. We need to ensure that one process cannot read or write to another
process’s memory.
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4. While we want isolation, we also want sharing between processes if needed (e.g. signing into Slack
using Google on a browser). Furthermore, if there are multiple calls of the printf function, we can
just have a single copy of the printf function in memory rather than having multiple copies for each
process. This can be done through the concept of permissions.

Let’s talk about how we should actually map these addresses. One property of this mapping is that we want
contiguous addresses both in the virtual and the physical level so that we can store arrays, exploit locality,
etc. Therefore, we can use larger blocks known as pages. Just like how we have divided memory addresses
into sections that can be used to map to caches, we can divide the memory addresses into sections that can
be used to map to the physical memory. Note that this also takes care of the first problem partially since
now we can fit this table in the memory.

Definition 4.2 (Page)

Both in virtual and physical memory, an n-bit address can be divided into a page number and an
offset. The page number is n− 12 and the offset is 12 bits. The page number is used to index into
a page table that maps the page number to a physical address.

Figure 23: A page is a contiguous block of memory addresses.

While the entire page table is stored in memory (at memory stored by a protected CPU register), a
portion of the page table is stored in the CPU cache.

1. The virtual page number (VPN) is equivalent to the block number.
2. The page offset is equivalent to the block offset.

Example 4.2 (Page Number)

In a 64-bit machine with 16GB of RAM, you have 264/212 = 252 virtual pages and 237/212 = 225

physical pages.

Therefore, our translation table is really a map from a virtual page number to a physical page number,
rather than a virtual address to a physical address. This is created at runtime. Therefore,

1. The virtual page number V P is mapped through some map M to get the physical page number PP .

2. The virtual offset is the same as the physical offset.

Definition 4.3 (Page Table)

The page table is a hashmap that maps the virtual page number to the physical page number defined
as the mapping

H : (V P,m)︸ ︷︷ ︸
64 bits

−→ PP (3)

Each input-output pair is called a page table entry (PTE), and virtual memory is fully associa-
tive, meaning that any virtual page can be placed in any physical page, though it requires a large
mapping function (the PT), which is different from CPU caches.
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Figure 24: The page table only needs the virtual page number plus the metadata to map to the physical page
number. The offset is provided by the virtual memory address itself.

Note that while we want to store the 52-bit VP in the page table, the actual input is still 64-bits,
with 12 bits of metadata m. This metadata contains some information about the following

1. A bit that indicates whether the page is a read, write, or executable piece of code (3 bits).
2. A bit that indicates whether the page is valid or not.

Figure 25: The page table entry contains the physical page number and some metadata.

Therefore, if you malloc, you are really just allocating some virtual memory addresses, which then get
mapped to physical memory addresses in one or more pages.

Definition 4.4 (Page Fault)

It is clear that not every virtual page number can be mapped to a physical page number. If it turns
out that a page fault happens if

1. the virtual page number maps to no physical page (i.e. is not in the page table) in the RAM
2. if some user program tries to access a physical page owned by the kernel
3. if the page number maps to some place in the disk (but it is not in physical RAM)

Page faults can be used in a lot of creative ways, but to reduce the risk of a page fault, e.g. when
running out of physical memory, we can move some physical pages into disk and allocate memory by
creating a new entry in our page table that maps this application’s virtual page into the now empty
physical page.

Note that by this construction, instructions that are contiguous in virtual memory may not be contiguous in
physical memory. This may seem like it defeats the purpose of locality, but for most purposes, the 4KB page
size will be enough to exploit it. We also see that malloced addresses in the heap (while we have learned
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that they were higher on the stack on higher addresses), are not necessarily in higher addresses in physical
memory. Therefore, physical memory is scattered, and this is good since you don’t need a giant contiguous
block of memory to run large programs; you can divide it up into multiple physical pages.

Definition 4.5 (Swap Space)

Sometimes, the memory might not be in physical memory. Since memory is constrained (e.g. only
16GB), if we initialize a large array in the stack or global data, we may run out of memory. Therefore,
the OS can flush out some physical pages in memory to disk, which is called swapping. The portion
of the disk space that can be used in swapping is called the swap space.

Figure 26: Swapping out physical pages to disk.

This allows us to abstract software into having almost infinite memory. Another important property
is that swapping is write-back rather than write-through. We really don’t want to write to disk
every time we modify memory, so some thing may never end up on the disk (e.g. stack for short-lived
processes). This is why when we open a file in C or Python, you may have to call close() since that
will flush the memory to disk.

Example 4.3 (Page Fault)

When we swap out a physical page to disk, the physical page is now empty and accessing the virtual
memory at this page table will cause a page fault. Say, when we want to write to a memory address
that is swapped into the disk. The following will happen.

1. You execute code normally in user mode.
2. Then you try to write to a memory address that is swapped out, say through a mov operation.

Say it is the following assembly code.

1 80483b7: c7 05 10 9d 04 08 0d movl $0x0,0x8049d10

This raises a page fault, an exception, and so the OS goes into kernel mode.
3. The kernel then finds the location of this physical page in the disk. The implementation is

OS-specific (e.g. you can store some metadata).
4. Then it must copy the page back from disk into memory, and it may also have to swap out
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some other physical page to disk to make space if needed.
5. Then the OS goes back into user mode, which now has access to the relevant memory in disk.

Ultimately, the moving operation is called twice. The first time it fails in user mode, and the second
time (after the kernel mode, but now back to user mode) it succeeds. Note that this is different from
a system call, which returns back to the next instruction. This call returns to the current instruction.

Definition 4.6 (Page Sharing)

This also makes protection and sharing to be quite nice. Given two virtual pages V P1 and V P2, owned
by two different processes, we can have them share information by mapping to the same physical page
PP .

Section Read Write Execute
Stack 1 1 0
Heap 1 1 0

Static Data 1 1 0
Literals/const 1 0 0
Instructions 1 0 1

Table 3: Permissions for different sections of virtual memory.

Example 4.4 (Page Sharing Between Two Applications)

Furthermore, we can set process 1 to have only read permissions and process 2 to have read/write
permissions. Therefore, say Google Chrome (process 2) can write your password into some memory,
and then Slack (process 1) can read it, copy it into the CPU, and do stuff with it.

Figure 27: Sharing of data between two processes.

Now that we see how memory is swapped in the backend, we can see why larger memory can sometimes
mean faster programs and why thrashing occurs.

Definition 4.7 (Thrashing)

The set of virtual pages that a program is “actively” accessing at any point in time is called its
working set.

1. If the working set of one process is less than physical memory, then there is good performance
for one process.

2. If the working set of all processes is greater than physical memory, then we have thrashing,
which is a performance meltdown where pages are swapped between memory and disk contin-
uously, and the CPU is always waiting or paging.
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Example 4.5 (Computation Exercise)

Suppose that you have 16 KiB pages, 48-bit virtual addresses, and 16 GiB physical memory. How
many bits wide are the following fields?

1. Virtual page number : 48− 14 = 34 bits.
2. Virtual page offset : 16 KiB is 214 bytes, so we need 14 bits.
3. Physical page number : 16 GiB is 234 bytes, so we need 34− 14 = 20 bits.
4. Physical page offset : 16 KiB is 214 bytes, so we need 14 bits.

Furthermore, we have

Figure 28: Given the virtual address, we can figure out the physical address, VPN, and PPN easily.

5 Filesystems
Before we get into anything, even the loading of the firmware or the operating system kernel, we must talk
about the hardware and how a computer stores data. Data, whether it is in memory or some disk, is just a
bunch of sequences of bits. A drive is a physical device that can store data. A partition is a logical division
of a drive, and a filesystem is a way to organize data on a drive. For example, if I have a 1TB SSD, I can
run it as a single partition, or I can divide it into two partitions, one for a Windows operating system and
another for a Linux operating system. A filesystem is a bit more confusing, so here are some examples.

Example 5.1 (Linux Filesystems)

Listed.
1. ext4: The most common filesystem for Linux.
2. XFS: Designed for high performance and scalability, often used in enterprise environments for

large-scale storage.
3. btrfs: A modern filesystem that offers advanced features like snapshots, dynamic inode alloca-

tion, and integrated device management for better data reliability and performance.
4. zfs: Originally developed by Sun Microsystems for Solaris, ZFS is known for its data integrity,

support for enormous storage capacities, and features like snapshots, copy-on-write, and built-in
data compression.
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Example 5.2 (Windows Filesystems)

Listed.
1. NTFS (New Technology File System): The standard filesystem for Windows operating

systems, supporting file permissions, encryption, and large file sizes.
2. FAT32 (File Allocation Table 32): An older filesystem with wide compatibility across dif-

ferent operating systems, including Windows, macOS, and various Linux distributions, though
it has limitations on file and partition sizes.

3. exFAT (Extended File Allocation Table): Designed to be a lightweight filesystem similar
to FAT32 but without its limitations, exFAT is used for flash drives and external hard drives
due to its support for larger files and compatibility.

Example 5.3 (MacOS Filesystems)

Listed.
1. APFS (Apple File System): The default filesystem for macOS, iOS, and other Apple op-

erating systems since 2017, designed for SSDs and featuring strong encryption, space sharing,
and fast directory sizing.

2. HFS+ (Hierarchical File System Plus): Also known as Mac OS Extended, it was the
primary filesystem for Mac computers before APFS, supporting journaling for data integrity.

When your computer boots up, it needs to know where to find the operating system kernel. This is done by
mounting the filesystems. The mount point is the directory where the filesystem is attached to the system.
The root filesystem is the filesystem that contains the operating system kernel.

Depending on your hardware specs, you may have multiple drives. To list all drives and their partitions, run
lsblk. The type determines whether it is a disk or a partitions, and the mountpoints determine where the
partitions are mounted. Furthermore, the RO indicates whether this is a HDD (1) or SSD (0).

1 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
2 zram0 254:0 0 4G 0 disk [SWAP]
3 nvme0n1 259:0 0 953.9G 0 disk
4 nvme0n1p1 259:1 0 240M 0 part
5 nvme0n1p2 259:2 0 128M 0 part
6 nvme0n1p3 259:3 0 309.4G 0 part
7 nvme0n1p4 259:4 0 990M 0 part
8 nvme0n1p5 259:5 0 16.7G 0 part
9 nvme0n1p6 259:6 0 1.4G 0 part

10 nvme0n1p7 259:7 0 500M 0 part /boot
11 nvme0n1p8 259:8 0 4.7G 0 part [SWAP]
12 nvme0n1p9 259:9 0 619.9G 0 part /

Figure 29: This is the following output on my personal computer.

The swap partition is a special type of partition that is used as a temporary storage area for the operating
system. It is used when the system runs out of RAM.

For a more detailed view on what the partitions consist of, you can run fdisk -l.

1 Disk /dev/nvme0n1: 953.87 GiB, 1024209543168 bytes, 2000409264 sectors
2 Disk model: PM9A1 NVMe Samsung 1024GB
3 Units: sectors of 1 * 512 = 512 bytes
4 Sector size (logical/physical): 512 bytes / 512 bytes
5 I/O size (minimum/optimal): 512 bytes / 512 bytes
6 Disklabel type: gpt
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7 Disk identifier: 26D88CE9-B388-4CF1-856C-14D5EEB0C143
8

9 Device Start End Sectors Size Type
10 /dev/nvme0n1p1 2048 493567 491520 240M EFI System
11 /dev/nvme0n1p2 493568 755711 262144 128M Microsoft reserved
12 /dev/nvme0n1p3 755712 649658367 648902656 309.4G Microsoft basic data
13 /dev/nvme0n1p4 1960380416 1962407935 2027520 990M Windows recovery environment
14 /dev/nvme0n1p5 1962407936 1997441023 35033088 16.7G Windows recovery environment
15 /dev/nvme0n1p6 1997443072 2000377855 2934784 1.4G Windows recovery environment
16 /dev/nvme0n1p7 649658368 650682367 1024000 500M EFI System
17 /dev/nvme0n1p8 650682368 660447231 9764864 4.7G Linux swap
18 /dev/nvme0n1p9 660447232 1960380415 1299933184 619.9G Linux filesystem

As you can see here, my single disk has 9 partitions.

1. The first EFI system (1) or the Microsoft reserved (2) partition contains the Windows operating system
kernel.

2. The Microsoft basic data (3) partition contains the Windows files.

3. The Windows recovery environment (4, 5, 6) is a partition that contains the Windows recovery envi-
ronment, which are partitions set aside by the manufacturer to hold an image of your system before it
was shipped from the factory.

4. The EFI system (7) partition contains the Linux operating system kernel, which is required to load
the operating system.

5. The Linux swap (8) partition is a partition that contains the Linux swap.

6. The Linux filesystem (9) is a partition that contains the actual Linux operating system itself, along
with all your files.

5.1 Mounting
You can further go into the /dev directory to see the devices that are mounted, e.g. the /dev/nvme0n1p9
is the device that is mounted on the root directory, and most of these files are either device files (which are
special files that provide an interface to hardware devices, allowing software and users to interact with them
as if they were normal files) or symlinks.

The mount command is used to attach a filesystem to the system’s directory tree. The umount command
is used to detach a filesystem from the system’s directory tree.

1. Mounting a filesystem: The general syntax is mount -t type device dir. For example, to mount
the /dev/nvme0n1p9 to the root directory, you can run mount -t ext4 /dev/nvme0n1p9 /mnt.

2. Unmounting a filesystem: The general syntax is umount dir. For example, to unmount the root
directory, you can run umount /mnt.

When the computer boots up, it must automatically mount the specific filesystems. This is configured in
the fstab file.

Definition 5.1 (fstab)

The fstab file is a system configuration file that contains information about filesystems. It is located
at /etc/fstab. It is used to define how disk partitions, various other block devices, or remote
filesystems should be mounted into the filesystem. Each line in the file contains six fields, separated
by whitespace. The fields include:

1. Filesystem: The block device or remote filesystem to be mounted. This can be the UUID
(Universally Unique Identifier), the label, or the traditional device name (like /dev/sda1) that
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specifies which device or partition is being referred to.
2. Mount Point: The directory where the filesystem should be mounted.
3. Type: The type of the filesystem, e.g. ext4, vfat, swap, etc.
4. Options: Mount options for the filesystem, e.g. rw for read-write, ro for read-only, noexec to

prevent execution of binaries, etc.
5. Dump: A number used by the dump command to determine whether the filesystem should

be backed up. It is often set to 0 to disable backups.
6. Pass: A number used by the fsck command to determine the order in which filesystems should

be checked. Root filesystems should have this set to 1, and other filesystems should either be 2
(to check after the root) or 0 (to disable checking).

1 # Static information about the filesystems.
2 # See fstab(5) for details.
3

4 # <file system> <dir> <type> <options> <dump> <pass>
5 # /dev/nvme0n1p9
6 UUID=abcfef03-bfae-4d1f-b463-fd6538f18a41 / ext4 rw,relatime 0 1
7 # /dev/nvme0n1p7
8 UUID=150D-7A67 /boot vfat rw,relatime,fmask=0077,dmask=0077,codepage=437,
9 iocharset=ascii,shortname=mixed,utf8,errors=remount-ro 0 2

10 # /dev/nvme0n1p8
11 UUID=5c191f65-b016-475d-b04a-5b7c89bda31d none swap defaults 0 0

Figure 30: My personal fstab file.

5.1.1 Mounting a Remote Disk

It is actually possible to mount a folder on a server into your local machine. To do this, you use sshfs to
mount a remote directory over SSH. The general syntax is sshfs user@host:/remote/dir /local/dir to
mount and fusermount -u /local/dir to unmount.

5.2 Maintence
5.2.1 SSD

As soon as your write or delete bits from the SSD (e.g. when you’re deleting a file), it degrades the speed of
the read/write. To alleviate the effects, you can use TRIM, which is a command that allows the operating
system to inform the SSD which blocks of data are no longer considered in use and can be wiped internally. It
can be downloaded as a part of the util-linux package, which provides the systemd services fstrim.timer
and fstrim.service. It is recommended to use weekly trims rather than continuous trims.

5.2.2 Filesystem

Occasionally, you may have a corrupt partitions, whether it is your boot or root directory. In this case, you
should use the fsck command to check and repair a filesystem. The general steps are:

1. unmount the specific partition you want (identified with lsblk) using sudo umount /dev/partition.

2. run sudo fsck -t type device (or for specific filesystem types like vfat you can be a bit more specific
by running sudo fsck.vfat /dev/partition) to check the filesystem and fix any changes.

3. mount the specific partition back using sudo mount /dev/partition.
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5.3 Modifying Partitions
Modifying partitions require specialized software. Partitioning can be done using two main partitioning
schemes GPT (the modern one) and MBR (legacy). The parted utility gives detailed info on your parti-
tions. To see which scheme you have, just run sudo parted -l, where the output can be shown in Figure
31.

1 Model: PM9A1 NVMe Samsung 1024GB (nvme)
2 Disk /dev/nvme0n1: 1024GB
3 Sector size (logical/physical): 512B/512B
4 Partition Table: gpt
5 Disk Flags:
6

7 Number Start End Size File system Name Flags
8 1 1049kB 253MB 252MB fat32 EFI system partition boot, esp
9 2 253MB 387MB 134MB Microsoft reserved partition msftres

10 3 387MB 333GB 332GB ntfs Basic data partition msftdata
11 7 333GB 333GB 524MB fat32 boot, esp
12 8 333GB 338GB 5000MB linux-swap(v1) swap
13 9 338GB 1004GB 666GB ext4
14 4 1004GB 1005GB 1038MB ntfs hidden, diag
15 5 1005GB 1023GB 17.9GB ntfs hidden, diag
16 6 1023GB 1024GB 1503MB ntfs hidden, diag
17

18

19 Model: Unknown (unknown)
20 Disk /dev/zram0: 4295MB
21 Sector size (logical/physical): 4096B/4096B
22 Partition Table: loop
23 Disk Flags:
24

25 Number Start End Size File system Flags
26 1 0.00B 4295MB 4295MB linux-swap(v1)

Figure 31: Output of sudo parted -l on my own machine.

It is important to know which partition scheme you should use.

1. To dual-boot with Windows (both 32-bit and 64-bit) using Legacy BIOS, the MBR scheme is required.

2. To dual-boot Windows 64-bit using UEFI mode instead of BIOS, the GPT scheme is required.

3. If you are installing on older hardware, especially on old laptops, consider choosing MBR because its
BIOS might not support GPT.

4. If you are partitioning a disk that is larger than 2TB, you need to use GPT.

5. It is recommended to always use GPT for UEFI boot, as some UEFI implementations do not support
booting to the MBR while in UEFI mode.
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6 I/O Systems

7 Storage Management

8 Virtualization

9 Firmware
Let us go through the steps of a booting (bootstrapping) process. Administrators have little direct, interactive
control over most of the steps required to boot a system, but they can modify bootstrap configurations by
editing config files or system startup scripts.

1. Power On: You power on the machine.

2. Load firmware from NVRAM: You want to be able to identify the specific piece of hardware to
load your operating system in. The firmware is a permanent piece of software that does this.

3. Probe for hardware: We look for hardware that is on the computer.

4. Select boot device (disk, network, etc.): We select the storage device that we want to load the
operating system on.

5. Identify EFI system partition:

6. Load boot loader (e.g. GRUB): A software that allows you to identify and load the proper OS
kernel is provided.

7. Determine which kernel to boot: You choose which kernel you want to load.

8. Load kernel: The OS kernel is identified and loaded into the boot device.

9. Instantiate kernel data structure:

10. Start init/systemd as PID 1:

11. Exectute startup scripts:

12. Running system: You now have a running system!

Right above the hardware, the system firmware, is a piece of software that is executed whenever the
computer boots up.

1. Power Supply Activation: Once the computer is turned on, the power supply begins to provide
electricity to the system’s components. One of the first signals generated is the "Power Good" signal,
indicating that the power supply is stable and at the correct voltages.

2. CPU Reset: Upon receiving the "Power Good" signal, the CPU resets and starts its operations. The
CPU is designed to start executing instructions from a predefined memory address, which is hardwired
into the CPU. This address, stored in ROM, contains the starting point of the firmware.Read Only
Memory is simply another type of computer memory that stores permanent data and instructions for
the device to start up.

3. Predefined Memory Address: For BIOS systems, the CPU begins executing code at the firmware
entry point located in the system’s ROM (Read-Only Memory). In UEFI systems, the process is similar,
but the UEFI firmware provides more functionalities and a more flexible pre-boot environment.

4. POST (Power on Self Test): The firmware conducts a series of diagnostic tests to ensure that
essential hardware components like RAM, storage devices, and input/output systems are functioning
correctly. This stage is critical for verifying system integrity before loading the operating system.

To be honest, there is not a lot that the user can control here with just software. The firmware is a
permanent piece of software that is executed whenever the computer boots up, which makes it relatively
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safe from tampering. If your computer fails to boot up, the most fundamental reason may be a firmware
problem. However, we’re not screwed yet.

Most firmware offers a user interface which can be accessed by pressing the F2, F11, F12, or some combination
of magic keys at the instant the system first powers on. Depending on what computer model you have, you
may have some control of basic functionalities.

Figure 32: Firmware of Dell XPS 13 9320

Some important functionalities you can do with the firmware are:

1. Determine the boot order of the devices, usually by prioritizing a list of available options (e.g. try to
boot from a DVD drive, then a USB, then the hard disk).

2.

The BIOS, which stands for Basic Input/Output System, has been used traditionally. It is mainly
responsible for loading the bootloader. When the computer starts, it runs a Power on Self Test (POST)
to make sure that core hardware such as the memory and hard disk is working properly. Afterward, the
BIOS will check the primary hard drives’ Master Boot Record (MBR), which is a section on your hard
drive where the bootloader is located.

A more formalized and modern standard called EFI (Extensible Firmware Interface) has replaced it,
and it has been revised to the UEFI (Unified Extensible Firmware Interface) standard, but we can
treat EFI and UEFI as equivalent in most cases. Fortunately, most UEFI systems can fall back to a legacy
BIOS impelmentation if the operating system they’re booting doesn’t support UEFI. Since we’re likely to
encounter boot firmware systems, it’s worthwhile to go into both of them.

9.1 Updating Firmware
The first thing you should do when you’re having trouble with firmware is use fwupd, which is a daemon that
handles firmware updates. It is a simple daemon to allow session software to update device firmware on your
local machine. Upon installation, it creates a systemd agent on /lib/systemd/system/fwupd.service. It
does not start automatically. I have used this to update my firmware, which saved a lot of booting errors,
with instructions accessed in this link.
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9.2 Modifying UEFI Variables
You can directly examine and modify UEFI variables on a running system with the efibootmgr command.
You get a following summary of the configuration:

1 BootCurrent: 0005
2 Timeout: 0 seconds
3 BootOrder: 0005,0001,0002,0000,0003,0004
4 Boot0000* UEFI PM9A1 NVMe Samsung 1024GB S65VNE0R318841 1 ...
5 Boot0001* ubuntu HD(1,GPT,ede98b7e-75ad-452e-ab47-3411dd6026c1,0x800,0x780...
6 Boot0002* Windows Boot Manager HD(1,GPT,ede98b7e-75ad-452e-ab47-3411dd60...
7 Boot0003* Linux Firmware Updater HD(1,GPT,ede98b7e-75ad-452e-ab47-...
8 Boot0004* UEFI PM9A1 NVMe Samsung 1024GB S65VNE0R318841 1 2 PciRoot(0x0)/...
9 Boot0005* Linux Boot Manager HD(7,GPT,2d28b70f-725b-4ca3-98d4-25f5c83fc00e...

It shows you which disk you are currently booted into, the boot order that is currently configured, and
information about each of the disks. You can use a GUI to do this as well. You can press a certain key when
booting (F2 on my Dell XPS15 9500) to enter the BIOS setup.

Figure 33: The BIOS setup can look very different depending on the computer but looks like this for me.

From here, we can edit different settings like boot options (priority of booting OS), certain video settings,
etc.

9.3 Recovery Mode
Occasionally, you may run into problems with booting up the system. You can go into recovery mode
by looking at the advanced options in the GRUB menu and selecting the option that literally says recovery
mode.
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This gives us a list of options that we can take to fix the system. Every setting except root is automatically
done. The root command gives us root privileges (no sudo is needed). This also means we have full access
to all files, and we may cause irreversible damage to our system if we made a mistake. If we had not enabled
read/write access with "Enable networking" the filesystem will be mounted read only, and we are unable to
edit files. In case we don’t have access to a network, or this was not desired, we can remount our filesystem(s)
giving write access with the following command:

1 mount -o rw,remount /

With editing privileges, we can hopefully better diagnose or undo our problems. Finally, from the root shell
type exit to go back to the menu.

10 Bootloaders
Once the firmware is loaded, which probes the system to find the hardware, it must load the operating
system kernel. This is the job of the boot loader.

Definition 10.1 (Boot Loader, Boot Manager)

The bootloader is another critical piece of software that allows you to identify and load the proper
operating system kernel. If it also provides an interactive menu with multiple boot choices, then it is
often called a boot manager.

In modern systems which support UEFI (not the legacy BIOS), you must configure your partitions so that
there exists an EFI partition (at /boot) that contains this bootloader.

EFI bootloaders usually have a .efi extension, and it is crucial that you know where the bootloaders are
in your system in case they go missing or are corrupt. To see the configuration, you can run efibootmgr
(with verbose), which gives you information on several things:

1. It scans the entire system for EFI bootloaders and lists them.

2. It lists the locations of the EFI bootloaders. It starts off which what partition they are in, and
then lists the directory where the bootloader is located. BootX64.efi is the Windows bootloader
and grubx64.efi is the GRUB bootloader. For example, you may have a bootloader at (partition
7)/boot/efi/EFI/Boot/bootx64.efi.

3. It lists the boot order, which is the order in which the bootloaders are loaded. In case a boot loader
fails to load, the next one is loaded. Therefore, if you have an arch linux bootloader that is corrupt,
and the next in line is the Windows bootloader, you will automatically boot into Windows. You can
also set the boot order in the BIOS.
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In case you can’t boot in, you can always get an Arch ISO burned in on a thumb drive, boot into it, mount
the relevant partitions containing the Arch bootloader and the root directory, and then chroot into the root
directory to modify files.

10.1 GRUB
The way that these kernels can be loaded can be configured through the bootloader, and the most popular
boot manager is GRUB, the Grand Unified Bootloader. GRUB, developed by the GNU project, is
the default loader on most Linux distributions. There is an old version called GRUB legacy and the more
modern GRUB 2. Most people refer to GRUB 2 and simply GRUB. FreeBSD, which is another complete
(non-Linux) OS, have their own boot loader, but GRUB is compatible with it. Therefore, for dual-boot or
triple-boot systems that have multiple kernels, GRUB is the go-to bootloader for loading any of them.

Figure 34: GRUB menu on my screen. Ubuntu does not display the GRUB menu by default. To see GRUB during
boot you need to press the right-hand SHIFT key during boot.

As a critical piece of software, we would expect its configuration files to be in the NVRAM, but GRUB
understands most of the filesystems in common use and can find its way into the root filesystem on its own.
Therefore, we can read its configuration from a regular text file, kept in /boot/grub/grub.cfg. Changing
the boot configuration is as simple as updating the grub.cfg file, but it is not advised to edit it directly.
Rather, we can edit the /etc/default/grub file and run sudo update-grub to that the changes are written
to grub.cfg automatically.
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