
Compilers Muchang Bahng Summer 2025

Compilers

Muchang Bahng

Summer 2025

Contents
1 Program Lifecycle Phases 2

1.1 More on Executables . 3
1.2 Static vs Dynamic Languages . 3

2 Compiling and Linking 3
2.1 Precompiling Stage . 4
2.2 Compiling Stage . 7
2.3 Objdump . 10

2.3.1 ELF and Mach-O Formats . 10
2.3.2 Objdump Commands . 11

2.4 Assembling Stage and Object Files . 15
2.5 Linking Stage and Relocation . 17

2.5.1 Relocation . 17
2.5.2 Linking with One Object File . 19
2.5.3 Global vs External Symbols . 19
2.5.4 Linking with Multiple Object Files . 21

2.6 Compiler Optimization . 25

1/ 26

Compilers Muchang Bahng Summer 2025

Compiler Interpreter
Takes more time to analyze source code but
execution time is faster.

Takes less time to analyze source code but ex-
ecution time is slower.

Debugging is harder since the compiler gener-
ates an error message after the entire scan.

Debugging is easier since the interpreter con-
tinues translating the program until an error
is met.

Requires a lot of memory for generating object
codes.

Requires less memory because no object code
is generated.

Generates intermediate object code. No intermediate object code is generated.

1 Program Lifecycle Phases
First, we review some definitions. More on program lifecycle phases here. Programming languages are
broadly classified into two types. High-level languages are the familiar programming languages that we
work with today (that allow much more abstraction), while low-level languages are very close to the
hardware, such as machine language and assembly language. Programmers write programs in source code
(usually high-level languages), which are then inputted into language processors that translate them into
object code (usually machine code consisting of binary). The duration in which the source code of
the program is being edited is called the edit time, while the compile time is when the source code is
translated into machine code by a language processor. There are three types of language processors.

1. A compiler is a language processor that reads the complete source program written in high-level
language as a whole in one go and translates it into an equivalent program in machine language. The
source code is translated to object code successfully if it is free of errors. The compiler specifies the
errors at the end of the compilation with line numbers when there are any errors in the source code.
The errors must be removed before the compiler can successfully recompile the source code again. (e.g.
C, C++, C#, Java)

2. An assmebler is used to translate the program written in Assembly language (basically a low-level
language with very strong correspondence between the instructions in the language and the machine
code instructions) into machine code. The assembler is basically the 1st interface that is able to
communicate humans with the machine. We need an assembler to fill the gap between human and
machine so that they can communicate with each other. Code written in assembly language is some
sort of mnemonics (instructions) like ADD, MUL, MUX, SUB, DIV, MOV and so on, and the assembler
is basically able to convert these mnemonics into binary code.

3. An interpreter translates a single statement of the source program into machine code and executes
immediately before moving on to the next line. If there is an error in the statement, the interpreter
terminates its translating at that statement and displays an error message. The interpreter moves on
to the next line for execution only after the removal of the error. An interpreter directly executes
instructions written source code without previously converting them to an object code or machine
code. (e.g. Python, Pearl, JavaScript, Ruby)

A quick compare and contrast.

The result of a successful compilation is an executable, which is a program in the form of a file containing
millions of lines of very simple machine code instructions (e.g. add 2 numbers or compare 2 numbers), also
called processor instructions. This executable can be stored somewhere in the computer drive for future
use or it may be copied immediately in a faster memory state, such as the RAM. The load time is when
the OS takes the program’s executable from storage and puts it into an active memory (e.g. RAM) in order
to begin execution.

The CPU understands only a low level machine code language (aka native code), which is contained within
the executable. The language of the machine code is hardwired into the design of the CPU hardware; it is
not something that can be changed at will. Each family of compatible CPUs (e.g. the popular Intel x86
family) has its own, idiosyncratic machine code which is not compatible with the machine code of other CPU

2/ 26

https://en.wikipedia.org/wiki/Program_lifecycle_phase

Compilers Muchang Bahng Summer 2025

families. More information here. Once the instruction bytes are copied from storage to RAM, the CPU can
run through the steps/lines at the rate of about 2 billion lines/steps per second. This execution phase, when
the CPU executes the instructions until normal termination or a crash, is called the runtime.

1.1 More on Executables
More specifically, an executable is a file that contains a list of instructions and data to cause a computer’s
CPU to perform indicated tasks, as opposed to the data files, which are fundamentally strings of data that
must be interpreted (parsed) by a program to be meaningful. Executables usually have extension names
.exe or .bat, and they can generally be run (invoked) in two ways:

1. The executable file can be run by simply double clicking on the file name, opening it, and having the
user type commands in an interactive session of an interpter (like inputting commands in terminal
window or a python shell).

2. Alternatively, we can start writing a program, complete writing it, and then have this program compiled
into an executable to be invoked.

Some common examples of executables are:

1. python.exe - used to run python scripts that have the .py extension, located at

C: \Users\bahng\AppData\Local\Programs\Python\Python39

2. pythonw.exe - used to run .pyw files for GUI programs

3. terminal.exe (on MacOS)

4. cmd.exe (on Windows OS)

5. py.exe - an executable used to run the python.exe executable like a shortcut, located at

C:\windows\py.exe

1.2 Static vs Dynamic Languages
Type-checking is the process of checking and verifying the type of a construct (constant, variable, array,
list, object) and its usage context. It helps in minimizing the possibility of type errors in the program, and
type checking may occur either at compile-time (static checking) or at run-time (dynamic checking).

1. Statically-Typed Languages: Since we type check during compilation, every detail about the vari-
ables and all the data types must be known before we do the compiling process. Once a variable is
assigned a type, it can’t be assigned to some other variable of a different type, and so the data type
of a declared variable is fixed. This makes sense since in Java, C, C++, etc., the programmer must
specify what the data type of each variable is by writing something like int myNum = 15.

2. Dynamically-Typed Languages: Since we type-check during runtime, there is no need to specify
the data type of each variable while writing code, which improves writing speed. These languages have
the capability to identify the type of each variable during run-time, so we do not need to declare the
data types of variables. In these languages, variables are bound to objects at run-time using assignment
statements, and most modern languages (e.g. JavaScript, Python, PHP, etc.) are dynamically typed.

2 Compiling and Linking
Now let’s talk about how this compiling actually happens. Compiling is actually an umbrella term that is
misused. Turning at C file into an executable file consists of multiple intermediate steps, one of which is
actually compiling, but the whole series is sometimes referred to as compiling. A more accurate term would
be building. Before we get onto it, there are two types of compilers.

3/ 26

https://web.stanford.edu/class/cs101/software-1.html

Compilers Muchang Bahng Summer 2025

Definition 2.1 (GCC, CLang)

The two mainstream compilers used is GCC (with the gdb debugger) and Clang (with lldb). For
now, the difference is that

1. gcc is more established.
2. clang is newer and has more features.

A useful flag to know is that we can always specify the name of the (final or intermediary) output
file with the -o flag.

Definition 2.2 (Complete Build Process)

To actually turn a C file into an executable file, we need to go through a series of steps. We start off
with the C code, which are the .c, .cpp, or .h files.

1. Preprocessing: The precompiler step expands the preprocessor directives (all the #include
and #define statements) and removes comments. This results in a .i file. The preprocessor
will replace these macros with the actual code. This results in a .i file.

1 clang/gcc -E main.c -o main.i

2. Compiling: We take these and generate assembly code. This results in a .asm or .s file.

1 clang/gcc -S main.c -o main.s

3. Assembler: We take the assembly code and generate machine code in the form of relocatable
binary object code (this is machine code, not assembly). This results in a .o or .obj file.

1 clang/gcc -c main.c -o main.o

4. Linking: We take these object files and link them together to form an executable file. This
results in a .exe or .out file.

The GCC or CLang compiler automates this process for us. For example, gcc -c hello.c generates
an object file, taking care of the preprocessing, compiling, and assembling code. Then, gcc hello.o
links the object file to generate an executable file.

There are a lot of questions to be asked here, and we will go through them step by step.

2.1 Precompiling Stage
Just like how Python package managers like conda have specific directories that they find package in, the C
library also has a certain directory.

Definition 2.3 (Standard Library Directory)

In Linux systems, there are two main directories you look at:
1. /usr/include contains the standard C library headers.
2. /usr/local/include contains the headers for libraries that you install yourself.

In Mac Silicon, these directories are a little bit more involved. You must first install the xcode
command line developer tools, which will then create these directories.

1. The standard C library headers are in

/Library/Developer/CommandLineTools/SDKs/MacOSX*.sdk/usr/include.

In here, we can find all the relevant import files like stdio.h and such. When we precompile, the output .i
file represents a precompiled C file. It still has C code, but it has been optimized to

4/ 26

Compilers Muchang Bahng Summer 2025

1. Remove comments.

2. Replace all the #include statements with the actual code.

3. Replace all the global variables declared in #define with the actual value.

Between x86 and ARM, there are no significant differences in how C files are precompiled.

Example 2.1 ()

Take a look at the following minimal example.

1 #include "second.h"
2 #define a 3
3

4 int add(int x, int y) {
5 return x + y;
6 }
7

8 int main() {
9 // test comment

10 int b = 5;
11 int c = add(a, b);
12 int d = subtract(a, b);
13 return 0;
14 }

1 int subtract(int a, int b) {
2 return a - b;
3 }
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .

Figure 1: I have included a main.c file that imports statements from a second.h file.

Now, I run gcc -E main.c -o main.i to generate the precompiled file, which gives me the following.

5/ 26

Compilers Muchang Bahng Summer 2025

1 # 1 "main.c"
2 # 1 "<built-in>" 1
3 # 1 "<built-in>" 3
4 # 418 "<built-in>" 3
5 # 1 "<command line>" 1
6 # 1 "<built-in>" 2
7 # 1 "main.c" 2
8 # 1 "./second.h" 1
9 int subtract(int a, int b) {

10 return a - b;
11 }
12 # 2 "main.c" 2
13

14

15 int add(int x, int y) {
16 return x + y;
17 }
18

19 int main() {
20

21 int b = 5;
22 int c = add(3, b);
23 int d = subtract(3, b);
24 return 0;
25 }

Figure 2: The precompiled file.

Notice a few things:
1. The header file second.h has been replaced with the actual code.
2. The comments have indeed been removed.
3. The global variable a has been replaced with the actual value 3.

This leaves us with the question of what all the rest of the lines that start with a # are for. They are called
preprocessor directives.

Definition 2.4 (Preprocessor Directives)

Preprocessor directives are commands that are executed before the actual compilation begins.
These directives allow additional actions to be taken on the C source code before it is compiled into
object code. Directives are not part of the C language itself, and they are always prefixed with a #
symbol.

1. #include is used to include the contents of a file into the source file. It selects portions of the
file to include based on the file name.

2. #define is used to define a macro, which is a way to give a name to a constant value or a piece
of code.

3. #ifdef, #ifndef, #else, and #endif are used for conditional compilation.
4. #error is used to generate a compilation error.
5. #pragma is used to give the compiler specific instructions.

6/ 26

Compilers Muchang Bahng Summer 2025

2.2 Compiling Stage
Once we have precompiled, we can compile the code into assembly code. For the following two examples, we
will parse through the general syntax of assembly code. It is quite different between x86 and ARM, so we
will use the minimal C code

1 int add(int x, int y) {
2 return x + y;
3 }
4

5 int main() {
6 int a = 3;
7 int b = 5;
8 int c = add(a, b);
9 return 0;

10 }

for both examples.

Example 2.2 (x86 Compiled Assembly Language)

The assmebly code is shown.

1 .
2 .file "main.c"
3 .text
4 .globl add
5 .type add, @function
6 add:
7 .LFB0:
8 .cfi_startproc
9 endbr64

10 pushq %rbp
11 .cfi_def_cfa_offset 16
12 .cfi_offset 6, -16
13 movq %rsp, %rbp
14 .cfi_def_cfa_register 6
15 movl %edi, -4(%rbp)
16 movl %esi, -8(%rbp)
17 movl -4(%rbp), %edx
18 movl -8(%rbp), %eax
19 addl %edx, %eax
20 popq %rbp
21 .cfi_def_cfa 7, 8
22 ret
23 .cfi_endproc
24 .LFE0:
25 .size add, .-add
26 .globl main
27 .type main, @function
28 main:
29 .LFB1:
30 .cfi_startproc
31 endbr64
32 pushq %rbp
33 .cfi_def_cfa_offset 16
34 .cfi_offset 6, -16

7/ 26

Compilers Muchang Bahng Summer 2025

35 movq %rsp, %rbp
36 .cfi_def_cfa_register 6
37 subq $16, %rsp
38 movl $3, -12(%rbp)
39 movl $5, -8(%rbp)
40 movl -8(%rbp), %edx
41 movl -12(%rbp), %eax
42 movl %edx, %esi
43 movl %eax, %edi
44 call add
45 movl %eax, -4(%rbp)
46 movl $0, %eax
47 leave
48 .cfi_def_cfa 7, 8
49 ret
50 .cfi_endproc
51 .LFE1:
52 .size main, .-main
53 .ident "GCC: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0"
54 .section .note.GNU-stack,"",@progbits
55 .section .note.gnu.property,"a"
56 .align 8
57 .long 1f - 0f
58 .long 4f - 1f
59 .long 5
60 0:
61 .string "GNU"
62 1:
63 .align 8
64 .long 0xc0000002
65 .long 3f - 2f
66 2:
67 .long 0x3
68 3:
69 .align 8
70 4:

Example 2.3 (ARM Compiled Assembly Language)

The assembly code is shown.

1 .
2 .section __TEXT,__text,regular,pure_instructions
3 .build_version macos, 14, 0 sdk_version 14, 4
4 .globl _add ; -- Begin function add
5 .p2align 2
6 _add: ; @add
7 .cfi_startproc
8 ; %bb.0:
9 sub sp, sp, #16

10 .cfi_def_cfa_offset 16
11 str w0, [sp, #12]
12 str w1, [sp, #8]
13 ldr w8, [sp, #12]
14 ldr w9, [sp, #8]

8/ 26

Compilers Muchang Bahng Summer 2025

15 add w0, w8, w9
16 add sp, sp, #16
17 ret
18 .cfi_endproc
19 ; -- End function
20 .globl _main ; -- Begin function main
21 .p2align 2
22 _main: ; @main
23 .cfi_startproc
24 ; %bb.0:
25 sub sp, sp, #48
26 .cfi_def_cfa_offset 48
27 stp x29, x30, [sp, #32] ; 16-byte Folded Spill
28 add x29, sp, #32
29 .cfi_def_cfa w29, 16
30 .cfi_offset w30, -8
31 .cfi_offset w29, -16
32 mov w8, #0
33 str w8, [sp, #12] ; 4-byte Folded Spill
34 stur wzr, [x29, #-4]
35 mov w8, #3
36 stur w8, [x29, #-8]
37 mov w8, #5
38 stur w8, [x29, #-12]
39 ldur w0, [x29, #-8]
40 ldur w1, [x29, #-12]
41 bl _add
42 mov x8, x0
43 ldr w0, [sp, #12] ; 4-byte Folded Reload
44 str w8, [sp, #16]
45 ldp x29, x30, [sp, #32] ; 16-byte Folded Reload
46 add sp, sp, #48
47 ret
48 .cfi_endproc
49 ; -- End function
50 .subsections_via_symbols

We can see that in both examples, there are generally two types of codes.

1. The regular CPU operations with registers and memory.

2. Some code starts off with some code that starts with a .. Every line that starts with a . are called
assembler directives.

Let’s elaborate more on what these directives are.

Definition 2.5 (Assembler Directives)

An assembler directives are instructions in assembly language programming that that give com-
mands to the assembler (which then converts this to an object file) about various aspects of the
assembly process, but they do not represent actual CPU instructions that execute in the program.
Unlike typical assembly language instructions that directly manipulate registers and execute arith-
metic or logical operations, directives are used to organize, control, and provide necessary information
for the assembly and linking of binary programs. They can manage memory allocation, define sym-
bols, control compilation settings, and much more.
There are general types of directives that are common in both x86 and ARM that we should be aware

9/ 26

Compilers Muchang Bahng Summer 2025

about:
1. Section directives.
2. Data allocation directives.
3. Symbol definition directives.
4. Macro and Include directives.
5. Debugging and error handling directives.

Example 2.4 (x86 Assembly Directives)

Let us elaborate on the specific directives in the x86 assembly code, some of which are in the example
above.

1. .file "main.c" is a directive that tells the assembler that the following code is from the file
main.c. It is a form of metadata.

2. .text is a directive that tells the assembler that the following code is the text section (the
text/code portion of memory) of the program. This is where the actual code is stored.

3. .globl add is a directive that tells the assembler that the following code is a global function
called add.

4. .type add, @function is a directive that tells the assembler that the following code is a
function.

Example 2.5 (ARM Assembly Directives)

You also see that there are symbols that represent memory addresses. Let’s elaborate on what symbols
mean.

Definition 2.6 (Symbol)

A symbol is a name that is used to refer to a memory location. It can be a function name, a global
variable, or a local variable.

1. Global symbols are symbols that can be referenced by other object files, e.g. non-static functions
and global variables.

2. Local symbols are symbols that are only visible within the object file, e.g. static functions and
local variables. The linker won’t know about these types.

3. External symbols are referenced by this object file but defined in another object file.

2.3 Objdump
Since we will be using the objdump package quite a lot, it is worth mentioning the different commands you
will use and store them here as a reference. For first readers, don’t expect to know what each of them do,
but rather look back at this for a reference.

2.3.1 ELF and Mach-O Formats

Objdump is a command line utility that is used to display information about object files, which are often
outputted in a specific format. The two main output file types are called ELF (Executable and Linkable
Format) and Mach-O (Mach Object).

Definition 2.7 (ELF)

The Executable and Linkable Format (ELF) is a common standard file format for executables,
object code, shared libraries, and core dumps. It is analogous to a book, with the following parts:

10/ 26

Compilers Muchang Bahng Summer 2025

1. Header, which is like the cover of the book. It contains metadata about the file, such as the
architecture, the entry point, and the sections.

2. Sections, which are like chapters. Each section contains the content for some given purpose
or use wthin the program. e.g. .binary is just a block of bytes, .text contains the machine
code, .data contains initialized data, and .bss contains uninitialized data.

3. Symbol Table, is like a detailed table of contents of all defined symbols such as functions,
external (global) variables, local maps, etc.

4. Relocation records, which is like the index of the book that lists references to symbols.
The format is generally as such when you run objdump -d -r hello.o (d represents disassembly
and r represents relocation entries).

1 ELF header # file type
2

3 .text section
4 - code goes here
5

6 .rodata section
7 - read only data
8

9 .data section
10 - initialized global variables
11

12 .bss section
13 - uninitialized global variables
14

15 .symtab section
16 - symbol table (symbol name, type, address)
17

18 .rel.text section
19 - relocation entries for .text section
20 - addresses of instructions that will need to be modified in the executable.
21

22 .rel.data section
23 - relocation info for .data section
24 - addresses of pointer data that will need to be modified in the merged executable.
25

26 .debug section
27 - info for symbolic debugging (gcc -g)

Definition 2.8 (Mach-O)

2.3.2 Objdump Commands

Theorem 2.1 (File Headers with Objdump)

Given that you have an object file, the first thing you might want to do is see the file header. You
do with this objdump -f main.o.

1 main.o: file format elf64-x86-64
2 architecture: i386:x86-64, flags 0x00000011:
3 HAS_RELOC, HAS_SYMS
4 start address 0x0000000000000000

11/ 26

Compilers Muchang Bahng Summer 2025

Theorem 2.2 (Section with Objdump)

To look at the section headers to get a closer overview, you use objdump -h main.o.

1 main.o: file format elf64-x86-64
2

3 Sections:
4 Idx Name Size VMA LMA File off Algn
5 0 .text 0000004b 0000000000000000 0000000000000000 00000040 2**0
6 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
7 1 .data 00000000 0000000000000000 0000000000000000 0000008b 2**0
8 CONTENTS, ALLOC, LOAD, DATA
9 2 .bss 00000000 0000000000000000 0000000000000000 0000008b 2**0

10 ALLOC
11 3 .comment 0000002c 0000000000000000 0000000000000000 0000008b 2**0
12 CONTENTS, READONLY
13 4 .note.GNU-stack 00000000 0000000000000000 0000000000000000 000000b7 2**0
14 CONTENTS, READONLY
15 5 .note.gnu.property 00000020 0000000000000000 0000000000000000 000000b8 2**3
16 CONTENTS, ALLOC, LOAD, READONLY, DATA
17 6 .eh_frame 00000058 0000000000000000 0000000000000000 000000d8 2**3
18 CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA

Theorem 2.3 (Disassembly with Objdump)

Now you might actually want to look at the disassembly of the code, which is what we often use it
for. To do this, you use objdump -D main.o to get the entire output.

1. The leftmost column represents the address of the instruction.
2. The next column represents the machine code of the instruction.
3. The next column represents the assembly code of the instruction.

1 main.o: file format elf64-x86-64
2

3 Disassembly of section .text:
4

5 0000000000000000 <add>:
6 0: f3 0f 1e fa endbr64
7 ...
8 17: c3 retq
9

10 0000000000000018 <main>:
11 18: f3 0f 1e fa endbr64
12 ...
13 4a: c3 retq
14

15 Disassembly of section .comment:
16

17 0000000000000000 <.comment>:
18 0: 00 47 43 add %al,0x43(%rdi)
19 ...
20 2a: 30 00 xor %al,(%rax)
21

22 Disassembly of section .note.gnu.property:
23

24 0000000000000000 <.note.gnu.property>:

12/ 26

Compilers Muchang Bahng Summer 2025

25 0: 04 00 add $0x0,%al
26 ...
27

28 Disassembly of section .eh_frame:
29

30 0000000000000000 <.eh_frame>:
31 0: 14 00 adc $0x0,%al
32 ...

If you just want to look at the contents of the executable sections, then you can use objdump -d
main.o.

1 main.o: file format elf64-x86-64
2

3 Disassembly of section .text:
4

5 0000000000000000 <add>:
6 0: f3 0f 1e fa endbr64
7 4: 55 push %rbp
8 5: 48 89 e5 mov %rsp,%rbp
9 8: 89 7d fc mov %edi,-0x4(%rbp)

10 b: 89 75 f8 mov %esi,-0x8(%rbp)
11 e: 8b 55 fc mov -0x4(%rbp),%edx
12 11: 8b 45 f8 mov -0x8(%rbp),%eax
13 14: 01 d0 add %edx,%eax
14 16: 5d pop %rbp
15 17: c3 retq
16

17 0000000000000018 <main>:
18 18: f3 0f 1e fa endbr64
19 1c: 55 push %rbp
20 1d: 48 89 e5 mov %rsp,%rbp
21 20: 48 83 ec 10 sub $0x10,%rsp
22 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
23 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
24 32: 8b 55 f8 mov -0x8(%rbp),%edx
25 35: 8b 45 f4 mov -0xc(%rbp),%eax
26 38: 89 d6 mov %edx,%esi
27 3a: 89 c7 mov %eax,%edi
28 3c: e8 00 00 00 00 callq 41 <main+0x29>
29 41: 89 45 fc mov %eax,-0x4(%rbp)
30 44: b8 00 00 00 00 mov $0x0,%eax
31 49: c9 leaveq
32 4a: c3 retq

If you want to see the source code intermixed with disassembly, then you can use the -S flag, but
make sure that the object file is a generated with debugging information, i.e. use gcc -c -g main.c
-o main.o.

13/ 26

Compilers Muchang Bahng Summer 2025

1 main.o: file format elf64-x86-64
2

3

4 Disassembly of section .text:
5

6 0000000000000000 <add>:
7 int add(int x, int y) {
8 0: f3 0f 1e fa endbr64
9 4: 55 push %rbp

10 5: 48 89 e5 mov %rsp,%rbp
11 8: 89 7d fc mov %edi,-0x4(%rbp)
12 b: 89 75 f8 mov %esi,-0x8(%rbp)
13 return x + y;
14 e: 8b 55 fc mov -0x4(%rbp),%edx
15 11: 8b 45 f8 mov -0x8(%rbp),%eax
16 14: 01 d0 add %edx,%eax
17 }
18 16: 5d pop %rbp
19 17: c3 retq
20

21 0000000000000018 <main>:
22

23 int main() {
24 18: f3 0f 1e fa endbr64
25 1c: 55 push %rbp
26 1d: 48 89 e5 mov %rsp,%rbp
27 20: 48 83 ec 10 sub $0x10,%rsp
28 int a = 3;
29 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
30 int b = 5;
31 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
32 int c = add(a, b);
33 32: 8b 55 f8 mov -0x8(%rbp),%edx
34 35: 8b 45 f4 mov -0xc(%rbp),%eax
35 38: 89 d6 mov %edx,%esi
36 3a: 89 c7 mov %eax,%edi
37 3c: e8 00 00 00 00 callq 41 <main+0x29>
38 41: 89 45 fc mov %eax,-0x4(%rbp)
39 return 0;
40 44: b8 00 00 00 00 mov $0x0,%eax
41 }
42 49: c9 leaveq
43 4a: c3 retq

Figure 3: Disassembly of the object file back into assembly using objdump -d -S main.o.

Note that you can always see this disassembly with debuggers like gdb or lldb, but objdump generally
works for all architectures.

Theorem 2.4 (Symbol Table)

If you want to look at all the symbols existing within the object file, you use objdump -t main.o (t
for table of symbols).

1. The leftmost column represents the address of the symbol.

14/ 26

Compilers Muchang Bahng Summer 2025

2. The next column represents the type of the symbol. The g and l represent global and local
symbols, respectively. The O and F represent object and function symbols, while the UND and
ABS represent undefined and absolute symbols.

3. The next column represents the section that the symbol is in.
4. The next column represents the size of the symbol.
5. The last column represents the name of the symbol.

1 main.o: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 0000000000000000 l df *ABS* 0000000000000000 main.c
5 0000000000000000 l d .text 0000000000000000 .text
6 0000000000000000 l d .data 0000000000000000 .data
7 0000000000000000 l d .bss 0000000000000000 .bss
8 0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
9 0000000000000000 l d .note.gnu.property 0000000000000000 .note.gnu.property

10 0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
11 0000000000000000 l d .comment 0000000000000000 .comment
12 0000000000000000 g F .text 0000000000000018 add
13 0000000000000018 g F .text 0000000000000033 main

Theorem 2.5 (Relocation Table)

If you want to look then at the relocation table, then you use objdump -r main.o.
1. The leftmost column represents the offset of the relocation (i.e. the location within the section

where this relocation needs to be applied).
2. The second column represents the type of relocation.
3. The third column represents the symbol that this relocation references.

1 main.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.text]:
4 OFFSET TYPE VALUE
5 000000000000003d R_X86_64_PLT32 add-0x0000000000000004
6

7

8 RELOCATION RECORDS FOR [.eh_frame]:
9 OFFSET TYPE VALUE

10 0000000000000020 R_X86_64_PC32 .text
11 0000000000000040 R_X86_64_PC32 .text+0x0000000000000018

2.4 Assembling Stage and Object Files
Now, once you have gotten the object file, you cannot simply open it up in a text edit as it is in machine
code. To actually interpret anything from it, you must disassmble it, meaning that you convert the machine
code back into assembly code. The main software that you use to do this is objdump. Let’s take a look again
at the object file.

15/ 26

Compilers Muchang Bahng Summer 2025

1 Disassembly of section .text:
2

3 0000000000000000 <add>:
4 0: f3 0f 1e fa endbr64
5 4: 55 push %rbp
6 5: 48 89 e5 mov %rsp,%rbp
7 8: 89 7d fc mov %edi,-0x4(%rbp)
8 b: 89 75 f8 mov %esi,-0x8(%rbp)
9 e: 8b 55 fc mov -0x4(%rbp),%edx

10 11: 8b 45 f8 mov -0x8(%rbp),%eax
11 14: 01 d0 add %edx,%eax
12 16: 5d pop %rbp
13 17: c3 retq
14

15 0000000000000018 <main>:
16 18: f3 0f 1e fa endbr64
17 1c: 55 push %rbp
18 1d: 48 89 e5 mov %rsp,%rbp
19 20: 48 83 ec 10 sub $0x10,%rsp
20 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
21 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
22 32: 8b 55 f8 mov -0x8(%rbp),%edx
23 35: 8b 45 f4 mov -0xc(%rbp),%eax
24 38: 89 d6 mov %edx,%esi
25 3a: 89 c7 mov %eax,%edi
26 3c: e8 00 00 00 00 callq 41 <main+0x29>
27 41: 89 45 fc mov %eax,-0x4(%rbp)
28 44: b8 00 00 00 00 mov $0x0,%eax
29 49: c9 leaveq
30 4a: c3 retq

Figure 4: Disassembly of the object file back into assembly using objdump -d main.o.

Let’s note a couple things.

1. The functions are organized by their starting address followed by their name, e.g.

1 0000000000000000 <add>:

Within each function, each line of assembly code is shown. To find the total memory the function takes
up, you can just take the address of the last line and subtract it from the address of the first line. Or
you can literally count the number of bytes in each line (remember 2 hex is 1 byte).

2. The line that calls the add function is 0x0 (00 00 00 00), with is the relative target address intended
to be filled in by the linker. The actual assembly line just says that the function continues on to the
next line at address 0x41. This is because the object file is not aware of where it will be loaded into
memory, and all lines with this opcode e8 00 00 00 00 is intended to be filled in by the linker.

3. Look at address 0x3c. It is calling another function, but the values starting from address 0x3d is 00
00 00 00, which is not the actual address of the function but also a dummy address. This is because
the object file is not aware of where the function is located in memory.

16/ 26

Compilers Muchang Bahng Summer 2025

2.5 Linking Stage and Relocation
2.5.1 Relocation

If the object file is already in machine code, then why do we need a separate linking stage that converts
main.o into main the binary? The reason is stated in the previous section: because the object files uses
relative memory addressing and does not know about which memory is accessed in other object files, we
need to relocate the symbols in the object file to their proper addresses. So how does the linker actually
know how to relocate these symbols into their proper addresses? It uses the relocation table, which contains
information about the addresses that need to be modified in the object file.

1 main.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.text]:
4 OFFSET TYPE VALUE
5 000000000000003d R_X86_64_PLT32 add-0x0000000000000004
6

7

8 RELOCATION RECORDS FOR [.eh_frame]:
9 OFFSET TYPE VALUE

10 0000000000000020 R_X86_64_PC32 .text
11 0000000000000040 R_X86_64_PC32 .text+0x0000000000000018

Figure 5: Relocation table for main.o object file.

Let’s talk about how to actually read this table. We can look at the first entry, which shows an offset of 0x3d.
This represents the offset from the beginning of the .text section where the relocation needs to be applied.
Looking back at the disassembly file, this address 0x3d is precisely where there was a dummy address 00
00 00 00. We want to replace this with the actual address defined in the VALUE column, which is add (with
a slight offset of 0x4, which is typically used to compensate for the PC-relative addressing mode where the
CPU might be adding the length of the instruction to the program counter (PC) before the relocation value
is applied). The type of relocation won’t be covered in our scope. Let’s go through each relocation entry:

1. The first entry is for the add function. If we look at the disassembly, within the main function, the
address 0x3d is where the add function is called. The linker will replace the dummy address with the
actual address of the add function.

1 Disassembly of section .text:
2

3 0000000000000000 <add>:
4 0: f3 0f 1e fa endbr64
5 4: 55 push %rbp
6 5: 48 89 e5 mov %rsp,%rbp
7 8: 89 7d fc mov %edi,-0x4(%rbp)
8 b: 89 75 f8 mov %esi,-0x8(%rbp)
9 e: 8b 55 fc mov -0x4(%rbp),%edx

10 11: 8b 45 f8 mov -0x8(%rbp),%eax
11 14: 01 d0 add %edx,%eax
12 16: 5d pop %rbp
13 17: c3 retq
14

15 0000000000000018 <main>:
16 18: f3 0f 1e fa endbr64
17 1c: 55 push %rbp
18 1d: 48 89 e5 mov %rsp,%rbp
19 20: 48 83 ec 10 sub $0x10,%rsp

17/ 26

Compilers Muchang Bahng Summer 2025

20 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
21 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
22 32: 8b 55 f8 mov -0x8(%rbp),%edx
23 35: 8b 45 f4 mov -0xc(%rbp),%eax
24 38: 89 d6 mov %edx,%esi
25 3a: 89 c7 mov %eax,%edi
26 3c: e8 00 00 00 00 callq 41 <main+0x29> <-- here
27 41: 89 45 fc mov %eax,-0x4(%rbp)
28 44: b8 00 00 00 00 mov $0x0,%eax
29 49: c9 leaveq
30 4a: c3 retq

2. The second and third entries are for the .eh_frame section. We can see that the offset of 0x20 and
0x40 represents the following lines below. They also have dummy addresses that need to be replaced.
They are replaced by the address .text, which represents the first address in the .text section, i.e.
the address of the add function, and the address .text+0x18, which represents the address of the main
function.

1 Disassembly of section .eh_frame:
2

3 0000000000000000 <.eh_frame>:
4 0: 14 00 adc $0x0,%al
5 2: 00 00 add %al,(%rax)
6 4: 00 00 add %al,(%rax)
7 6: 00 00 add %al,(%rax)
8 8: 01 7a 52 add %edi,0x52(%rdx)
9 b: 00 01 add %al,(%rcx)

10 d: 78 10 js 1f <.eh_frame+0x1f>
11 f: 01 1b add %ebx,(%rbx)
12 11: 0c 07 or $0x7,%al
13 13: 08 90 01 00 00 1c or %dl,0x1c000001(%rax)
14 19: 00 00 add %al,(%rax)
15 1b: 00 1c 00 add %bl,(%rax,%rax,1)
16 1e: 00 00 add %al,(%rax)
17 20: 00 00 add %al,(%rax) <-- here for 2nd entry
18 22: 00 00 add %al,(%rax)
19 24: 18 00 sbb %al,(%rax)
20 26: 00 00 add %al,(%rax)
21 28: 00 45 0e add %al,0xe(%rbp)
22 2b: 10 86 02 43 0d 06 adc %al,0x60d4302(%rsi)
23 31: 4f 0c 07 rex.WRXB or $0x7,%al
24 34: 08 00 or %al,(%rax)
25 36: 00 00 add %al,(%rax)
26 38: 1c 00 sbb $0x0,%al
27 3a: 00 00 add %al,(%rax)
28 3c: 3c 00 cmp $0x0,%al
29 3e: 00 00 add %al,(%rax)
30 40: 00 00 add %al,(%rax) <-- here for 3rd entry
31 42: 00 00 add %al,(%rax)
32 44: 33 00 xor (%rax),%eax

Therefore, we can see that the object file generates a “skeleton” code that contains all the instructions, with
some dummy addresses that need to be replaced. The relocation table T tells us exactly where these dummy
addresses are in the code and what they need to be replaced with. Therefore, if we want to call a function
printf that is in the text section at address 0x30, then we can actually look at the value at T[30] to see
where the actual address is. At this point, note that we still do not know the actual memory address of add.
This is determined by the linker.

18/ 26

Compilers Muchang Bahng Summer 2025

2.5.2 Linking with One Object File

Now let’s see what happens once we link the object file main.o into the final executable main. If we
disassemble it, then we can see a few things:

1. The addresses of all the functions have been changed. add starts on address 0x1129 rather than 0x0
and main starts on address 0x1141 rather than 0x18.

2. The dummy address 0x0 of the call to function add in main have been replaced with the actual addresses
0x1129.

1 0000000000001129 <add>:
2 1129: f3 0f 1e fa endbr64
3 112d: 55 push %rbp
4 112e: 48 89 e5 mov %rsp,%rbp
5 1131: 89 7d fc mov %edi,-0x4(%rbp)
6 1134: 89 75 f8 mov %esi,-0x8(%rbp)
7 1137: 8b 55 fc mov -0x4(%rbp),%edx
8 113a: 8b 45 f8 mov -0x8(%rbp),%eax
9 113d: 01 d0 add %edx,%eax

10 113f: 5d pop %rbp
11 1140: c3 retq
12

13 0000000000001141 <main>:
14 1141: f3 0f 1e fa endbr64
15 1145: 55 push %rbp
16 1146: 48 89 e5 mov %rsp,%rbp
17 1149: 48 83 ec 10 sub $0x10,%rsp
18 114d: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
19 1154: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
20 115b: 8b 55 f8 mov -0x8(%rbp),%edx
21 115e: 8b 45 f4 mov -0xc(%rbp),%eax
22 1161: 89 d6 mov %edx,%esi
23 1163: 89 c7 mov %eax,%edi
24 1165: e8 bf ff ff ff callq 1129 <add> <-- replaced with actual address
25 116a: 89 45 fc mov %eax,-0x4(%rbp)
26 116d: b8 00 00 00 00 mov $0x0,%eax
27 1172: c9 leaveq
28 1173: c3 retq
29 1174: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
30 117b: 00 00 00
31 117e: 66 90 xchg %ax,%ax

2.5.3 Global vs External Symbols

So far, we have talked about using the #include as a precompiling command that says “put all the text from
this other file right here.” Take the following code for instance.

19/ 26

Compilers Muchang Bahng Summer 2025

1 // file1.c
2 #include "sum.h"
3

4 int array[2] = {1, 2};
5

6 int main() {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.h
2 int sum(int *a, int n) {
3 int i, s = 0;
4 for (i = 0; i < n; i++) {
5 s += a[i];
6 }
7 return s;
8 }
9 .

Figure 6: Including a header file in file1.c to import functions and variables.

However, there is another way to do this. We can use external symbols to access. Rather than simply copying
and pasting the code into the file, the extern keyword marks that the variable or function exists externally
to this source file and does not allocate storage for it.

1 // main.c
2 extern int sum(int *array, int n);
3

4 int array[2] = {1, 2};
5

6 int main(void) {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.c
2 int sum(int *array, int n) {
3 int i, s = 0 ;
4 for (int i = 0; i < n; i++) {
5 s += array[i];
6 }
7 return s;
8 }
9 .

Figure 7: Using external symbols to access functions and variables.

One is not a replacement for the other, so what advantage does this have? Well, as we will see, if we have
multiple object (source) files, say A.c, B.c, and C.c, that need to reference the same function or variable
var in ext.c, then how would we do this? If we simply put #include "ext.h" in all the files, then we
would have multiple copies of the same code. This means that for each source there would be its own copy
of var created and the linker would be unable to resolve this symbol. However, if we put extern int var;
at the top of each source file, then only one copy of var would be created (in ext.c), which creates a single
instance of var for the linker to resolve. 1

Therefore, there are three types of symbols (variables, functions, etc.) that we need to consider:

1. Global symbols that are defined in the global scope of a C file.

2. Local symbols that are defined in the local scope of a C file, e.g. within functions, loops, etc.

3. External symbols that are defined in another C file referenced by the extern keyword.

Linkers will only know about global and external symbols, and will have no idea that any local symbols
exist. With the information of these two types of symbols and the relocation tables of each object file, the
linker can then resolve the addresses of all the symbols in the final binary.

The two types of symbols that the linker will know about are the global and external symbols. We can see
that external symbols can be problematic if the object files don’t know about each other.

1https://stackoverflow.com/questions/1330114/whats-the-difference-between-using-extern-and-including-header-files

20/ 26

Compilers Muchang Bahng Summer 2025

Example 2.6 (Global and Local Symbols)

Consider the following code where the left file includes the right file.

1 // main.c
2 #include "sum.h"
3

4 int array[2] = {1, 2};
5

6 int main() {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.h
2 int sum(int *a, int n) {
3 int i, s = 0;
4 for (i = 0; i < n; i++) {
5 s += a[i];
6 }
7 return s;
8 }
9 .

In the left file,
1. We define the global symbol main().
2. Inside main, val is a local symbol so the linker knows nothing about it.
3. The sum function is an external symbol, and it references a global symbol that’s defined in sum

the right file.
4. The array is a global symbol that is defined in the right file.

In the right file, the linker knows nothing of the local symbols i or s.

2.5.4 Linking with Multiple Object Files

We have seen the case of linking when we simply have one object file. The relocation was simple since the
.text section is contiguous and so we needed simple translations of addresses to relocate add and main,
along with whatever other sections and files. Now let’s consider the case where we have multiple object files.

1 // main.c
2 extern int sum(int *array, int n);
3

4 int array[2] = {1, 2};
5

6 int main(void) {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.c
2 int sum(int *array, int n) {
3 int i, s = 0 ;
4 for (int i = 0; i < n; i++) {
5 s += array[i];
6 }
7 return s;
8 }
9 .

Now they have their own object files shown below, where I also put the source code lines to make it easier
to parse. Note that again, in main.o the call to function sum is a dummy address that needs to be replaced.
Furthermore, in both main.o and sum.o, the .text section is at address 0x0, where the addresses of the
function main and sum are, respectively. This causes an overload in the address space.

To demonstrate what happens, we look at how the disassembly, symbol tables, and relocation tables are
updated before (with the object files) and after (in the binary) linking.

Example 2.7 (Disassembly of Object Files)

In here, note that both the array and sum are not initialized and are therefore set to dummy addresses.

1 main.o: file format elf64-x86-64
2 Disassembly of section .text:
3

4 0000000000000000 <main>:
5 extern int sum(int *array, int n);
6

21/ 26

Compilers Muchang Bahng Summer 2025

7 int array[2] = {1, 2};
8

9 int main(void) {
10 0: f3 0f 1e fa endbr64
11 4: 55 push %rbp
12 5: 48 89 e5 mov %rsp,%rbp
13 8: 48 83 ec 10 sub $0x10,%rsp
14 int val = sum(array, 2);
15 c: be 02 00 00 00 mov $0x2,%esi
16 11: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 18 <main+0x18> <-- dummy

address
17 18: e8 00 00 00 00 callq 1d <main+0x1d> <-- dummy

address
18 1d: 89 45 fc mov %eax,-0x4(%rbp)
19 return val;
20 20: 8b 45 fc mov -0x4(%rbp),%eax
21 }
22 23: c9 leaveq
23 24: c3 retq

1 sum.o: file format elf64-x86-64
2 Disassembly of section .text:
3

4 0000000000000000 <sum>:
5 int sum(int *array, int n) {
6 0: f3 0f 1e fa endbr64
7 4: 55 push %rbp
8 5: 48 89 e5 mov %rsp,%rbp
9 8: 48 89 7d e8 mov %rdi,-0x18(%rbp)

10 c: 89 75 e4 mov %esi,-0x1c(%rbp)
11 int i, s = 0;
12 f: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)
13 for (int i = 0; i < n; i++) {
14 16: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
15 1d: eb 1d jmp 3c <sum+0x3c>
16 s += array[i];
17 1f: 8b 45 fc mov -0x4(%rbp),%eax
18 22: 48 98 cltq
19 24: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx
20 2b: 00
21 2c: 48 8b 45 e8 mov -0x18(%rbp),%rax
22 30: 48 01 d0 add %rdx,%rax
23 33: 8b 00 mov (%rax),%eax
24 35: 01 45 f8 add %eax,-0x8(%rbp)
25 for (int i = 0; i < n; i++) {
26 38: 83 45 fc 01 addl $0x1,-0x4(%rbp)
27 3c: 8b 45 fc mov -0x4(%rbp),%eax
28 3f: 3b 45 e4 cmp -0x1c(%rbp),%eax
29 42: 7c db jl 1f <sum+0x1f>
30 }
31 return s;
32 44: 8b 45 f8 mov -0x8(%rbp),%eax
33 }
34 47: 5d pop %rbp
35 48: c3 retq

22/ 26

Compilers Muchang Bahng Summer 2025

1. In main.o at address 0x0, we have the main function and this is because everything is stored
relatively to the start of main. Once we have linked, main shows the absolute addresses of all
the instructions.

2. In instruction 11 in main.o we can see that 48 8d 3d is the lea instruction, which is the same
as that in main. However, the address that is was acting on is 0x0 since the array has not been
initialized yet. We can see in main that the address is now 0x00002ecf.

3. The comment in main indicates that the final relocated address used to access the array is
0x4010. To see relocated addresses in general, just look for the comments and shift them
accordingly.

1 main: file format elf64-x86-64
2

3 0000000000001129 <main>:
4 1129: f3 0f 1e fa endbr64
5 112d: 55 push %rbp
6 112e: 48 89 e5 mov %rsp,%rbp
7 1131: 48 83 ec 10 sub $0x10,%rsp
8 1135: be 02 00 00 00 mov $0x2,%esi
9 113a: 48 8d 3d cf 2e 00 00 lea 0x2ecf(%rip),%rdi # 4010 <array>

10 1141: e8 08 00 00 00 callq 114e <sum>
11 1146: 89 45 fc mov %eax,-0x4(%rbp)
12 1149: 8b 45 fc mov -0x4(%rbp),%eax
13 114c: c9 leaveq
14 114d: c3 retq
15

16 000000000000114e <sum>:
17 114e: f3 0f 1e fa endbr64
18 1152: 55 push %rbp
19 1153: 48 89 e5 mov %rsp,%rbp
20 1156: 48 89 7d e8 mov %rdi,-0x18(%rbp)
21 115a: 89 75 e4 mov %esi,-0x1c(%rbp)
22 ...

Example 2.8 (Symbol Tables of Object Files)

Let’s take a look at the symbol table of each file as well. Again, all of the addresses of each symbol
are 0s since they are using relative addressing. The array and main are global symbols since they
reside in the global scope, while the sum function is an external and undefined symbol.

1 main.o: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 0000000000000000 l df *ABS* 0000000000000000 main.c
5 0000000000000000 l d .text 0000000000000000 .text
6 0000000000000000 l d .data 0000000000000000 .data
7 0000000000000000 l d .bss 0000000000000000 .bss
8 0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
9 0000000000000000 l d .note.gnu.property 0000000000000000 .note.gnu.property

10 0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
11 0000000000000000 l d .comment 0000000000000000 .comment
12 0000000000000000 g O .data 0000000000000008 array
13 0000000000000000 g F .text 0000000000000025 main
14 0000000000000000 *UND* 0000000000000000 _GLOBAL_OFFSET_TABLE_
15 0000000000000000 *UND* 0000000000000000 sum

23/ 26

Compilers Muchang Bahng Summer 2025

1 sum.o: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 0000000000000000 l df *ABS* 0000000000000000 sum.c
5 0000000000000000 l d .text 0000000000000000 .text
6 0000000000000000 l d .data 0000000000000000 .data
7 0000000000000000 l d .bss 0000000000000000 .bss
8 0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
9 0000000000000000 l d .note.gnu.property 0000000000000000 .note.gnu.property

10 0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
11 0000000000000000 l d .comment 0000000000000000 .comment
12 0000000000000000 g F .text 0000000000000049 sum

When we have the linked binary, note a few things.
1. In main.o, the numbers on the left represents the address of the symbol (all 0s since we haven’t

linked yet and their final addresses aren’t known), while the addresses in a.out are all known.
2. In main.o, the sum function is an external symbol and is undefined. The linker will need to

know where this is. In main, note that the sum function is now a global symbol and is defined,
along with the size. We can now see that all the final addresses of each symbol is known, along
with their sizes, and the UND marker is now gone as well.

3. Only the size of the global variable is known in main.o since we have defined it within the code.
However, in main, the linker has now assigned an address to it.

4. To see the size in bytes of the array, you can look at the address and how much size it takes up.

1 main: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 ...
5 0000000000004008 g O .data 0000000000000000 .hidden __dso_handle
6 000000000000114e g F .text 0000000000000049 sum
7 0000000000002000 g O .rodata 0000000000000004 _IO_stdin_used
8 00000000000011a0 g F .text 0000000000000065 __libc_csu_init
9 0000000000004020 g .bss 0000000000000000 _end

10 0000000000001040 g F .text 000000000000002f _start
11 0000000000004018 g .bss 0000000000000000 __bss_start
12 0000000000001129 g F .text 0000000000000025 main
13 0000000000004018 g O .data 0000000000000000 .hidden __TMC_END__
14 ...

Example 2.9 (Relocation Tables)

Ignoring the .eh_frame, in main.o the relocation table contains entries for array and sum that must
be relocated.

1 main.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.text]:
4 OFFSET TYPE VALUE
5 0000000000000014 R_X86_64_PC32 array-0x0000000000000004
6 0000000000000019 R_X86_64_PLT32 sum-0x0000000000000004
7

8 RELOCATION RECORDS FOR [.eh_frame]:
9 OFFSET TYPE VALUE

10 0000000000000020 R_X86_64_PC32 .text

24/ 26

Compilers Muchang Bahng Summer 2025

1 sum.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.eh_frame]:
4 OFFSET TYPE VALUE
5 0000000000000020 R_X86_64_PC32 .text

We can see a couple things. Namely, there is nothing to be relocated in a.out since everything has
been relocated already by the linker. So let’s focus on the relocation for main.o. In here, we can see
that in the .text section, there are two things being relocated:

1. The reference to the global variable array is being relocated. In this object file, we look at the
offset 0x14 from the beginning of the .text section, which contains the instruction that needs
to access array. This relocation record tells the linker to calculate the 32-bit offset from the
instruction (at offset 0x14) to the start of array, then adjust it by subtracting 4 bytes.

2. The reference to the sum function is being relocated. In this object file, we look at the offset 0x19
from the beginning of the .text section, which contains the instruction that needs to access
sum. This relocation record tells the linker to calculate the 32-bit offset from the instruction
(at offset 0x19) to the start of the .plt section, then adjust it by subtracting 4 bytes.

1 main: file format elf64-x86-64

2.6 Compiler Optimization
We have learned the complete process of compilers, but compilers can be a little smarter than just translating
code line by line. They also come with flags that can optimize the code.

Definition 2.9 (gcc Optimization)

The gcc compiler can optimize the code with the -O flag. To run level 1 optimization, we can write

1 gcc -O1 -o main main.c

The level of optimizations are listed:
1. Level 1 perform basic optimizations to reduce code size and execution time while attempting

to keep compile time to a minimum.
2. Level 2 optimizations include most of GCC’s implemented optimizations that do not involve a

space-performance trade-off.
3. Level 3 performs additional optimizations (such as function inlining) and may cause the program

to take significantly longer to compile.

Let’s see what common implementation are.

Definition 2.10 (Constant Folding)

Constants in the code are evaluated at compile time to reduce the number of resulting instructions.
For example, in the code snippet that follows, macro expansion replaces the statement int debug =
N-5 with int debug = 5-5. Constant folding then updates this statement to int debug = 0.

1 #define N 5
2 int debug = N - 5; //constant folding changes this statement to debug = 0;

25/ 26

Compilers Muchang Bahng Summer 2025

Definition 2.11 (Constant Propagation)

Constant propagation replaces variables with a constant value if such a value is known at compile
time. Consider the following code segment, where the if (debug) statement is replaced with if
(0).

1 int debug = 0;
2

3 int doubleSum(int *array, int length){
4 int i, total = 0;
5 for (i = 0; i < length; i++){
6 total += array[i];
7 if (debug) {
8 printf("array[%d] is: %d\n", i, array[i]);
9 }

10 }
11 return 2 * total;
12 }

Definition 2.12 (Dead Code Elimination)

Dead code elimination removes code that is never executed. For example, in the code snippet that
follows, the if (debug) statement and its body is removed since the value of debug is known to be
0.

1 int debug = 0;
2

3 int doubleSum(int *array, int length){
4 int i, total = 0;
5 for (i = 0; i < length; i++){
6 total += array[i];
7 if (debug) { // remove
8 printf("array[%d] is: %d\n", i, array[i]); // remove
9 } // remove

10 }
11 return 2 * total;
12 }

Definition 2.13 (Simplifying Expressions)

Some instructions are more expensive than others, so things like
1. 2 * total may be replaced with total + total because addition instruction is less expensive

than multiplication.
2. total * 8 may be replaced with total « 3
3. total % 8 may be replaced with total & 7

Note that these optimization techniques are in no way a guarantee that the code will run faster since there
are many factors and always edge cases (for example, maybe some localities are lost). Furthermore, compiler
optimization will never be able to improve runtime complexity (e.g. by replacing bubble sort with quicksort).

26/ 26

	Program Lifecycle Phases
	More on Executables
	Static vs Dynamic Languages

	Compiling and Linking
	Precompiling Stage
	Compiling Stage
	Objdump
	ELF and Mach-O Formats
	Objdump Commands

	Assembling Stage and Object Files
	Linking Stage and Relocation
	Relocation
	Linking with One Object File
	Global vs External Symbols
	Linking with Multiple Object Files

	Compiler Optimization

