Assembly Muchang Bahng Fall 2024
Assembly
Muchang Bahng
Fall 2024
Contents
1_ARM Data Movementl 3
1.1 0adINg| e e 3
L2 Arithmeticl. e e 6
1.3 Logical Operations| o . e 9
I1.4 Assembling and Disassemblingl o L o 10
LB DIectIVEl . « « o o v oo e e e e e 12
2 ARM Arithmetic Operations| 15
B _ARM Control Flowl 16
4 x86 Data Movementl 17
4.1 Registers|. o e e 17
4.2 Addressing Modes|o 18
[x86 Arithmetic Operations| 20
6 x86 Control Flow] 52
7 RISC-V Data Movement 53
8 RISC-V Arithmetic Operations| 54
9 RISC-V Control Flow 55

/B3

Assembly Muchang Bahng Fall 2024

There are many assembly languages out there and various syntaxes. Intel syntax specifies memory operands
without any special prefixes. Square brackets [| are used to denote memory addresses. For example, mov
eax, [ebx] means move the contents of the memory location pointed to by ebx into eax. In ATHT syntax,
memory operands are denoted with parentheses () and include the % prefix for registers. An instruction
moving data from a memory location into a register might look like movl (%ebx), %eax, with additional
prefixes for immediate values and segment overrides. In here, we will talk about the three most popular
architectures.

Definition 0.1 (x86)

x86 Assembly is the assembly language for Intel and AMD processors using the x86 architecture.
Both AT&T and Intel syntax are available. Tools or environments often allow switching between the
two, with AT&T being the default in GNU tools like GDB.

The x86 architecture is a CISC architecture, which is the most common architecture for personal
computers. Here are important properties:

1. Tt is a complex instruction set computer (CISC) architecture, which means that it has a large
set of complex instructiond?]

2. Byte-addressing is enabled and words are stored in little-endian format.

3. In the x86_ 64 architecture, registers are 8 bytes long (and 4 bytes in x86_32) and there are 16
total general purpose registers, for a total of only 128 bytes (very small compared to many GB
of memory). Other special purpose registers are also documented in the wikipedia page, but it
is not fully documented.

%https://en.wikipedia.org/wiki/X86 instruction listings

Definition 0.2 (ARM)

ARM Assembly is the assembly language for ARM processors. Has its own unique syntax, not
categorized as AT&T or Intel. ARM syntax is closely tied to its instruction set architecture and is
distinct from the x86 conventions. It is mainly in phones, tablets, laptops.

Definition 0.3 (RISC-V)

A debatable 4th mainstream one is the MIPs assembly, which is based off of the MIPS RISC archiecture
used in embedded systems such as digital home and networking equipment. Historically through, there are
many many more variants. PowerPC assembly is the assembly language for PowerPC processors. PowerPC
has its own syntax style, tailored to its architecture and instruction set, distinct from the AT&T and Intel
syntax models. 6502 Assembly is used in many early microcomputers and gaming consoles. Utilizes a syntax
unique to the 6502 processor, not following AT&T or Intel conventions. Z80 Assembly is associated with the
780 microprocessor, used in numerous computing devices in the late 20th century. Z80 assembly language
has its own syntax that does not adhere to AT&T or Intel syntax guidelines.

We begin with ARM64 because first, I use it on my Macbook M3, and second, ARM is usually simpler than
x86. 64-bit ARM is significantly different from 32-bit ARM since obviously the CPU registers are 64-bits
wide and perform 64-bit integer arithmetic.

Just like how memory addressing is different between 32 and 64 bit machines, CPUs also use these schemes.
While 32-bit processors have 232 possible addresses in their cache, it turns out that 64-bit processors have a
48-address space. This is because CPU manufacturers took a shortcut. They use an instruction set which
allows a full 64-bit address space, but current CPUs just only use the last 48-bits. The alternative was wasting
transistors on handling a bigger address space which wasn’t going to be needed for many years (since 48-bits
is about 256TB). Just a bit of history for you. Finally, just to briefly mention, the input/output device, as
the name suggests, processes inputs and displays outputs, which is how you can see what the program does.

2/ 55|

Assembly Muchang Bahng Fall 2024

1 ARM Data Movement

At this point (assuming you are going through my computer science notes in order), we have encountered
our first lexical computer language. We aren’t just describing things with psuedocode like we did with
architecture, and we aren’t relying on hardware-like systems like circuits or Conway’s game of life here. This
extra level of abstraction is nice to work with, but in order to fully appreciate it, we must know how to
convert assembly into machine code. As we have seen, this is done in two steps.

1. Assemblers convert them into object files.
2. Linkers use a relocation table to convert them into executables, written in machine code.

This is essentially a translation from one language into another, and to do this, we might want to have some
organization in our code. Therefore, we divide .s files into sections. Furthermore, we might want to include
instructions that tell the assembler—mot the CPU—how to process your code, analogous to preprocessing
text or tuning parameters for translation.

Both sections and directives have a period . at the front of their name, so you must tell them apart by
context.

Definition 1.1 (Section)

In order for assemblers and linkers to interpret your programs, we must organize them into sections.
Each section—specified by the distinctive . at the front of its name—specifies the following non-
exhaustive list of properties.

1. The read/write/executable permissions.

2. How data is initialized.

Example 1.1 (Must-Know Sections)

The main sections you should be familiar with are
1. .text (read-texecute). This is where you write your code.
2. .data (read+write). This is where you store data and memory.
3. .rodata (read). Stores constant data that should not be modified during program execution.
4. .bss (read+write). Zero-initialized and stores uninitialized variables.

You can also create your own sections.

1.1 Loading

The first thing you should know about are registers. Here are the register conventions for ARM64.
Definition 1.2 (ARMG64 Registers)

A 64-bit program on an ARM processor has access to 31-general purpose registers, a program counter,
and a stack pointer (aka a combination zero register).
1. X0 - X30. These 31 registers are general purpose. You can use them for anything you want,
though there are some standards.
2. SP, XZR. The link register. If you call a function, this register will be used to hold the return
address.
3. PC. Program counter. The memory address of the currently executing instruction.
All the X registers can be operated on as 32-bit registers by referring to them as W0-W30 and WZR.
When we do this, the instruction will use the lower 32 bits of the register and set the upper 32 bits
to zero. Using 32 bits saves memory, since you only use 4 bytes rather than 8 bytes for each quantity
saved. Some Apple specific things:
1. Apple reserves X18 for its own use. Do not use this register.

3/ 53]

Assembly

Muchang Bahng

Fall 2024

2. The frame pointer register (FP, X29) must always address a valid frame record.

backtraces.

Definition 1.3 (Data Movement Operations)

This is for

Basic move operations
mov x0, x1 // Move
mov x0, #42 // Move

Move with zero/not/keep
movz x0, #0x1234 // Move
movn x0, #0x1234 // Mowe

register to register
tmmediate to register

immediate, zero other bits
NOT of immediate

Conditional moves (covered in logical section)
csel x0, x1, x2, eq // Conditional select
csinc x0, x1, x2, ne // Conditional select and increment

Register to register with operations

sxtb x0, wi // Sign
sxth x0, wl // Sign
sxtw x0, wl // Sign
uxtb w0, wil // Zero
uxth w0, wil // Zero

ecxtend byte to 64-bit
extend halfword to 64-bit
extend word to 64-bit
ecxtend byte to 32-bit
extend halfword to 32-bit

Definition 1.4 (Exit Codes)

Exit codes are values that represent the status of a program upon termination. It is usually the
number residing in x0 and can take in value between 0 and 255, inclusive. Any other numbers will
be truncated to its 8 LSBs.

Definition 1.5 (Basic Load Operations)

1ldr x0, [x1] // Load
1ldr w0, [x1] // Load
1ldrh wO, [x1] // Load
1drb w0, [x1] // Load

Sign-extending loads

ldrsw x0, [x1] // Load
ldrsh x0, [x1] // Load
ldrsh w0, [x1] // Load
ldrsb x0, [x1] // Load
ldrsb w0, [x1] // Load

64-bit from [z1]

32-bit from [z1]

16-bit halfword (zero extend)
8-bit byte (zero extend)

32-bit, sign extend to 64-bit
16-bit, sign extend to 64-bit
16-bit, sign extend to 32-bit
8-bit, sign extend to 64-bit
8-bit, sign extend to 32-bit

Definition 1.6 (Basic Store Operations)

str x0, [x1]
str wO, [x1]
strh w0, [x1]
strb w0, [x1]

// Store 64-bit to [z1]

// Store 32-bit to [x1]

// Store 16-bit halfword to [z1]
// Store 8-bit byte to [x1]

e

Assembly Muchang Bahng

Fall 2024

Definition 1.7 (Addressing Modes)

Immediate offset
1dr x0, [x1, #8] // Load from [zl + 8]
str x0, [x1, #16] // Store to [zl + 16]

Register offset
ldr x0, [x1, x2] // Load from [zl + z2]
ldr x0, [x1, x2, 1sl #3] // Load from [zl + (z2 << 3)]

Pre-indexed (update base register before)
ldr x0, [x1, #8]! // ©1 = z1 + 8, then load from [z1]
str x0, [x1, #-16]! // 1 = 1 - 16, then store to [xzl]

Post-indexed (update base register after)
1ldr x0, [x1], #8 // Load from [xl1], then z1 = z1 + 8
str x0, [x1], #16 // Store to [z1], then z1 = z1 + 16

Definition 1.8 (Pair Load/Store Operations)

1

Load/store register pairs
1ldp %0, x1, [x2] // Load pair: z0=[x2], z1=[z2+8]
stp x0, x1, [x2] // Store pair: [z2]=z0, [xz2+8]=x1

With immediate offset
1dp x0, x1, [x2, #16] // Load pair from [z2+16], [z2+2/]
stp x0, x1, [x2, #32] // Store pair to [z2+32], [z2+/0]

Pre/post-indexed pairs
1dp x0, x1, [x2, #16]! // xz2+=16, then load pair
stp x0, x1, [x2], #16 // Store pair, then z2+=16

Mixed register sizes
1ldp w0, wi, [x2] // Load 32-bit pair
stp w0, wi, [x2] // Store 32-bit pair

Definition 1.9 (Atomic and Exclusive Operations)

Load/store exclusive

ldxr x0, [x1] // Load exzclusive 64-bit

stxr w2, x0, [x1] // Store ezclusive 6/-bit (w2 = status)
ldxrh wO, [x1] // Load ezclusive 16-bit

stxrh w2, w0, [x1] // Store exclusive 16-bit

1ldxrb w0, [x1] // Load exzclusive 8-bit

stxrb w2, w0, [x1] // Store exclusive 8-bit

Clear exclusive monitor
clrex // Clear ezclusive access monitor

Load/store exclusive pairs
ldxp x0, x1, [x2] // Load exclusive pair
stxp w3, x0, x1, [x2] // Store ezclusive pair (w3 = status)

5/ B3

Assembly Muchang Bahng

Fall 2024

Definition 1.10 (PC-Relative Addressing)

1 # Address generation
adr x0, label // Load address of label (PC + offset)
3 adrp x0, label // Load page address of label

5 # PC-relative loads
6 1ldr x0, =value // Load literal (assembler places in literal pool)
7 1ldr x0, label // Load from label address

o # Combined page + offset addressing

10 adrp x0, symbol@PAGE

11 add x0, x0, symbol@PAGEOFF

12 1ldr x1, [x0] // Load from symbol

Definition 1.11 (Advanced Load/Store)

1 # Load with acquire, store with release (memory ordering)
ldar x0, [x1] # Load acquire
3 stlr x0, [x1] # Store release
. ldarb wO, [x1] # Load acquire byte
5 stlrb wO, [x1] # Store release byte
#
#

N

¢ 1ldarh w0, [x1] Load acquire halfword
7 stlrh w0, [x1] Store release halfword

o # Prefetch operations
10 prfm pldlikeep, [x0] # Prefetch for load, L1 cache, keep
11 prfm pstlistrm, [x0, #64] # Prefetch for store, L1, streaming

13 # Non-temporal loads/stores
1+ ldnp x0, x1, [x2] # Load pair non-temporal
15 stnp x0, x1, [x2] # Store pair non-temporal

1.2 Arithmetic

Definition 1.12 (Addition)

1 add x0, x1, x2 x0 = x1 + x2 (64-bit)
> add w0, wil, w2 w0 = wil + w2 (32-bit)
3 add x0, x1, #42 x0 = x1 + 42 (immediate)

4+ adds x0, x1, x2
5 adc x0, x1, x2
¢ adcs x0, x1, x2

Add and set flags
Add with carry
Add with carry and set flags

H OH H H HEH®

Definition 1.13 (Subtraction)

. sub x0, x1, x2 # x0 = x1 - x2
> sub w0, wl, w2 # 32-bit subtract
s sub x0, x1, #42 # x0 = x1 - 42

6/ [55]

Assembly

Muchang Bahng

Fall 2024

subs x0, x1, x2
sbc x0, x1, x2
sbcs x0, x1, x2
neg x0, x1
negs x0, x1

Subtract and set flags

Subtract with carry

Subtract with carry and set flags
x0 = -x1 (negate)

Negate and set flags

Definition 1.14 (Multiplication)

mul x0, x1, x2

smull x0, wi, w2
umull x0, wil, w2
smulh x0, x1, x2
umulh x0, x1, x2

x0 = x1 * x2 (low 64 bits)

Signed multiply 32 to 64 bit
Unsigned multiply 32 to 64 bit
Signed multiply high (upper 64 bits)
Unsigned multiply high

H OH H B H

madd x0, x1, x2, x3 # x0 = x3 + (x1 * x2) (multiply-add)
msub x0, x1, x2, x3 # x0 = x3 - (x1 * x2) (multiply-subtract)

Definition 1.15 (Division)

1

2

sdiv x0, x1, x2
udiv x0, x1, x2

x0
x0

x1 / x2 (signed)
x1 / x2 (unsigned)

Definition 1.16 (Multiply-Accumulate)

madd x0, x1, x2, x3
msub x0, x1, x2, x3
smaddl x0, wl, w2,
smsubl x0, wil, w2,
umaddl x0, wil, w2,
umsubl x0, wil, w2,

x0 = x3 + (x1 * x2)

x0 = x3 - (x1 * x2)
x3 # x0 = x3 + (wl * w2) signed 32 to 64
x3 # x0 = x3 - (w1l * w2) signed 32 to 64
x3 # x0 = x3 + (wl * w2) unsigned 32 to 64
x3 # x0 = x3 - (wl * w2) unsigned 32 to 64

Definition 1.17 (Bitwise Operations)

and x0, x1, x2
orr x0, x1, x2
eor x0, x1, x2
bic x0, x1, x2
orn x0, x1, x2
eon x0, x1, x2
mvn x0, x1

Bitwise AND

Bitwise OR

Bitwise XOR (exclusive OR)
Bit clear (x0 = x1 & ~x2)
OR NOT (x0 = x1 | ~x2)
XOR NOT (x0 = x1 =~ ~x2)
Move NOT (x0 = “x1)

H OH H H H R H

Definition 1.18 (Shift Operations)

2

1s1 x0, x1, #5
1sr x0, x1, #3

Logical shift left by 5
Logical shift right by 3

7/ 53]

Assembly Muchang Bahng Fall 2024

3 asr x0, x1, #2 # Arithmetic shift right by 2
+ ror x0, x1, #4 # Rotate right by 4

Definition 1.19 (Combined Operations)

1 # Add with shifted register
add x0, x1, x2, 1sl #3 # x0 = x1 + (x2 << 3)
3 sub x0, x1, x2, asr #2 # x0 = x1 - (x2 >> 2)

5 # Bitwise with shifted register
s and x0, x1, x2, ror #4 # x0 = x1 & (x2 rotated right 4)
7 orr x0, x1, x2, 1sl #1 # x0 = x1 | (x2 << 1)

Definition 1.20 (Comparison Operations)

1 cmp x1, x2 # Compare (sets flags, xl1 - x2)
> cmn x1, x2 # Compare negative (sets flags, x1 + x2)
3 tst x1, x2 # Test (sets flags, x1 & x2)

Definition 1.21 (Conditional Operations)

1 csel x0, x1, x2, eq # x0 = (condition) 7 x1 : x2

> csinc x0, x1, x2, ne # x0 = (condition) ? x1 : x2+1
csinv x0, x1, x2, gt # x0 = (condition) ? x1 : ~x2

. csneg x0, x1, x2, 1t # x0 = (condition) ? x1 : -x2

Definition 1.22 (Absolute Value and Min/Max)

1 # Using conditional select for abs(x1)
> cmp x1, #0
; csneg x0, x1, x1, ge # x0 = (x1 > 0) ? x1 : -x1

5 # Min/max using conditional select
¢ cmp x1, x2

7 csel x0, x1, x2, 1t # x0
s csel x0, x1, x2, gt # x0

1]

min(x1, x2)
max(x1, x2)

Definition 1.23 (Increment/Decrement)

1 add x0, x0, #1 # Increment by 1
> sub x0, x0, #1 # Decrement by 1
5 adds x0, x0, #1 # Increment and set flags
. subs x0, x0, #1 # Decrement and set flags

8/ 53]

Assembly Muchang Bahng

Fall 2024

Definition 1.24 (Modulo Operation)

1 # x0 = x1 % x2 (signed) - No direct instruction
> sdiv x3, x1, x2 # x3 = x1 / x2
3 msub x0, x3, x2, x1 # x0 = x1 - (x3 * x2)

Definition 1.25 (Power of 2 Operations)

1 # Multiply by power of 2
1s1 x0, x1, #3 # x0

x1 * 8 (2°3)

. # Divide by power of 2
5 1lsr x0, x1, #2 # x0
¢ asr x0, x1, #2 # x0

x1 / 4 (unsigned)
x1 / 4 (signed)

1.3 Logical Operations

Definition 1.26 (Bit Field Operations)

1 sbfx x0, x1, #5, #8
> ubfx x0, x1, #5, #8

. ubfiz x0, x1, #5, #8
5 bfi x0, x1, #5, #8
¢ bfxil x0, x1, #5, #8

Bit field insert

Signed bit field extract

Unsigned bit field extract
sbfiz x0, x1, #5, #8 # Signed bit field insert zeros

Unsigned bit field insert zeros

#

#

Bit field extract and insert low

Definition 1.27 (Bit Manipulation)

Reverse bits
Reverse bytes (64-bit)

1 rbit x0, x1
> rev x0, x1

5 rev32 x0, x1
1 revle x0, x1
5 clz x0, x1

s cls x0, x1

Count leading zeros
Count leading sign bits

H OH H H O H

Reverse bytes in 32-bit words
Reverse bytes in 16-bit halfwords

Definition 1.28 (Advanced Logical Operations)

1 # Bitwise operations with immediates

and x0, x1, #O0xFFOO # AND with immediate mask
5 orr x0, x1, #0xOFOF # OR with immediate mask
. eor x0, x1, #OxAAAA # XOR with immediate mask

N

¢ # Test and branch on bit

7 tbz x1, #5, label # Test bit zero and branch
s tbnz x1, #5, label # Test bit non-zero and branch

9/ b3

Assembly

Muchang Bahng

Fall 2024

Definition 1.29 (Conditional Logic)

N

ccmp x1, x2, #0, eq

ccmn x1, x2, #0
cset x0, eq
csetm x0, ne
cinc x0, x1, gt
cinv x0, x1, 1t
cneg x0, x1, ge

, ne

Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional

H O O ¥ B H

compare
compare negative
set (x0 = condition ? 1 : 0)

set mask (x0 = condition 7 -1 :

increment
invert
negate

0)

Definition 1.30 (Logical Shift Operations)

Standalone shift operations
Logical shift left by register

Logical shift right by register

Arithmetic shift right by register
Rotate right by register

1s1 x0, x1, x2
1sr x0, x1, x2
asr x0, x1, x2
ror x0, x1, x2

Shift with immediate

1s1 x0, x1, #5
1sr x0, x1, #3
asr x0, x1, #2
ror x0, x1, #4

Logical shift left by immediate

Logical shift right by immediate

Arithmetic shift right by immediate
Rotate right by immediate

Definition 1.31 (Pattern Operations)

1

2

Extract and duplicate patterns

extr x0, x1, x2
dup v0.8b, wil

, #8

Extract from register pair

Duplicate scalar to vector

Bit pattern generation

movz x0, #0x1234
movn x0, #0x1234

Move with zero (clear other bits)
Move with NOT (invert pattern)

movk x0, #0x5678, 1sl #16 # Move and keep (insert pattern)

1.4 Assembling and Disassembling

Definition 1.32 (Instruction Syntax)

Every ARM instruction—regardless of whether we’re in 32-bit or 64-bit ARM—can be fit into 32 bits
of memory. The fixed-length variable of this is good for speed.

31 30

29

28-24 | 23-22 | 21 | 20-16

15-10

9-5

4-0

Bits | Opcode

Set Condition Code

Opcode | Shift 0 Rm

Imm

Rn

Rd

Figure 1: Instruction encoding format.

are the full 64-bit version of the register[’]

1. Bits. If this bit is 0, then any registers are interpreted as the 32-bit W version. If 1, then they

10/ [p5]

Assembly Muchang Bahng Fall 2024

L

Opcode. which instruction are we performing, e.g. ADD or MUL.

Shift. These two bits specify shifting operations that could be applied to the data.

4. Set Condition Code. A single bit indicating if this instruction should update any condition
flags. If we don’t want the result of this instruction to affect following branch instructions, we
set it to 0.

Rm, Rn. Operand registers to use as input.

Rd. Destination register, i.e. where to put the result of whatever this instruction does.

7. Immé6. An immediate operand which is usually a small bit of data that you can specify directly
in the instruction. So, if you want to add 1 to a register, you could have this as 1, rather than
putting 1 in another register and adding the two registers. These are usually the bits left over
after everything else is specified.

e

& &

%You cannot mix W and Z bits in the same instruction!

A dump refers to a representation of the contents and structure of an object file or memory at a specific
point in time. Once a file is assembled it’s almost impossible to read. Fortunately, there are some nice shell
commands to help us.

Definition 1.33 (objdump)

Taken from the man pages, the objdump utility prints the contents of object files and final linked
images named on the command line.
1. -d, -disassemble. Disassemble all executable sections found in the input files. On some
architectures (AArch64, PowerPC, x86), all known instructions are disassembled by default.
2. -t, -syms. Display the symbol table.

Example 1.2 (objdump -d)

1 .text
2 .globl _main
_main:
1 mov x0, #0x1
b _exit

Figure 2

11/ [p5]

Assembly Muchang Bahng Fall 2024

1 > objdump -d hello
hello: file format mach-o arm64

5 Disassembly of section __TEXT,__text:

7 00000001000003c0 <_main>:

s 1000003c0: d2800020 mov x0, #0x1 ; =1

s 1000003c4: 14000001 b 0x1000003c8 <_exit+0x1000003c8>

10

11 Disassembly of section __TEXT,__stubs:

12

15 00000001000003c8 <__stubs>:

14 1000003c8: 90000030 adrp x16, 0x100004000 <_exit+0x100004000>
15 1000003cc: £9400210 1dr x16, [x16]

16 1000003d0: d61£0200 br x16

Figure 3

The mov command has the hex command 42800020, which translates in binary to

1 1101 0010 1000 0000 0000 0000 0010 0000

1. The first bit is 1, meaning use the 64-bit version of the registers, in this case X0 rather than
WO.

2. The third bit is 0, which means that this instruction doesn’t set any flags that would affect
conditional instructions.

3. The second bit combined with the fourth to ninth bits make up the opcode for this MOV
instruction. This is move wide immediate, meaning it contains a 16-bit immediate value.

4. The next 2 bits of 0 indicate there is no shift operation involved.

The next 16 bits are the immediate value which is 1.

6. The last 5 bits are the register to load. These are 0 since we are loading register XO0.

e

Definition 1.34 (xxd)

Taken from the man pages, the xxd utility makes hex dump of a given file or standard input. It can
also convert a hex dump back to its original binary form.

1.5 Directive

Definition 1.35 (Directive)
A directive is an instruction to the assembler. It tells the assembler how to process your code, but

doesn’t generate machine instructions, making it like commands for the assembler and not the CPU.
1.

Example 1.3 (Symbol Control)

i .globl _main // Make symbol globally visible
2 .local helper // Keep symbol local to this file
.extern _printf // Reference external symbol

12/ [p5]

Assembly Muchang Bahng

Fall 2024

4+ .weak _optional // Make symbol weakly defined

Example 1.4 (Data Creation)

1 .byte 0x42 // Create 1-byte wvalue

> .word 42 // Create /-byte value

3 .quad 42 // Create 8-byte value

4 .asciz "hello" // Create null-terminated string

5 .ascii "hello" // Create string (no null terminator)
6 .space 64 // Reserve 6/ bytes of space

- .fill 10, 4, O // Fill 10 4-byte words with 0

Example 1.5 (Alignment)

1 .align 4 // Align to 4-byte boundary
> .p2align 2 // Align to 2°2 = /-byte boundary
3 .balign 16 // Align to 16-byte boundary

Example 1.6 (Section Control)

1 .text // Switch to code section
> .data // Switch to data section
3 .bss // Switch to uninitialized data section

4+ .section my_custom // Create/switch to custom section

Example 1.7 (Conditional Assembly)

1 .ifdef DEBUG
2 .asciz "Debug build"

3 .else
4 .asciz "Release build"
5 .endif

Example 1.8 (Macros)

1 .macro SAVE_REGS

2 stp x29, x30, [sp, #-16]!

3 mov x29, sp

4 .endm

6 # Usage:

7 _my_function:

8 SAVE_REGS // Ezpands to the macro content
9 // ... function body

13/ [p5]

Assembly Muchang Bahng Fall 2024

10 ret

Example 1.9 ()

Example 1.10 ()

1 # DIRECTIVES (instructions to assembler):

> .globl _main # "Make this symbol global"
.align 4 # "Align the next thing to 4 bytes"
1 .asciz "hello" # "Create a null-terminated string here"

6 # INSTRUCTIONS (actual CPU operatiomns):

7 mov x0, #42 # CPU instruction: move 42 into x0
& bl _printf # CPU instruction: branch with link
o ret # CPU instruction: return

You open up your text editor on an M1 Mac, and every assembly program should start with this.

1 .globl _main
> _main:
1 b _exit

.globl is an assembler directive that makes the symbol _main globally visible to the linker. This allows
other files/modules to reference this _main function. b _exit is a specific function that tell the program to
shut down.

14/ [p5]

Assembly Muchang Bahng Fall 2024

2 ARM Arithmetic Operations

15/ [p5]

Assembly Muchang Bahng Fall 2024

3 ARM Control Flow

16/ [p5]

Assembly Muchang Bahng Fall 2024

4 x86 Data Movement

Definition 4.1 (Data Types)

In x86,
1. A word refers to

4.1 Registers

The specific type of registers that are available to a CPU depends on the computer architecture, or more
specifically, the ISA, but here is a list of common ones for the x86-64. We have %rax, %rbx, %rcx, %rdx,
%rsi, %rdi, %rbp, %rsp, %r8, %hr9, %ri0, %ril, %ri12, %ri3, %ri14, %ri5. Therefore, the x86-64 Intel CPU
has a total of 16 registers for storing 64 bit data. However, it is important to know which registers are used
for what.

Definition 4.2 (Parameter Registers)
Compilers typically store the first six parameters of a function in registers
%rdi,%rsi, %rdx, %rcx, %r8, %r9, (1)

respectively.

Definition 4.3 (Return Register)
The return value of a function is stored in the
%hrax (2)

register.

Definition 4.4 (Stack and Frame Pointers)

The %rsp register is the stack pointer, which points to the top of the stack. The %rbp register is the
frame pointer, or base pointer, which points to the base of the current stack frame. In a typical
function prologue, %rbp is set to the current stack pointer (%rsp) value, and then %rsp is adjusted
to allocate space for the local variables of the function. This establishes a fixed point of reference
(%rbp) for accessing those variables and parameters, even as the stack pointer (%rbp) moves.

Definition 4.5 (Instruction Pointer)

The %rip register is the instruction pointer, which points to the next instruction to be executed.
Unlike all the registers that we have shown so far, programs cannot write directly to %rip.

Definition 4.6 (Notation for Accessing Lower Bytes of Registers)

Sometimes, we need a more fine grained control of these registers, and x86-64 provides a way to access
the lower bits of the 64 bit registers. We can visualize them with the diagram below.

17/

Assembly Muchang Bahng Fall 2024

64 32 16 8 0

%ah | %al

%ax

%rax
Figure 4: The names that refer to subsets of register %rax.

A complete list is shown below.

64-bit Register | 32-bit Register | Lower 16 Bits | Lower 8 Bits
Y%rax Y%eax Y%ax %al
Y%rbx Y%ebx %bx %bl
Y%rex Y%ecx Y%ex %cl
Y%rdx Yedx %dx %dl
%rdi Y%edi %di %dil
Yorsi %esi Yosi %%sil
Y%rsp Y%esp %sp %spl
Y%rbp Y%ebp %bp %bpl
%18 %r8d Yor8w %r8b
%19 %r9d Yor9w %r9b
%r10 %r10d %r10w %r10b
%rll %rlld Yrllw %rllb
%r12 Y%r12d Y%r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d Y%rldw %r14b
%rl5 %r15d %rlow %r15b

Table 1: Register mapping in x86-64 architecture

4.2 Addressing Modes

Example 4.1 (Immediate Addressing)

1 movq $0x4, Yrax

Example 4.2 (Normal Addressing)

The following example shows the source operand being a memory address, with normal addressing,
and the destination operand being a register.

1 movq (Yrax), %rbx

18/ [p5]

Assembly Muchang Bahng Fall 2024

Example 4.3 (Displacement Addressing)

The following example shows the source operand being a memory address and the destination operand
being a register. They are both addressed normally.

1 movq 8(%rdi), %rdx

Example 4.4 (Indexed Addressing)

The following shows the source operand being a memory address and the destination operand being
a register. Say that %rdx = 0xf000 and %rcx = 0x0100. Then

0x80(,%rdx,2) = Mem[2%¥0xFO00 + 0x80] = Mem[0x1E080] (3)

We see that

1 movq 0x100(%rdi, %rsi, 8), %rdx

19/ [p5]

Assembly Muchang Bahng Fall 2024

5 x86 Arithmetic Operations

Definition 5.1 (Size Specifier)

In x86 assembly, the size specifier can be appended to this instruction mnemonic to specify the size
of the operands.

1. b (byte) for 1 byte

2. w (word) for 2 bytes

3. 1 (long) for 4 bytes

4. q (quad word) for 8 bytes
Note that due to backwards compatibility, word means 2 bytes in instruction names. Furthermore,
the maximum size is 8 bytes since that is the size of each register in x86_64.

Like higher level programming languages, we can perform operations, do comparisons, and jump to different
parts of the code. Instructions can be generally categorized into three types:

1. Data Movement: These instructions move data between memory and registers or between the reg-
istery and registery. Memory to memory transfer cannot be done with a single instruction.

1 %reg = Mem[address] # load data from memory into register
> Mem[address] = Yreg # store register data into memory

2. Arithmetic Operation: Perform arithmetic operation on register or memory data.

1 Yreg = Yreg + Mem[address] # add memory data to register

> JYreg = ireg - Mem[address] # subtract memory data from register
;s Jhreg = %reg * Mem[address] # multiply memory data to register

. ‘hreg = Y%reg / Mem[address] # divide memory data from register

3. Control Flow: What instruction to execute next.

1 jmp label jump to label
> je label jump to label if equal
; Jjne label jump to label if not equal

5 Jjl label jump to label if less
¢ call label call a function

#
#
3 #
1 jg label # jump to label if greater
5 #
#
7 ret # return from a function

Now unlike compiled languages, which are translated into machine code by a compiler, assembly code is
translated into machine code through a two-step process. First, we assemble the assembly code into an
object file by an assembler, and then we link the object file into an executable by a linker. Some common
assemblers are NASM (Netwide Assembler) and GAS/AS (GNU Assembler), and common linkers are 1d
(GNU Linker) and 11d (LLVM Linker), both installable with sudo pacman -S nasm 1d.

Definition 5.2 (mov)

Let’s talk about the mov instruction. A good diagram to see is the following:

Parantheses indicate that we are using a pointer dereference.

20/ 55|

Assembly

Muchang Bahng

Fall 2024

Definition 5.3 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

Definition 5.4 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Example 5.1 (Swap Function)

In gdb, we may have a function that swaps two integers.

2

| swap:

movq (%rdi), Yrax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)

6 ret

which is the assembly code for the following C code.

2 long t0O = *xp;
long t1 = *yp;

4 *xp = t1;

5 *xyp = t0;

1 void swap(long *xp, long *yp) {

Let’s talk about moving instructions first.

Definition 5.5 (mov)

Let’s talk about the mov instruction which copies data from the source to the destination (the data
in the source still remains!) and has the syntax

1. The source can be a register (%rsi), a value ($0x4), or a memory address (0x4).
The destination can be a register or a memory address.

L

mov_ src, dest

(4)

3. The _ is defined to be one of the size operands, which determine how big the data is. For
example, we can call movq to move 8 bytes of data (which turns about to be the maximum size

of a register).

A good diagram to see is the following:

movg <

Source Dest

Re
(Imm { g
Mem
Re
Reg { &
Mem

\. Mem Reg

Src, Dest

movq $0x4, %rax

movq $-147, (%rax)

movq %rax, %rdx
movq %rax, (%rdx)

movq (%rax), %rdx

C Analog

var_a=0x4;

*p_a=-147;

var_d =var_a;

*p_d=var_a;

var_d =*p_a;

21/ 55|

Assembly Muchang Bahng Fall 2024

Even with just the mov instruction, we can look at a practical implementation of a C program in Assembly.
Example 5.2 (Swap Function)

Let us take a look at a function that swaps two integers. Let’s see what they do.

1. In C, we dereference both xp and yp (note that they are pointers to longs, so they store 8 bytes),
and assign these two values to two temporary variables. Then, we assign the value of yp to xp
and the value of xp to yp.

2. In Assembly, we first take the registers %rdi and %rsi, which are the 1st and 2nd arguments of
the function, dereference them with the parantheses, and store them in the temporary registers
%rax and %rdx. Then, we store the value of Jrdx into the memory address of %rdi and the
value of Y%rax into the memory address of %rsi. Note that the input values (the actual of)

1 void swap(long *xp, long *yp) { | swap:
2 long t0 = *xp; 2 movq (%rdi), %rax
‘ long tl = *yp; 3 movq (%rsi), ’%rdx
1 *xp = t1; A movq %rdx, (Yrdi)
. *yp = t0; 5 movq %rax, (Yrsi)
6 t 6 ret

Definition 5.6 (movz and movs)

The movz and movs instructions are used to move data from the source to the destination, but with
zero and sign extension, respectively. It is used to copy from a smaller source value to a larger
destination, with the syntax

movz__ src, dest

movs__ src, dest

where the first _ is the size of the source and the second _ is the size of the destination.
1. The source can be from a memory or register.
2. The destination must be a register.

Example 5.3 (Simple example with movz)

Take a look at the code below.

1 movzbq %al, %rbx

The %al represents the last byte of the %rax register. It is 1 byte long. The %rbx register is 8 bytes
long, so we can fill in the rest of the 7 bytes with zeros.

[0x??]ox??[0x??|0ox??[0x2?|0x??[0x?2?|0xFF|<5%rax

[0x00[0x00[0x00[0x00[0x00]0x00]0x00|0xXFF|<%rbx

Example 5.4 (Harder example with movs)

Take a look at the code below.

1 movsbl (Y%rax), %ebx

You want to move the value at the memory address in %rax into %ebx. Since the source size is set to

22/ 65|

Assembly

Muchang Bahng

Fall 2024

1 byte, you take that byte, say it is 0x80, from the memory, and then sign extend it (by a size of 4
bytes!) into %ebx. Note that therefore, the first four bytes of %rbx will not be affected since it’s not
a part of %ebx. An exception to this is that in x86-64, any instruction that generates a 32-bit long
word value for a register also sets the high-order 32 bits of the register to 0, so this ends up clearing

the first 4 bytes to 0.

[ox00]ox00[ox7F|oxFF[0xC6[0x1F[0xA4[0xE8|S%rax

-+« |ox22[0x22|ox80[0x22|0x22[0x22] - - -

« MEM

[0x00]0x00[0x00]0x00[0xFF|0xFF[0xFF[0x80]<%rbx

Now we can talk about control transfer. Say that you have the following C and Assembly code.

1 int add(int x) {
2 return x + 2;

}

5 int main() {

6 int a = 2;

7 int b = add(a);
8 return 0;

5 3

1

>

add:
movq %rdi, %rax
addq $2, Y%rax
ret

main:
movq $3, $rdi
call add
movq $0, %rax
ret

Figure 5: A simple function.

If you go through the instructions, you see that in main, you first move $3 into the %rdi register. Then, you
call the add function, and within it you also have the %rdi register. This is a conflict in the register, and we
don’t want to simply overwrite the value of %rdi in the main function. Simply putting it to another register
isn’t a great idea since we can’t always guarantee that it will be free. Therefore, we must use the memory

itself.

Recall the stack, which we can think of as a giant array in which data gets pushed and popped in a last-in-
first-out manner. The stack is used to store data and return addresses, and is used to manage function calls.
Visually, we want to think of the elements getting pushed in from the bottom (upside down) towards lower

memory addresses.

Definition 5.7 (Stack Pointer)

Note that every time we want to push or pop something from the stack, we must know where to push
or pop it. This is where the stack pointer comes in. It is a special register that always points to
the top of the stack, and is used to keep track of the stack.

Definition 5.8 (Push and Pop)

The push and pop instructions are used to push and pop data onto and off the stack, respectively.

push_ src

pop_ dest

rsp
dest =

rsp - 8; Mem[rsp] = src

Mem[rsp]; rsp = rsp + 8

1. When we push the source, we fetch the value at the source and store it at the memory address
pointed to by the stack pointer %rsp. Then, we decrement %rsp by 8.

23/ 55|

Assembly Muchang Bahng Fall 2024

2. When we pop from the stack, we fetch the value at the memory address pointed to by the stack
pointer %rsp and store it in the destination. Then, we increment %rsp by 8.
Note that no matter what the size of the operand, we always subtract 8 from the stack pointer. This
is because the stack grows downwards, and we want to make sure that the next element is pushed
into the next available space.

Note that the register %rsp is the stack pointer, which points to the top of the stack. The stack is used to
store data and return addresses, and is used to manage function calls.

Definition 5.9 (Push and Pop)
The push and pop instructions are used to push and pop data onto and off the stack, respectively.

push_ src rsp = rsp - 8; Mem[rsp] = src

pop_ dest dest = Mem[rspl; rsp = rsp + 8

The _ is a size operand, which determines how big the data is.

Definition 5.10 (Call and Ret)

The call instruction pushes the return address onto the stack and jumps to the function. The ret
instruction pops the return address from the stack and jumps to it.

We also talked about how there is instruction code that is even below the stack that is stored. This is where
all the machine code/assembly is stored, and we want to find out where we are currently at in this code.
This is done with the program counter.

Definition 5.11 (Program Counter, Instruction Pointer)

The program counter, or instruction pointer, is a special register rip that points to the current
instruction in the program. It is used to keep track of the next instruction to be executed.

Let’s go through one long example to see in detail how this is calculated.
Example 5.5 (Evaluating a Function)

Say that we have the following C code.

1 int adder2(int a) {
2 return a + 2;
3
1

}

int main() {
6 int x = 40;
7 x = adder2(x);
8 printf("x is: %d\n", x);
9 return O;

When we compile this program, we can view its full assembly code by calling objdump -d a.out.
The output is quite long, so we will focus on the instruction for the adder2 function.

24/ 55|

Assembly

Muchang Bahng

Fall 2024

. 40052a:
5 40052d:
s 400530:
7 400533:
s 400534:

55

1 0000000000400526 <adder2>:
> 400526:
;400527

48 89 eb
89 7d fc
8b 45 fc
83 c0O 02

54
c3

push
mov
mov
mov
add
pop
retq

%rbp

hrsp, hrbp
%edi,-0x4 (%rbp)
-0x4 (%rbp) , heax
$0x2, %heax

%rbp

Figure 6: The output of objdump for the adder2 function. The leftmost column represents the addresses
(in hex) of where the actual instructions lie. The second column represents the machine code that is being
executed. The third column represents the assembly code.

Note some things. Since adder?2 is taking in an integer input value, we want to load it into the lower
32 bits (4 bytes) of the %rdi register, which is the first parameter. So we use %edi. Likewise for the
return value, we want to output an int so we use %eax rather than %rax. Let’s go through some of

the steps.

1. By the time we get into calling adder2, we can take a look at the relevant registers.

0x526 push %rbp

0x527 mov %rsp, %rbp

Ox52a mov %edi, -@x4(%rbp)
0x52d mov -@x4(%rbp), %eax
0x530 add $0x2, %eax

0x533 pop %rbp

0x534 retq

Registers

Y%eax 0x123

%edi 0x28

%rsp 0xd28

%rbp 0xd40

%rip 0x526

Lower addresses

Stack “bottom”

call stack

(a) First, the %eax is filled with garbage, which are leftovers from previous programs that
haven’t been overwritten yet.

(e

it, but haven’t done it yet).
2. When we execute the first line of code, we simply push the value at %rbp into the stack. The
top of the stack gets decremeneted by 8 and the value at %rbp is stored there. This means that

the top of the stack is at %rsp=0xd20 and the next instruction will be at %rip=0x527.

Second, the %edi=0x28 since we have set x=40 in main, before calling adder2, so it lingers
on.

) %rsp=0xd28 since that is where the top of the stack is.
(d) %rbp=0xd40

) %rip=0x526 since that is where we are currently at in our instruction (we are about to do

25/ 55|

Assembly Muchang Bahng Fall 2024

=) Ox526 push %rbp
0x527 mov %rsp, %rbp
Ox52a mov %edi, -@x4(%rbp)
0x52d mov -@x4(%rbp), %eax
0x530 add $0x2, %eax
0x533 pop %rbp

Lower addresses

Ox534 r‘etq 2;’2: oxd4oe l—— Stack "top
Registers Stack “bottom”
%eax 0x123
%edi 0x28
%rsp 0xd20 call stack
%rbp 0xd40
%rip 0x527

3. The reason we have pushed %rbp onto the stack is that we want to save it before it gets
overwritten by this next execution. We basically move the value of %rsp into %rbp, and the
%rip advances to the next instruction. %rip moves to the next instruction.

0x526 push %rbp

== 0x527 mov %rsp, %rbp
Ox52a mov %edi, -@x4(%rbp)
0x52d mov -@x4(%rbp), %eax
0x530 add $0x2, %eax
0x533 pop %rbp

Lower addresses

0x534 r‘etq 2;’2: oxd4oe l—— Stack "top
Registers Stack “bottom”
%eax 0x123
%edi 0x28
%rsp 0xd20 call stack
%rbp 0xd20
%rip 0x52a

4. Now we want to take our first argument %edi and store it in memory. Note that since this is 4
bytes, we can move this value into memory that is 4 bytes below the stack (-0x4 (%rbp)). Note
that the storing the value of %edi into memory doesn’t affect the stack pointer %rsp. As far as
the program is concerned, the top of this stack is still address 0xd20.

0x526 push %rbp
0x527 mov %rsp, %rbp

==) Ox52a mov %edi, -@x4(%rbp)
0x52d mov -@x4(%rbp), %eax m
0x530 add $0x2, %eax 8 oxatc Ox28
9x533 pop %rbp ® 0xd20 Oxd40 |k stack "top’
0x534 retq £ oczs
e Stack “bottom”
Y%eax 0x123
%edi 0x28
B — call stack
%rbp 0xd20
%rip 0x52d

5. The next instruction simply goes into memory 4 bytes below the stack pointer, takes the value
there, and stores it into %eax. This is the value of %edi that we just stored. This may seem
redundant since we are making a round trip to memory and back to ultimately move the value

26/ [55]

Assembly Muchang Bahng

Fall 2024

of %edi into %eax, but compilers are not smart and just follow these instructions.

0x526 push %rbp

0x527 mov %rsp, %rbp

Ox52a mov %edi, -@x4(%rbp)
=) Ox52d mov -Ox4(%rbp), %eax

0x530 add $0x2, %eax

0x533 pop %rbp

0x534 retq
Registers
Y%eax 0x28
%edi 0x28
%rsp 0xd20
%rbp 0xd20
%rip 0x530

6. Finally, we add the value $0x2 to %eax and store i

0x526 push %rbp

0x527 mov %rsp, %rbp

Ox52a mov %edi, -@x4(%rbp)

0x52d mov -@x4(%rbp), %eax
=) 0x530 add $0x2, %eax

0x533 pop %rbp

Lower addresses

Oxd1c
0xd20
0xd28

0x28

oxd40

l—— Stack "top"

Stack “bottom”

call stack

t back into %eax.

Lower addresses

0x534 retq
Registers
Y%eax 0x2A
%edi 0x28
%rsp 0xd20
%rbp 0xd20
%rip 0x533

Oxd1c
0xd20
0xd28

0x28

oxd40

l—— Stack "top"

Stack “bottom”

call stack

7. Finally, we pop the value at the top of the stack and store it into %rbp. Note that this is not
the value 0x28. It is simply the value that is stored at %rsp=0xd20, which is (%rsp)=0xd40.

0x526 push %rbp
0x527 mov %rsp, %rbp
Ox52a mov %edi, -@x4(%rbp)
0x52d mov -@x4(%rbp), %eax
0x530 add $0x2, %eax

=) Ox533 pop %rbp

0x534 retq
Registers
Y%eax 0x2A
%edi 0x28
%rsp 0xd28
%rbp 0xd40
%rip 0x534

8. Finally, we return the value with retq.

Lower addresses

0xd28

Stack “bottom”

call stack

<«— Stack "top"

Note that the final values in the registers %rsp and %rip are 0xd28 and 0x534, respectively, which are the
same values as when the function started executing! This is normal and expected behavior with the call
stack, which just stores temporary variable sand data of each function as it executes a program. Once a
function completes executing, the stack returns to the state it was in prior to the function call. Therefore,
it is common to see the following two instructions at the beginning of a function:

27/

Assembly Muchang Bahng Fall 2024

1 push Y%rbp
> mov %4rsp, hrbp

and the following two at the end of a function

| pop %rbp
> retq

Now arithemtic operations are quite simple.
Definition 5.12 (Add, Subtract, Multiply)

The add and sub instructions are used to add and subtract data from the destination.

add_ src, dest dest dest + src

sub_ src, dest dest = dest - src

The imul instruction is used to multiply data between the source and destination and store it in the
destination.

imul_ src, dest dest = dest * src

Again the _ is a size operand, which determines how big the data is.

Definition 5.13 (Increment, Decrement)
The inc and dec instructions are used to increment and decrement the value in the destination.

inc_ dest dest = dest + 1

dec_ dest dest dest - 1

Definition 5.14 (Negative)
The neg instruction is used to negate the value in the destination.

neg_ dest dest = -dest

Example 5.6 (Basic Arithmetic Function)

The following represents the same program in C and in assembly. Let’s go through each one:
1. In C, we first initialize a = 4, then b = 8, add them together to get c, and then return c.
2. In Assembly, we move the value 4 to the %rax register, then move the value 8 to the %rbx
register, add the two values together to store it into %rax, and then return the value in the %rax

register.
1 int main() { | main:
2 int a = 4, b = 8; 2 movq $4, Yrax
int ¢ = a + b; 3 movq $8, Y%rbx
1 return c; | addq Y%rbx, %rax
} 5 ret

It is slightly different in Assembly since rather than storing 4 in some intermediate register, we

28/ 55|

Assembly Muchang Bahng Fall 2024

immediately store it in the return register. In a way it is more optimized, and this is what the
compiler does for you so that as few registers are used.

A shorthand way to do this is with lea, which stands for load effective address.

Definition 5.15 (Load Effective Address)

The lea instruction is used to load the effective address of the source into the destination. For now,
we will focus on the arithmetic operations that it can do

lea_ (srcl, src2), dest dest = srcl + src2

lea_ (srcl, src2, scale), dest dest = srcl + src2x*scale
lea_ const(srcl, src2), dest dest = srcl + src2 + const

lea_ const(srcl, src2, scale), dest dest = srcl + src2xscale + const

This is useful for doing arithmetic operations on the address of a variable.

Definition 5.16 (Bitwise)

The and, or, xor, and not instructions are used to perform bitwise operations on the source and

destination.
and src, dest dest = dest & src
or src, dest dest = dest | src
Xor src, dest dest = dest Src
neg dest dest = -dest
not dest dest = ~dest

Definition 5.17 (Arithmetic and Logical Bit Shift)

The sal arithmetic instruction is used to shift the bits of the destination to the left by the number
of bits specified in the source. The shr instruction is used to shift the bits of the destination to the
right by the number of bits specified in the source.

sal src, dest dest dest « src

shr src, dest dest = dest » src

The sar instruction is used to shift the bits of the destination to the right by the number of bits
specified in the source, and fill the leftmost bits with the sign bit. The shl instruction is used to
shift the bits of the destination to the left by the number of bits specified in the source, and fill the
rightmost bits with zeros.

sar src, dest dest = dest » src
shl src, dest dest = dest « src
Example 5.7 (Harder Arithmetic Example)

The following two codes are equivalent.

29/ 55|

Assembly Muchang Bahng Fall 2024

1 long arith(long x, long y, long z) { 1 arith:

2 long t1 = x + y; 2 # rax/tl = x +y

3 long t2 = z + ti; 3 leaq (%rdi, Y%rsi), %rax

1 long t3 = x + 4; 1 # rax/t2 = z + ti

5 long t4 = y * 48; 5 addq Y%rdx, Yrax

6 long t5 = t3 + t4; 6 #rdx = 3 *x y

7 long rval = t2 * t5; 7 leaq (%rsi, %rsi, 2), jrdx
8 return rval; 8 #rdx/t4 = (3*y) * 16

9} 9 salq $4, %rdx

0 . 10 #rcx/th = x + t4 + 4

11 . 11 leaq 4(%rdi, %rdi), Yrcx
12 . 12 # rax/rval = t5 * t2

13 . 13 imulq Y%rcx, ‘%rax

14 . 14 ret

The final thing in our list is condition codes.

Sometimes, we want to move (really copy) some value to another register if some condition is met. This is
where we use conditional moves. These conditions are met by the flags register, which is a special register
that stores the status of the last operation. It is the value of these flags that determine whether all future
conditional statements are met in assembly.

Definition 5.18 (Condition Code Flags)

The flags register in the x86 CPU keeps 4 condition code flag bits internally. Think of these as status
flags that are implicitly set by the most recent arithmetic operation (think of it as side effects). Note
that condition codes are NOT set by lea or mov instructions!

1. Zero Flag: if the last operation resulted in a zero value.

2. Sign Flag: if the last operation resulted in a negative value (i.e. the most significant bit is 1).

3. Overflow Flag: if the last operation resulted in a signed overflow.

4. Carry Flag: if the last operation resulted in a carry out of the most significant bit, i.e. an

unsigned overflow.

Every operation may or may not changes these flags to test for zero or nonzero, positive or negative,
or overflow conditions, and combinations of these flags express the full range of conditions and cases,
e.g. for signed and unsigned values.

Example 5.8 (Zero Flag)

If the code below was just run, then ZF would be set to 1.

1 movq $2, Yrax
> subq $2, Y%rax

Example 5.9 (Sign Flag)

If the code below was just run, then SF would be set to 1.

1 movq $2, Yrax
> subq $4, Y%rax

30/ 55|

Assembly Muchang Bahng Fall 2024

Example 5.10 (Overflow Flag)

If either code below was just run, then OF would be set to 1.

1 movq $OxTELEffffffffffff, Yrax 1 movq 0x8000000000000000, %rax
> addq $1, %rax > addq Oxffffffffffffffff, Yrax

This is because in the left in signed arithmetic, we have a positive + positive = negative (result is
0x8000000000000000), which is a signed overflow. Furthermore, in the right we have negative +
negative = positive (result is Ox7fffffFFfEFFELLF).

Example 5.11 (Carry Flag)

If the code below was just run, then CF would be set to 1.

1 movq $OxEffffffffffFffffff, Jrax
> addq $1, %rax

This is because the result is 020, which is a carry out of the most significant bit and an unsigned
overflow.

It would be tedious to always set these flags manually, so there are two methods that can be used to explicitly
set these flags.

Definition 5.19 (Compare)

The cmp instruction is used to perform a subtraction between the source and destination, and set
the flags accordingly, but it does not store the result.

cmp_ src, dest dest - src

The following flags are set if the conditions are met:
1. ZF = 1 if dest == src
2. SF = 1 if dest < src (MSBis 1)
3. OF = 1 if signed overflow
4. CF = 1 if unsigned overflow

Definition 5.20 (Test)

The test instruction is used to perform a bitwise AND operation between the source and destination,
and set the flags accordingly.

test_ src, dest dest & src

The following flags are set if the conditions are met. Note that you can’t have carry out (CF) or
overflow (OF) if these flags are set.

1. ZF = 1 if dest & src ==

2. SF = 1if dest & src < 0 (MSBis 1)

Example 5.12 (Compare)

Assuming that %al = 0x80 and %bl = 0x81, which flags are set when we execute cmpb %al, %bl?
Well we must first compute

%bl - %al = 0x81 - 0x80 = 0x81 + ~ 0x80 + 1 = 0x81 + Ox7F + 1 = 0x101 = 0x01 (5)

31/ 55|

Assembly Muchang Bahng Fall 2024

. CF=1 since the result is greater than 0xFF (i.e. larger than byte)
. ZF=0 since the result is not 0

. SF=0 since the MSB is 0, i.e. there is unsigned overflow

. OF=0 since there is no signed overflow

= W N

For conditional moves and jumps later shown, it basically uses these explicit sets and always compares them
to 0. We will see what this means later.

Finally, we can actually set a byte in a register to 1 or 0 based on the value of a flag.

Definition 5.21 (Set)

We can then talk about conditional moves and jumps.
Definition 5.22 (Equality with 0)

The test instruction is used to perform a bitwise AND operation between the source and destination,
and set the flags accordingly.

test_ src, dest dest & src
The sete instruction is used to set the destination to 1 if the zero flag is set, and 0 otherwise.
sete_ dest dest = (ZF==1)7 1: O
The cmovne instruction is used to move the source to the destination if the zero flag is not set.

cmovne_ src, dest dest = (ZF == 0) ? src : dest

Definition 5.23 (Jump)

There are several jump instructions, but essentially they are used to jump to another part of the
code. We can use the following mnemonic to jump to a label.

Letter | Word

j jump

not

equal

signed

greater (signed interpretation)
less (signed interpretation)
above (unsigned interpretation)
below (unsigned interpretation)

ol |—lm|n|o|s <

Table 2: Letter to Word Mapping

Figure 7: Mnemonic for Jump Instructions

For completeness, we include all the jump instructions.

32/ 55|

Assembly Muchang Bahng Fall 2024

Signed Comparison | Unsigned Comparison | Description

je (jz) jump if equal (==) or jump if zero
jne (jnz) jump if not equal (=)

js jump if negative

jns jump if non-negative

jg (jnle) ja (jnbe) jump if greater (>)

jge (jnl) jae (jnb) jump if greater than or equal (>=)
jl (jnge) jb (jnae) jump if less (<)

jle (jng) jbe (jna) jump if less than or equal (<=)

Table 3: Comparison Instructions in Assembly

Figure 8: All jump instructions

Definition 5.24 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

Definition 5.25 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Now we can have a basic idea of how if statements can be used as a sequence of conditionals and jump
operators. Let’s first look at the goto version of C.

Definition 5.26 (Goto Syntax)

The goto version processes instructions sequentially as long as there is no jump. This is useful because
compilers translating code into assembly designate a jump when a condition is true. Contrast this
behavior with the structure of an if statement, where a "jump" (to the else) occurs when conditions
are not true. The goto form captures this difference in logic.

1 int getSmallest(int x, int y) { int getSmallest(int x, int y) {
2 int smallest; 2 int smallest;
if (x>y) { //if (conditional) 3
1 smallest = y; //then statement " if (x <=y) { //if (!conditional)
5 } 5 goto else_statement;
6 else { 6 i
7 smallest = x; //else statement 7 smallest = y; //then statement
8 } 8 goto done;
9 return smallest; 9
10} 10 else_statement:
1. 11 smallest = x; //else statement
12 12
13 . 13 done:
14 . 14 return smallest;
15 . 15 }

Figure 9: C vs GoTo code of the same function. While GoTo code allows us to view C more like assmebly, it is
generally not readable and is not considered best practice.

33/ 55|

Assembly Muchang Bahng Fall 2024

Now let’s see how if statements are implemented by taking a look at this function straight up in assembly.

1

2

int getSmallest(int x, int y) { Dump of assembler code for function getSmallest:
int smallest; > 0x40059a <+4>: mov %edi,-0x14 (%rbp)
if (x>y) { //if (conditional) ||s 0x40059d <+7>: mov %hesi,-0x18 (%rbp)
smallest = y; //then statement ; 0x4005a0 <+10>: mov -0x14 (%rbp) , heax
} 5 0x4005a3 <+13>: cmp -0x18(%rbp) , heax
else { s 0x4005a6 <+16>: jle 0x4005b0 <getSmallest+26>
smallest = x; //else statement 7 0x4005a8 <+18>: mov -0x18(%rbp) , heax
} s 0x4005ae <+24>: jmp 0x4005b9 <getSmallest+35>
return smallest; o 0x4005b0 <+26>: mov -0x14 (%rbp) , heax
} 10 0x4005b9 <+35>: pop %rbp
11 0x4005ba <+36>: retq

Figure 10: Assembly code of a simple if statement

Again, note that since we are working with int types, the respective parameter registers are %edi and %esi,
the respective lower 32-bits of the registers %rdi and %rsi. Let’s walk through this again.

1.

The first mov instruction copies the value located in register %edi (the first parameter, x) and places it
at memory location %rbp-0x14 on the call stack. The instruction pointer (%rip) is set to the address
of the next instruction, or 0x40059d.

The second mov instruction copies the value located in register %esi (the second parameter, y) and
places it at memory location %rbp-0x18 on the call stack. The instruction pointer (%rip) updates to
point to the address of the next instruction, or 0x4005a0.

The third mov instruction copies x to register %eax. Register %rip updates to point to the address of
the next instruction in sequence.

. The cmp instruction compares the value at location %rbp-0x18 (the second parameter, y) to x and sets

appropriate condition code flag registers. Register %rip advances to the address of the next instruction,
or 0x4005a6.

The jle instruction at address 0x4005a6 indicates that if x is less than or equal to y, the next instruction
that should execute should be at location <getSmallest+26> and that %rip should be set to address
0x4005b0. Otherwise, %rip is set to the next instruction in sequence, or 0x4005a8.

With the cmov instruction, this can be a lot shorter. With the gcc compiler with level 1 optimizations turned
on, we can see that a lot of redundancies are turned off.

<getSmallest>:

0x400546 <+0>: cmp %hesi,hedi #compare x and y

0x400548 <+2>: mov %esi,heax #copy y to %eax

0x40054a <+4>: cmovle %edi,’%eax #if (x<=y) copy x to %eax
0x40054d <+7>: retq #return jeax

Figure 11: Compiled with gcc -01 -o getSmallest getSmallest.c

Like if statements, loops in assembly can be implementing using jump functions that revisit some instruction
address based on the result on an evaluated condition. Let’s take a look at a basic loop function.

34/ 55|

Assembly

Muchang Bahng

Fall 2024

int sumUp(int n) {

int total = 0;
int 1 = 1;

while (i <= n) {

total += i;
it++;
}

return total;

Dump of assembler code for function sumUp:

0x400526
0x400527
0x40052a
0x400524
0x400534
0x40053b
0x40053d
0x400540
0x400543
0x400547
0x40054a
0x40054d
0x40054f
0x400552
0x400553

<+0>: push Yrbp
<+1>: mov hrsp,hrop
<+4>: mov

<+7>: mov

<+14>: mov

<+21>: jmp

<+23>: mov

<+26>: add

<+29>: add

<+33>: mov

<+36>: cmp

<+39>: jle

<+41>: mov

<+44>: pop %rbp
<+45>: retq

%edi,-0x14 (%rbp)
$0x0, -0x8 (%rbp)
$0x1,-0x4 (%rbp)
0x400547 <sumUp+33>
-0x4 (%rbp) , heax
%eax, -0x8 (%rbp)
$0x1,-0x4 (%rbp)
-0x4 (%rbp) , heax
-0x14 (%rbp) , heax
0x40053d <sumUp+23>
-0x8 (%rbp) , heax

Figure 12: Simple loop function in C and assembly.

Finally, we want to let the reader know the convention of calle and caller saved registers. The compiler tries
to pick these registers, and by convention in x86, we have the following.

$rax Return value - Caller saved %r8 Argument #5 - Caller saved
Srbx Callee saved %r9 Argument #6 - Caller saved
Q o

$rcx Argument #4 - Caller saved %rl0 Caller saved
Srdx Argument #3 - Caller saved rll Caller Saved
Q : o

Frsi Argument #2 - Caller saved %rl2 Callee saved
$rdi Argument #1 - Caller saved $rl3 Callee saved
3rsp Stack pointer rld Callee saved
srbp Callee saved %rl5 Callee saved

Figure 13: Caller save and callee save registers.

So far, we’ve traced through simple functions in assembly. In this section, we discuss the interaction between
multiple functions in assembly in the context of a larger program. We also introduce some new instructions
involved with function management.

Definition 5.27 (Leave)

The leave instruction is used to deallocate the current stack frame. For example, the leaveq instruc-
tion is a shorthand that the compiler uses to restore the stack and frame pointers as it prepares to
leave a function. When the callee function finishes execution, leaveq ensures that the frame pointer

35/ 55|

Assembly Muchang Bahng Fall 2024

is restored to its previous value. It is equivalent to the following two instructions:

leaveq movq %rbp, %rsp
popq %rbp

Definition 5.28 (Call and Return)

The call instruction is used to call a function and the ret to return from a function. The callq
and retq instructions play a prominent role in the process where one function calls another. Both
instructions modify the instruction pointer (register %rip).

1. When the caller function executes the callq instruction, the current value of %rip is saved on
the stack to represent the return address, or the program address at which the caller resumes
executing once the callee function finishes. The callq instruction also replaces the value of %rip
with the address of the callee function.

callq addr <fname> push Yrip

mov addr, Y%rip

2. The retq instruction restores the value of %rip to the value saved on the stack, ensuring that
the program resumes execution at the program address specified in the caller function. Any
value returned by the callee is stored in %rax or one of its component registers (e.g., %eax).
The retq instruction is usually the last instruction that executes in any function.

Tetq pop %rip

Let’s work through an example to solidify our knowledge.
Example 5.13 (Calling Functions in Assembly)

Let’s take the following code and trace through main.

36/ [p5]

Assembly Muchang Bahng Fall 2024

1 #include <stdio.h> 1 0000000000400526 <assign>:

2 2 400526 55 push Yrbp

3 int assign(void) { 3 400527 48 89 eb mov %hrsp, hrbp

1 int y = 40; | 40052a: c7 45 fc 28 00 00 00 movl $0x28,-0x4 (%rbp)
‘ return y; 5 400531: 8b 45 fc mov -0x4 (%rbp) , heax
s ¥ 6 400534 : 5d pop %rbp

7 7 400535: c3 retq

s int adder(void) { 8

9 int a; s 0000000000400536 <adder>:
10 return a + 2; 10 400536: 55 push Y%rbp
11} 11 400537 48 89 eb mov %hrsp, hrbp
12 12 40053a: 8b 45 fc mov -0x4 (%rbp) , heax
13 int main(void) { 13 40053d: 83 c0 02 add $0x2, %heax
14 int x; 14 400540: 5d pop %rbp
15 assign(); 15 400541: c3 retq
16 x = adder(); 16
17 printf("x is: 17 0000000000400542 <main>:

%d\n", x); 18 400542: 55 push Yrbp

8 return 0; 19 400543: 48 89 eb mov hrsp,hrbp
19} 20 400546: 48 83 ec 10 sub $0x10, %rsp
20 . 21 40054a: e8 e3 ff ff ff callg 400526 <assign>
P o 22 400541 : e8 d2 ff ff ff callg 400536 <adder>
22 . 23 400554 : 89 45 fc mov heax, -0x4 (%rbp)
23 . 24 400557 : 8b 45 fc mov -0x4 (%rbp) , heax
o4 . 25 40055a: 89 c6 mov %eax,hesi
25 . 26 40055c: bf 04 06 40 00 mov $0x400604 , %edi
26 . 27 400561 : b8 00 00 00 00 mov $0x0, %eax
57 o 28 400566 e8 95 fe ff ff callg 400400
28 . <printf@plt>
20 . 29 40056b: b8 00 00 00 00 mov $0x0, feax

50 . 30 400570: c9 leaveq
31 . 31 400571 : c3 retq

Figure 14: C code and its assembly equivalent. Main function calls two other functions.

Let’s trace through what happens here in detail. This will be long.

1. %rbp is the base pointer that is initialized to something. Before we even begin main, say that
we have the following initializations, where %eax, %edi is garbage. %rsp denotes where on the
stack we are right before calling to main, %rbp is the base pointer to the current program, and
%rip should be the address of the first instruction in main. Again since we work with integers
we use the lower 32-bits of the registers. J%rip now points to the next instruction.

37/

Assembly Muchang Bahng Fall 2024

0x542 <main>:

0x542 push %rbp

0x543 mov %rsp, %rbp
0x546 sub $ox1e, %rsp
Ox54a callqg ©x526 <assign>
0x55f callqg ©x536 <adder>
Ox554 mov %eax, -0x4(%rbp)

Stack “top”

Lower addresses

0x557 mov -0x4(%rbp), %eax B Esmwmp-
1 Stack “bottom”
Ox55a mov %eax, %esi e ool
call stack
Regist)
Eer Terminal:
7
Toex o5 $./prog
%edi 1
%rsp 0xd48
%rbp 0x830
%rip 0x542

2. Now we start the main function. By calling main, the base pointer %rbp of the stack outside
of the main frame will be overwritten by the base of the main stack frame, so we must save it
for when main is done. Therefore, we push it onto the stack where %rsp is pointing. %rip now
points to the next instruction.

0x542 <main>:

== 0x542 push %rbp
0x543 mov %rsp, %rbp
0x546 sub $ox1e, %rsp

A 2 Stack “top”
0x54a callqg ©x526 <assign> 2
ox55f callqg ©x536 <adder> 3
© " "
Ox554 mov %eax, -0x4(%rbp) g oM 0x830 [« Stack'top
0x557 mov -ex4(%rbp), %eax g G=ik ___
Ox55a mov %eax, %esi Stailk tjco"o;:
call stac
Registers Terminal:
Y%eax 650 $./prog
%edi 1
%rsp 0xd40
%rbp 0x830
%rip 0x543

3. Then we actually change the location of the base pointer to the top of the stack, which now
includes the first instruction in main.

38/ 55|

Assembly

Muchang Bahng

Fall 2024

0x542 <main>:
0x542 push
=) 0x543 mov
0x546 sub
ox54a callq
ox55f callq

%rbp

%rsp, %rbp
$ox1e, %rsp
0x526 <assign>
0x536 <adder>

Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax
Ox55a mov %eax, %esi

Registers

%eax 650

%edi 1

%rsp 0xd40

%rbp 0xd40

%rip 0x546

l—— Stack "top"

2 Stack “top”

@

©

o

o

5 0xdd0 0x830

3 oxas
Stack “bottom”
call stack

Terminal:

$./prog

4. Now we manually change the stack pointer and have it grow by two bytes (0x10). Therefore,
%rsp is decremented by 0x10 and %rip points to the next instruction at 0x54a.

0x542 <main>:
0x542 push
0x543 mov
=) OX546 sub
ox54a callq
ox55f callq

%rbp

%rsp, %rbp
$ox1e, %rsp
0x526 <assign>
0x536 <adder>

Ox554 mov %eax, -0x4(%rbp)
0x557 mov -ox4(%rbp), %eax
Ox55a mov %eax, %esi

Registers

%eax 650

%edi 1

%rsp 0xd30

%rbp 0xd40

%rip 0x54a

0xd30

k—— Stack "top”

0xd38

Lower addresses

0xd40 0x830
0xd48
Stack “bottom”
call stack
Terminal:
$./prog

5. Now the next instruction pointed at by %rip is the callq instruction, which tells to go to the
address of the assign function. We by default first update %rip to point to the next instruction
at 0x65f. However, this should not be the actual next instruction that we execute since we are
calling another function. Rather, we want to update %rip to address 0x526 where assign is
located at, but after completion we also want to know that we want to execute the instruction
after it at address 0x55f. Therefore, we should save address 0x55f onto the stack and then
update %rip to point to 0x526. This is what we refer to as a return address.

39/ 55|

Assembly

Muchang Bahng

Fall 2024

0x542 <main>:

0x542
0x543
0x546
=) Ox54a
Ox55f
0x554
©x557
©x55a

push %rbp
mov %rsp, %rbp
sub $0x10, %rsp , e Ox55f
callg ©ox526 <assign> g (kY
callq ©x536 <adder> g Owss
mov %eax, -0x4(%rbp) g 0 0x830
mov -0x4(%rbp), %eax § o= _
mov %eax, %esi Sta:lk T‘T
call stac
Registers Terminal:
Y%eax 0x0 $./prog
%edi 1
AR R Equivalent to:
%rbp 0xd40 push %rip
: mov 0x526, %rip
%rip 0x526

l—— Stack "top", return address

6. %rip is incremented to the next address. We step into the assign function, which is now a
new stack frame, so the first thing we do is save the base pointer of the main stack frame onto
the stack since we must immediately update it with the base pointer of the assign stack frame,
which is where %rsp is pointing to.

0x526 <assign>:
== 0x526 push %rbp

0x527 mov %rsp, %rbp
0x52a mov $0x28, -0x4(%rbp)
0x531 mov -@x4(%rbp), %eax
0x534 pop %rbp
0x535 retq

Registers

Y%eax 0x0

%edi 1

%rsp 0xd20

%rbp 0xd40

%rip 0x527

7. %rip is incremented to the

stack.

l—— Stack "top"

return address

0xd20 0xd4o
0xd28 Ox55f
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

next address. We then update the base pointer to the top of the

40/ 53]

Assembly

Muchang Bahng

Fall 2024

0x526 <assign>:

0x526
=) OX527
0x52a
0x531
0x534
©x535

push %rbp
mov %rsp, %rbp

mov $0x28, -0x4(%rbp)
mov -@x4(%rbp), %eax
pop %rbp

retq

Registers

Y%eax 0x0
%edi 1
%rsp 0xd20
%rbp 0xd20
%rip 0x52a

l—— Stack "top"

return address

0xd20 oxd4e
0xd28 Ox55f
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

8. Now we want to move the number 0x28 (40) into the memory location -0x4 (%rbp) of the stack,
which is 4 bytes above the frame pointer, which is also the stack pointer. It is common that
the frame pointer is used to reference locations on the stack. Note that this does not update
the stack pointer.

0x526 <assign>:

0x526
0x527
== 0x52a
0x531
0x534
0x535

push %rbp
mov %rsp, %rbp
mov $0x28, -0x4(%rbp)

mov -@x4(%rbp), %eax
pop %rbp
retq

Registers

Y%eax 0x0
%edi 1
%rsp 0xd20
%rbp 0xd20
%rip 0x531

l—— Stack "top"

return address

Oxd1c ox28
0xd20 oxd4e
0xd28 Ox55f
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

9. Now we take the same address where we stored 0x28 to and move it into %eax, effectively
loading 40 onto the return value.

41/ 63

Assembly

Muchang B

ahng

Fall 2024

0x526 <assign>:
0x526 push %rbp
0x527 mov %rsp, %rbp
0x52a mov $0x28, -0x4(%rbp)
== 0x531 mov -@x4(%rbp), %eax

0x534 pop %rbp
0x535 retq

Registers

Y%eax 0x28

%edi 1

%rsp 0xd20

%rbp 0xd20

%rip 0x534

l—— Stack "top"

return address

Oxd1c Ox28
0xd20 0xd4o
0xd28 Ox55f
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

10. We see that we will return this value soon, but before we do, we want to make sure that when
the assign stack frame gets deleted (not really, but overwritten), we want to restore the base
pointer of the main stack frame. We have already saved this before at %rsp, which hasn’t
changed since we only worked with displacements from the base pointer. We retrieve the main
stack pointer data and load it back into %rbp. Note that this increments %rsp by 8 bytes,
shrinking the stack, and we are technically out of the assign stack frame.

0x526 <assign>:
0x526 push %rbp
0x527 mov %rsp, %rbp
0x52a mov $0x28, -0x4(%rbp)
0x531 mov -@x4(%rbp), %eax
=) 0x534 pop %rbp

0x535 retq

Registers

Y%eax 0x28

%edi 1

%rsp 0xd28

%rbp 0xd40

%rip 0x535

l—— Stack "top", return address

Oxd1c
0xd20
0xd28 Ox55f
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

11. Note that at this point, since %rbp was popped off, the next value that is at the top of the stack

42/ 53]

Assembly Muchang Bahng Fall 2024

is the address %rip that we store earlier, which points to the next execution in main. When
retq executes, this value at the top of the stack is popped into %rip, allowing main to continue
executing within the main stack frame. Note that the return value is stored in %eax.

0x526 <assign>:

0x526 push %rbp

0x527 mov %rsp, %rbp

0x52a mov $0x28, -0x4(%rbp)

0x531 mov -@x4(%rbp), %eax
0x534 pop %rbp
=) 0x535 retq
Oxd1c
0xd20
0xd28
% 0xd30 e Stack "top”
% 0xd38
5 Oxd40 0x830
3 oxas
Stack “bottom”
call stack
Registers Terminal:
%eax 0x28 $ /prog
%edi 1
%rsp 0xd30 Equivalent to:
%rbp 0xd40 pop %rip
%rip 0x55f

12. Now we execute the next instruction in %rip which is a call to the adder function. Y%rip is
automatically updated to the next address at 0x554, but since this is a callq instruction, we
first want to store this %rip into the stack so we can come back to it, and then update %rip to
the first instruction in adder, which is address 0x536.

0x542 <main>:

0x542 push %rbp Oxdie

0x543 mov %rsp, %rbp 0xd20

0x546 sub $ox1e, %rsp 0xd28 0x554 Lk Stack "top", retum address
5] (J

0xd30

Ox54a callqg ©x526 <assign>

== 0x55f callq ©x536 <adder> BT

Lower addresses

Ox554 mov %eax, -0x4(%rbp) Bk 0x830
0x557 mov -ex4(%rbp), %eax s
g Stack “bottom”
Ox55a mov %eax, %esi a:l 00:
call stac

Registers Terminal:

%eax 0x0 $ /prog

%edi 1

%rsp 0xd28

%rbp 0xd40

%rip 0x536

13. Since we are in the adder function, this creates a new stack frame and we must update %rbp.
Again, we don’t want to overwrite the base pointer of main, so we save it onto the stack by
pushing %rbp.

43/ 53]

Assembly

Muchang Bahng

Fall 2024

0x536 <adder

>

=) 0x536 push %rbp
0x537 mov %rsp, %rbp
0x53a mov $-ex4(%rbp), %eax
0x53d add $6x2, %eax
0x540 pop %rbp
0x541 retq
Registers
Y%eax 0x0
%edi 1
%rsp 0xd20
%rbp 0xd40
%rip 0x537

Oxd1c

l—— Stack "top"

return address

0xd20 oxd4e
0xd28 0x554
8 oxd3o
1%
£ oxd3s
o
5 0xdd0 ox830
3 oxas

Stack “bottom”

14. Then we update %rbp to the current stack pointer.

0x536 <adder
0x536 push

=) Ox537 mov
0x53a mov
0x53d add

>t
%rbp
%rsp, %rbp

$-0x4(%rbp), %eax

$0x2, %eax

0x540 pop %rbp

0x541 retq
Registers
Y%eax 0x0
%edi 1
%rsp 0xd20
%rbp 0xd20
%rip 0x53a

l—— Stack "top"

return address

call stack

Terminal:

$./prog

Oxd1c

0xd20 0xd4o

0xd28 0x554
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas

Stack “bottom”

call stack
Terminal:

$./prog

15. This part is a bit tricky. Note that the value of 0x28 still lives at 0xd1c, which is conveniently
at address -0x4 (%rbp). Therefore, when we call int a; in that corresponding line in adder,
we can actually add 2 to it, though it seems like there was no value assigned to it. This is just
a trick though. So, we can take these remnant value and store it into %eax.

44/ 65

Assembly

Muchang Bahng

Fall 2024

—)

0x536
0x536

0x537
ox53a
ox53d
ox540
ox541

<adder>:

push %rbp

mov %rsp, %rbp

mov $-0x4(%rbp), %eax

add $ox2, %eax

pop %rbp

retq
Registers
Y%eax 0x28
%edi 1
%rsp 0xd20
%rbp 0xd20
%rip 0x53d

16. We then add 2 to it.

—)

0x536
0x536

0x537
ox53a
ox53d
ox540
ox541

<adder>:

push %rbp

mov %rsp, %rbp

Using an old value on the stack!

mov $-0x4(%rbp), %eax

add $ox2, %eax

pop %rbp

retq
Registers
Y%eax 0x2A
%edi 1
%rsp 0xd20
%rbp 0xd20
%rip 0x540

Oxd1c

return address

0xd20 oxd4e
0xd28 0x554
8 oxd3o
1%
£ oxd3s
o
5 0xdd0 ox830
3 oxas

Stack “bottom”
call stack
Terminal:

$./prog

Oxd1c

return address

0xd20 oxd40
0xd28 ox554
8 oxd3o
1%
£ oxd3s
o
5 0xdd0 0x830
3 oxas

Stack “bottom”
call stack
Terminal:

$./prog

l—— Stack "top"

l—— Stack "top"

17. Now we are almost done, so we pop the base pointer of the main stack frame, at 0xd40, back

into %rbp.

45/ 53]

Assembly

Muchang Bahng

Fall 2024

0x536 <adder>:
0x536 push %rbp
0x537 mov %rsp, %rbp
0x53a mov $-ex4(%rbp), %eax
0x53d add $6x2, %eax
=) Ox540 pop %rbp
0x541 retq
Registers
Y%eax 0x2A
%edi 1
%rsp 0xd28
%rbp 0xd40
%rip 0x541

l—— Stack "top", return address

Oxd1c
0xd20
0xd28 0x554
8 oxd3o
n
£ oxd3s
o
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

18. We now return the value in %eax and pop the base pointer of the adder stack frame, which
simply updates the instruction pointer %rip back to the next instruction in main. This is
equivalent to pop %rip, which is equivalent to moving the stack pointer %rsp into %rip and
then shrinking the stack by 8 bytes subq $8, Yrsp.

0x536 <adder>:
0x536 push %rbp
0x537 mov
0x53a mov
0x53d add
0x540 pop %rbp
m) Ox541 retq

%rsp, %rbp
$-0x4(%rbp), %eax
$0x2, %eax

Registers

Y%eax 0x2A
%edi 1
%rsp 0xd30
%rbp 0xd40
%rip 0x554

Oxd1c
0xd20
0xd28
% 0xd30 e Stack "top”
% 0xd38
5 0xdd0 0x830
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

19. Now it is relatively straightforward since we do the rest in main (except for the print statement).
The current value in %eax represents the return value of adder. We want to put this in the
variable x, which we have already allocated some memory for right above the base pointer in
the main stack frame. We move it there. Note that right after, it places this right back into

46/ [53]

Assembly

Muchang Bahng

Fall 2024

Yeax.

0x542 <main>:
0x542 push
0x543 mov
0x546 sub
ox54a callq
Ox55f callq
== 0x554 mov

%rbp

%rsp, %rbp
$ox10, %rsp
0x526 <assign>
0x536 <adder>
%eax, -0x4(%rbp)

9x557 mov -ox4(%rbp), %eax
Ox55a mov %eax, %esi
Ox55c mov $0x400604, %edi
0x561 mov $0x0, %eax
0x566 callq <printf@plt>
0x56b mov $0x0, %eax
0x570 leaveq
Ox571 retq

Registers

%eax Ox2A

%edi 1

%rsp 0xd30

%rbp 0xd40

%rip 0x557

Oxd1c
0xd20
0xd28

l—— Stack "top"

8 oxd3o
£ oxasc ox2A
 owo|[ox8s30
3 oxas
Stack “bottom”
call stack
Terminal:
$./prog

20. the mov instruction at address 0x55a copies the value in %eax (or 0x2A) to register %esi, which
is the 32-bit component register associated with %rsi and typically stores the second parameter
to a function. We can see why since this will be put into a print statement, which is a function,

and x = %esi is the second argument of printf.

0x542 <main>:
0x542 push
0x543 mov
0x546 sub
ox54a callq
Ox55f callq

%rbp

%rsp, %rbp
$ox10, %rsp
0x526 <assign>
0x536 <adder>

l—— Stack "top"

Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax oxdte
=) Ox552 mov %eax, %esi el
Ox55c mov $0x400604, %edi ——
0x561 mov $0x0, %eax 2 oxd30
0x566 callq <printf@plt> £ s Bx2A
0x56b mov $ox0, %eax 2 0xd40 0x830
0x570 leaveq 2 s
0x571 retq - Stack “bottor”
call stack
egisies Terminal:
%eax 0x2A $./pr‘og
%edi 1
%rsp 0xd30
%rbp 0xd40
%rip 0x55c¢ %esi 0x2A

21. Now we want to retrieve the first argument of the print function. The address at $0x400604 is
some address in the code segment memory that holds the string "x is %d\n".

47/

Assembly

Muchang Bahng

Fall 2024

0x542 <main>:
0x542 push
0x543 mov
0x546 sub
ox54a callq
Ox55f callq

%rbp

%rsp, %rbp
$ox10, %rsp
0x526 <assign>
0x536 <adder>

l—— Stack "top"

l—— Stack "top"

Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax oxdte
Ox55a mov %eax, %esi oxd20
== Ox55C mov $0x400604, %edi oxd28
0x561 mov $0x0, %eax 2 oxd30
0x566 callq <printf@plt> 2 e o
0x56b mov $0x0, %eax 3 oxclo ST
0x570 leaveq 2 oxts
0x571 retq - Stack “bottom”
call stack
Registers Terminal:
Y%eax 0x2A $./prog
%edi 0x400604
%rsp 0xd30 Memory
%rbp 0xda0 0x400604 |”x is %d\n”
%rip 0x561 %esi 0x2A |
22. Then we move 0 into the %eax register to clear it.
0x542 <main>:
0x542 push %rbp
0x543 mov %rsp, %rbp
Ox546 sub $ox10, %rsp
ox54a callq ©x526 <assign>
ox55f callq ©x536 <adder>
Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax oxdte
Ox55a mov %eax, %esi oxd20
Ox55c mov $0x400604, %edi oxd28
=) OX561 mov $oxe, %eax 2 ovas0
0x566 callq <printf@plt> 2 e o
0x56b mov $0x0, %eax 3 oxclo ST
0x570 leaveq 2 oxts
0x571 retq - Stack “bottom”
call stack
Registers Terminal:
Y%eax 0x0 $./prog
%edi 0x400604
%rsp 0xd30 Memory
%rbp 0xd40 Does | “x is %d\n”
%rip 0x566 %esi 0x2A |

23. We then call the printf function, which we won’t trace through but it outputs to stdout.

48/ [55|

Assembly Muchang Bahng Fall 2024

0x542 <main>:

0x542 push %rbp

0x543 mov %rsp, %rbp
Ox546 sub $ox10, %rsp

ox54a callq ©x526 <assign>
ox55f callq ©x536 <adder>
Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax oxdte
Ox55a mov %eax, %esi 0xi20
Ox55c mov $0x400604, %edi oxdo8
0x561 mov $0x0, %eax 2 030 e Stack "top"
== 0x566 callq <printf@plt> 2 e VT
0x56b mov $0x0, %eax 2 oo e
0x570 leaveq 2 s
0x571 retq - Stack “bottorn”
call stack
RegEEm Terminal:
Y%eax 0x0 $./prog
%edi 0x400604 x is 42
%rsp 0xd30 Memory
%rbp 0xd40 0x400604 |”X is %d\n”
%rip 0x56b d%esi 0x2A | printf() is called with arguments

“x is %d\n” and 42.

24. The print function might have returned something, but we don’t care. We want to main function
to return 0, so we move 0 into %eax.

0x542 <main>:

0x542 push %rbp

0x543 mov %rsp, %rbp
Ox546 sub $ox10, %rsp

ox54a callq ©x526 <assign>
ox55f callq ©x536 <adder>
Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax oxdte
Ox55a mov %eax, %esi 0xi20
Ox55c mov $0x400604, %edi oxdo8
0x561 mov $0x0, %eax 2 030 e Stack "top"
0x566 callq <printf@plt> 2 e VT
== 0x56b mov $0x0, %eax 2 oo e
0x570 leaveq 2 s
0x571 retq - Stack “bottom”
call stack
RegEEm Terminal:
%eax 0x0 $./pr‘og
%edi 0x400604 x is 42
%rsp 0xd30
%rbp 0xd40
%rip 0x570

25. Finally we execute leaveq, which prepares the stack for returning from the function call. It
essentially moves the base pointer back to the stack pointer and then pops the base pointer off
the stack. The new ¥%rbp is the original base pointer of whatever was outside the main function,
0x830.

49/ 55|

Assembly

Muchang Bahng

Fall 2024

0x542 <main>:

0x542 push %rbp
0x543 mov %rsp, %rbp
Ox546 sub $ox10, %rsp
ox54a callq ©x526 <assign>
ox55f callq ©x536 <adder>
Ox554 mov %eax, -0x4(%rbp)
9x557 mov -ox4(%rbp), %eax
Ox55a mov %eax, %esi
Ox55c mov $0x400604, %edi
0x561 mov $0x0, %eax
0x566 callq <printf@plt>
0x56b mov $0x0, %eax
==) 0x570 leaveq

Ox571 retq

Registers

Y%eax 0x0

%edi 0x400604

%rsp 0xd4s

%rbp 0x830 m

%rip 0x571

Oxd1c
0xd20
0xd28
0xd30
0xd3c
0xd40

Lower addresses

0xd48 Stack "top"

Stack “bottom”
call stack
Terminal:

$./prog
X is 42

Equivalent to:

ov %rbp, %rsp

pop %rbp

26. Finally, we execute retq, which pops the return address off the stack and puts it into %rip.

We have omitted the details of caller and callee saved registers, but they do exist and are important for the
general implementations.

For arrays, there’s not anything new here. Let’s go over some code and follow through it.

2

for (i

}

6 return total;

1 int sumArray(int *array, int length) {
int i, total = 0;
0; i < length; i++) {
1 total += arrayl[il;

This function takes the address of an array and the length of it and sums up all the elements in the array.

1 0x400686
> 0x400687
5 0x40068a
+ 0x40068e
5 0x400691
s 0x400698
7 0x40069f
s 0x4006a1
o 0x4006a4
0x4006a6
0x4006ae
12 0x4006b2
13 0x4006b5
0x4006b7
15 0x4006ba
0x4006be

<+0>:
<+1>:
<+4>:
<+8>:

pus
mov
mov
mov

<+11>:
<+18>:
<+25>:
<+27>:
<+30>:
<+32>:
<+40>:
<+44>:
<+47>:
<+49>:
<+52>:
<+56>:

h %rbp
hrsp, hrbp

%rdi, -0x18(%rbp)
%hesi,-0x1c (%rbp)
$0x0, -0x4 (%rbp)
$0x0, -0x8 (%rbp)
0x4006be <sumArray+56>
-0x8 (%rbp) , heax

movl
movl
jmp
mov
cltq
lea
mov
add
mov
add
addl
mov

0x0(, %rax,4) ,%rdx
-0x18 (%rbp) , hrax
%rdx,%hrax

(%rax) ,heax
%heax, -0x4 (%rbp)
$0x1,-0x8 (%rbp)
-0x8 (%rbp) , heax

sav
upd
cop
cop
#

#
#
#
#

H OH H O B H R R HH

e %rbp

ate %rbp (new stack frame)

y array to %rbp-0x18

y length to %rbp-Oxlc

copy O to %rbp-0x4 (total)
copy O to %rbp-0x8 (i)

goto <sumArray+56>

copy i to %eax

convert i to a 64-bit integer
copy i*4 to Yrdx

copy array to %rax

compute array+i*4, store in %rax
copy arrayl[i] to Jeax

add jeax to total

add 1 to i (i+=1)

copy i to %eax

50/ 55|

Assembly Muchang Bahng Fall 2024
17 0x4006cl <+59>: cmp -Oxlc(%rbp),’%eax # compare i to length

15 0x4006c4 <+62>: jl1 0x4006al <sumArray+27> # if i<length goto <sumArray+27>

19 0x4006c6 <+64>: mov -0x4(%rbp),%eax # copy total to %eax

0 0x4006c9 <+67>: pop ‘rbp # prepare to leave the function

21 0x4006ca <+68>: retq # return total

51/ 55|

Assembly Muchang Bahng Fall 2024

6 x86 Control Flow

52/ 65|

Assembly Muchang Bahng Fall 2024

7 RISC-V Data Movement

53/ 55|

Assembly Muchang Bahng Fall 2024

8 RISC-V Arithmetic Operations

54/ 55|

Assembly Muchang Bahng Fall 2024

9 RISC-V Control Flow

55/ 55|

	ARM Data Movement
	Loading
	Arithmetic
	Logical Operations
	Assembling and Disassembling
	Directive

	ARM Arithmetic Operations
	ARM Control Flow
	x86 Data Movement
	Registers
	Addressing Modes

	x86 Arithmetic Operations
	x86 Control Flow
	RISC-V Data Movement
	RISC-V Arithmetic Operations
	RISC-V Control Flow

