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There are many assembly languages out there and various syntaxes. Intel syntax specifies memory operands
without any special prefixes. Square brackets [] are used to denote memory addresses. For example, mov
eax, [ebx] means move the contents of the memory location pointed to by ebx into eax. In AT&T syntax,
memory operands are denoted with parentheses () and include the % prefix for registers. An instruction
moving data from a memory location into a register might look like movl (%ebx), %eax, with additional
prefixes for immediate values and segment overrides. In here, we will talk about the three most popular
architectures.

Definition 0.1 (x86)

x86 Assembly is the assembly language for Intel and AMD processors using the x86 architecture.
Both AT&T and Intel syntax are available. Tools or environments often allow switching between the
two, with AT&T being the default in GNU tools like GDB.
The x86 architecture is a CISC architecture, which is the most common architecture for personal
computers. Here are important properties:

1. It is a complex instruction set computer (CISC) architecture, which means that it has a large
set of complex instructionsa.

2. Byte-addressing is enabled and words are stored in little-endian format.
3. In the x86_64 architecture, registers are 8 bytes long (and 4 bytes in x86_32) and there are 16

total general purpose registers, for a total of only 128 bytes (very small compared to many GB
of memory). Other special purpose registers are also documented in the wikipedia page, but it
is not fully documented.

ahttps://en.wikipedia.org/wiki/X86_instruction_listings

Definition 0.2 (ARM)

ARM Assembly is the assembly language for ARM processors. Has its own unique syntax, not
categorized as AT&T or Intel. ARM syntax is closely tied to its instruction set architecture and is
distinct from the x86 conventions. It is mainly in phones, tablets, laptops.

Definition 0.3 (RISC-V)

A debatable 4th mainstream one is the MIPs assembly, which is based off of the MIPS RISC archiecture
used in embedded systems such as digital home and networking equipment. Historically through, there are
many many more variants. PowerPC assembly is the assembly language for PowerPC processors. PowerPC
has its own syntax style, tailored to its architecture and instruction set, distinct from the AT&T and Intel
syntax models. 6502 Assembly is used in many early microcomputers and gaming consoles. Utilizes a syntax
unique to the 6502 processor, not following AT&T or Intel conventions. Z80 Assembly is associated with the
Z80 microprocessor, used in numerous computing devices in the late 20th century. Z80 assembly language
has its own syntax that does not adhere to AT&T or Intel syntax guidelines.

We begin with ARM64 because first, I use it on my Macbook M3, and second, ARM is usually simpler than
x86. 64-bit ARM is significantly different from 32-bit ARM since obviously the CPU registers are 64-bits
wide and perform 64-bit integer arithmetic.

Just like how memory addressing is different between 32 and 64 bit machines, CPUs also use these schemes.
While 32-bit processors have 232 possible addresses in their cache, it turns out that 64-bit processors have a
48-address space. This is because CPU manufacturers took a shortcut. They use an instruction set which
allows a full 64-bit address space, but current CPUs just only use the last 48-bits. The alternative was wasting
transistors on handling a bigger address space which wasn’t going to be needed for many years (since 48-bits
is about 256TB). Just a bit of history for you. Finally, just to briefly mention, the input/output device, as
the name suggests, processes inputs and displays outputs, which is how you can see what the program does.
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1 ARM Data Movement
At this point (assuming you are going through my computer science notes in order), we have encountered
our first lexical computer language. We aren’t just describing things with psuedocode like we did with
architecture, and we aren’t relying on hardware-like systems like circuits or Conway’s game of life here. This
extra level of abstraction is nice to work with, but in order to fully appreciate it, we must know how to
convert assembly into machine code. As we have seen, this is done in two steps.

1. Assemblers convert them into object files.

2. Linkers use a relocation table to convert them into executables, written in machine code.

This is essentially a translation from one language into another, and to do this, we might want to have some
organization in our code. Therefore, we divide .s files into sections. Furthermore, we might want to include
instructions that tell the assembler—not the CPU—how to process your code, analogous to preprocessing
text or tuning parameters for translation.

Both sections and directives have a period . at the front of their name, so you must tell them apart by
context.

Definition 1.1 (Section)

In order for assemblers and linkers to interpret your programs, we must organize them into sections.
Each section—specified by the distinctive . at the front of its name—specifies the following non-
exhaustive list of properties.

1. The read/write/executable permissions.
2. How data is initialized.

Example 1.1 (Must-Know Sections)

The main sections you should be familiar with are
1. .text (read+execute). This is where you write your code.
2. .data (read+write). This is where you store data and memory.
3. .rodata (read). Stores constant data that should not be modified during program execution.
4. .bss (read+write). Zero-initialized and stores uninitialized variables.

You can also create your own sections.

1.1 Loading
The first thing you should know about are registers. Here are the register conventions for ARM64.

Definition 1.2 (ARM64 Registers)

A 64-bit program on an ARM processor has access to 31-general purpose registers, a program counter,
and a stack pointer (aka a combination zero register).

1. X0 - X30. These 31 registers are general purpose. You can use them for anything you want,
though there are some standards.

2. SP, XZR. The link register. If you call a function, this register will be used to hold the return
address.

3. PC. Program counter. The memory address of the currently executing instruction.
All the X registers can be operated on as 32-bit registers by referring to them as W0–W30 and WZR.
When we do this, the instruction will use the lower 32 bits of the register and set the upper 32 bits
to zero. Using 32 bits saves memory, since you only use 4 bytes rather than 8 bytes for each quantity
saved. Some Apple specific things:

1. Apple reserves X18 for its own use. Do not use this register.
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2. The frame pointer register (FP, X29) must always address a valid frame record. This is for
backtraces.

Definition 1.3 (Data Movement Operations)

1 # Basic move operations
2 mov x0, x1 // Move register to register
3 mov x0, #42 // Move immediate to register
4

5 # Move with zero/not/keep
6 movz x0, #0x1234 // Move immediate, zero other bits
7 movn x0, #0x1234 // Move NOT of immediate
8

9 # Conditional moves (covered in logical section)
10 csel x0, x1, x2, eq // Conditional select
11 csinc x0, x1, x2, ne // Conditional select and increment
12

13 # Register to register with operations
14 sxtb x0, w1 // Sign extend byte to 64-bit
15 sxth x0, w1 // Sign extend halfword to 64-bit
16 sxtw x0, w1 // Sign extend word to 64-bit
17 uxtb w0, w1 // Zero extend byte to 32-bit
18 uxth w0, w1 // Zero extend halfword to 32-bit

Definition 1.4 (Exit Codes)

Exit codes are values that represent the status of a program upon termination. It is usually the
number residing in x0 and can take in value between 0 and 255, inclusive. Any other numbers will
be truncated to its 8 LSBs.

Definition 1.5 (Basic Load Operations)

1 ldr x0, [x1] // Load 64-bit from [x1]
2 ldr w0, [x1] // Load 32-bit from [x1]
3 ldrh w0, [x1] // Load 16-bit halfword (zero extend)
4 ldrb w0, [x1] // Load 8-bit byte (zero extend)
5

6 # Sign-extending loads
7 ldrsw x0, [x1] // Load 32-bit, sign extend to 64-bit
8 ldrsh x0, [x1] // Load 16-bit, sign extend to 64-bit
9 ldrsh w0, [x1] // Load 16-bit, sign extend to 32-bit

10 ldrsb x0, [x1] // Load 8-bit, sign extend to 64-bit
11 ldrsb w0, [x1] // Load 8-bit, sign extend to 32-bit

Definition 1.6 (Basic Store Operations)

1 str x0, [x1] // Store 64-bit to [x1]
2 str w0, [x1] // Store 32-bit to [x1]
3 strh w0, [x1] // Store 16-bit halfword to [x1]
4 strb w0, [x1] // Store 8-bit byte to [x1]
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Definition 1.7 (Addressing Modes)

1 # Immediate offset
2 ldr x0, [x1, #8] // Load from [x1 + 8]
3 str x0, [x1, #16] // Store to [x1 + 16]
4

5 # Register offset
6 ldr x0, [x1, x2] // Load from [x1 + x2]
7 ldr x0, [x1, x2, lsl #3] // Load from [x1 + (x2 << 3)]
8

9 # Pre-indexed (update base register before)
10 ldr x0, [x1, #8]! // x1 = x1 + 8, then load from [x1]
11 str x0, [x1, #-16]! // x1 = x1 - 16, then store to [x1]
12

13 # Post-indexed (update base register after)
14 ldr x0, [x1], #8 // Load from [x1], then x1 = x1 + 8
15 str x0, [x1], #16 // Store to [x1], then x1 = x1 + 16

Definition 1.8 (Pair Load/Store Operations)

1 # Load/store register pairs
2 ldp x0, x1, [x2] // Load pair: x0=[x2], x1=[x2+8]
3 stp x0, x1, [x2] // Store pair: [x2]=x0, [x2+8]=x1
4

5 # With immediate offset
6 ldp x0, x1, [x2, #16] // Load pair from [x2+16], [x2+24]
7 stp x0, x1, [x2, #32] // Store pair to [x2+32], [x2+40]
8

9 # Pre/post-indexed pairs
10 ldp x0, x1, [x2, #16]! // x2+=16, then load pair
11 stp x0, x1, [x2], #16 // Store pair, then x2+=16
12

13 # Mixed register sizes
14 ldp w0, w1, [x2] // Load 32-bit pair
15 stp w0, w1, [x2] // Store 32-bit pair

Definition 1.9 (Atomic and Exclusive Operations)

1 # Load/store exclusive
2 ldxr x0, [x1] // Load exclusive 64-bit
3 stxr w2, x0, [x1] // Store exclusive 64-bit (w2 = status)
4 ldxrh w0, [x1] // Load exclusive 16-bit
5 stxrh w2, w0, [x1] // Store exclusive 16-bit
6 ldxrb w0, [x1] // Load exclusive 8-bit
7 stxrb w2, w0, [x1] // Store exclusive 8-bit
8

9 # Clear exclusive monitor
10 clrex // Clear exclusive access monitor
11

12 # Load/store exclusive pairs
13 ldxp x0, x1, [x2] // Load exclusive pair
14 stxp w3, x0, x1, [x2] // Store exclusive pair (w3 = status)
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Definition 1.10 (PC-Relative Addressing)

1 # Address generation
2 adr x0, label // Load address of label (PC + offset)
3 adrp x0, label // Load page address of label
4

5 # PC-relative loads
6 ldr x0, =value // Load literal (assembler places in literal pool)
7 ldr x0, label // Load from label address
8

9 # Combined page + offset addressing
10 adrp x0, symbol@PAGE
11 add x0, x0, symbol@PAGEOFF
12 ldr x1, [x0] // Load from symbol

Definition 1.11 (Advanced Load/Store)

1 # Load with acquire, store with release (memory ordering)
2 ldar x0, [x1] # Load acquire
3 stlr x0, [x1] # Store release
4 ldarb w0, [x1] # Load acquire byte
5 stlrb w0, [x1] # Store release byte
6 ldarh w0, [x1] # Load acquire halfword
7 stlrh w0, [x1] # Store release halfword
8

9 # Prefetch operations
10 prfm pldl1keep, [x0] # Prefetch for load, L1 cache, keep
11 prfm pstl1strm, [x0, #64] # Prefetch for store, L1, streaming
12

13 # Non-temporal loads/stores
14 ldnp x0, x1, [x2] # Load pair non-temporal
15 stnp x0, x1, [x2] # Store pair non-temporal

1.2 Arithmetic

Definition 1.12 (Addition)

1 add x0, x1, x2 # x0 = x1 + x2 (64-bit)
2 add w0, w1, w2 # w0 = w1 + w2 (32-bit)
3 add x0, x1, #42 # x0 = x1 + 42 (immediate)
4 adds x0, x1, x2 # Add and set flags
5 adc x0, x1, x2 # Add with carry
6 adcs x0, x1, x2 # Add with carry and set flags

Definition 1.13 (Subtraction)

1 sub x0, x1, x2 # x0 = x1 - x2
2 sub w0, w1, w2 # 32-bit subtract
3 sub x0, x1, #42 # x0 = x1 - 42
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4 subs x0, x1, x2 # Subtract and set flags
5 sbc x0, x1, x2 # Subtract with carry
6 sbcs x0, x1, x2 # Subtract with carry and set flags
7 neg x0, x1 # x0 = -x1 (negate)
8 negs x0, x1 # Negate and set flags

Definition 1.14 (Multiplication)

1 mul x0, x1, x2 # x0 = x1 * x2 (low 64 bits)
2 smull x0, w1, w2 # Signed multiply 32 to 64 bit
3 umull x0, w1, w2 # Unsigned multiply 32 to 64 bit
4 smulh x0, x1, x2 # Signed multiply high (upper 64 bits)
5 umulh x0, x1, x2 # Unsigned multiply high
6 madd x0, x1, x2, x3 # x0 = x3 + (x1 * x2) (multiply-add)
7 msub x0, x1, x2, x3 # x0 = x3 - (x1 * x2) (multiply-subtract)

Definition 1.15 (Division)

1 sdiv x0, x1, x2 # x0 = x1 / x2 (signed)
2 udiv x0, x1, x2 # x0 = x1 / x2 (unsigned)

Definition 1.16 (Multiply-Accumulate)

1 madd x0, x1, x2, x3 # x0 = x3 + (x1 * x2)
2 msub x0, x1, x2, x3 # x0 = x3 - (x1 * x2)
3 smaddl x0, w1, w2, x3 # x0 = x3 + (w1 * w2) signed 32 to 64
4 smsubl x0, w1, w2, x3 # x0 = x3 - (w1 * w2) signed 32 to 64
5 umaddl x0, w1, w2, x3 # x0 = x3 + (w1 * w2) unsigned 32 to 64
6 umsubl x0, w1, w2, x3 # x0 = x3 - (w1 * w2) unsigned 32 to 64

Definition 1.17 (Bitwise Operations)

1 and x0, x1, x2 # Bitwise AND
2 orr x0, x1, x2 # Bitwise OR
3 eor x0, x1, x2 # Bitwise XOR (exclusive OR)
4 bic x0, x1, x2 # Bit clear (x0 = x1 & ~x2)
5 orn x0, x1, x2 # OR NOT (x0 = x1 | ~x2)
6 eon x0, x1, x2 # XOR NOT (x0 = x1 ^ ~x2)
7 mvn x0, x1 # Move NOT (x0 = ~x1)

Definition 1.18 (Shift Operations)

1 lsl x0, x1, #5 # Logical shift left by 5
2 lsr x0, x1, #3 # Logical shift right by 3
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3 asr x0, x1, #2 # Arithmetic shift right by 2
4 ror x0, x1, #4 # Rotate right by 4

Definition 1.19 (Combined Operations)

1 # Add with shifted register
2 add x0, x1, x2, lsl #3 # x0 = x1 + (x2 << 3)
3 sub x0, x1, x2, asr #2 # x0 = x1 - (x2 >> 2)
4

5 # Bitwise with shifted register
6 and x0, x1, x2, ror #4 # x0 = x1 & (x2 rotated right 4)
7 orr x0, x1, x2, lsl #1 # x0 = x1 | (x2 << 1)

Definition 1.20 (Comparison Operations)

1 cmp x1, x2 # Compare (sets flags, x1 - x2)
2 cmn x1, x2 # Compare negative (sets flags, x1 + x2)
3 tst x1, x2 # Test (sets flags, x1 & x2)

Definition 1.21 (Conditional Operations)

1 csel x0, x1, x2, eq # x0 = (condition) ? x1 : x2
2 csinc x0, x1, x2, ne # x0 = (condition) ? x1 : x2+1
3 csinv x0, x1, x2, gt # x0 = (condition) ? x1 : ~x2
4 csneg x0, x1, x2, lt # x0 = (condition) ? x1 : -x2

Definition 1.22 (Absolute Value and Min/Max)

1 # Using conditional select for abs(x1)
2 cmp x1, #0
3 csneg x0, x1, x1, ge # x0 = (x1 >= 0) ? x1 : -x1
4

5 # Min/max using conditional select
6 cmp x1, x2
7 csel x0, x1, x2, lt # x0 = min(x1, x2)
8 csel x0, x1, x2, gt # x0 = max(x1, x2)

Definition 1.23 (Increment/Decrement)

1 add x0, x0, #1 # Increment by 1
2 sub x0, x0, #1 # Decrement by 1
3 adds x0, x0, #1 # Increment and set flags
4 subs x0, x0, #1 # Decrement and set flags
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Definition 1.24 (Modulo Operation)

1 # x0 = x1 % x2 (signed) - No direct instruction
2 sdiv x3, x1, x2 # x3 = x1 / x2
3 msub x0, x3, x2, x1 # x0 = x1 - (x3 * x2)

Definition 1.25 (Power of 2 Operations)

1 # Multiply by power of 2
2 lsl x0, x1, #3 # x0 = x1 * 8 (2^3)
3

4 # Divide by power of 2
5 lsr x0, x1, #2 # x0 = x1 / 4 (unsigned)
6 asr x0, x1, #2 # x0 = x1 / 4 (signed)

1.3 Logical Operations

Definition 1.26 (Bit Field Operations)

1 sbfx x0, x1, #5, #8 # Signed bit field extract
2 ubfx x0, x1, #5, #8 # Unsigned bit field extract
3 sbfiz x0, x1, #5, #8 # Signed bit field insert zeros
4 ubfiz x0, x1, #5, #8 # Unsigned bit field insert zeros
5 bfi x0, x1, #5, #8 # Bit field insert
6 bfxil x0, x1, #5, #8 # Bit field extract and insert low

Definition 1.27 (Bit Manipulation)

1 rbit x0, x1 # Reverse bits
2 rev x0, x1 # Reverse bytes (64-bit)
3 rev32 x0, x1 # Reverse bytes in 32-bit words
4 rev16 x0, x1 # Reverse bytes in 16-bit halfwords
5 clz x0, x1 # Count leading zeros
6 cls x0, x1 # Count leading sign bits

Definition 1.28 (Advanced Logical Operations)

1 # Bitwise operations with immediates
2 and x0, x1, #0xFF00 # AND with immediate mask
3 orr x0, x1, #0x0F0F # OR with immediate mask
4 eor x0, x1, #0xAAAA # XOR with immediate mask
5

6 # Test and branch on bit
7 tbz x1, #5, label # Test bit zero and branch
8 tbnz x1, #5, label # Test bit non-zero and branch
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Definition 1.29 (Conditional Logic)

1 ccmp x1, x2, #0, eq # Conditional compare
2 ccmn x1, x2, #0, ne # Conditional compare negative
3 cset x0, eq # Conditional set (x0 = condition ? 1 : 0)
4 csetm x0, ne # Conditional set mask (x0 = condition ? -1 : 0)
5 cinc x0, x1, gt # Conditional increment
6 cinv x0, x1, lt # Conditional invert
7 cneg x0, x1, ge # Conditional negate

Definition 1.30 (Logical Shift Operations)

1 # Standalone shift operations
2 lsl x0, x1, x2 # Logical shift left by register
3 lsr x0, x1, x2 # Logical shift right by register
4 asr x0, x1, x2 # Arithmetic shift right by register
5 ror x0, x1, x2 # Rotate right by register
6

7 # Shift with immediate
8 lsl x0, x1, #5 # Logical shift left by immediate
9 lsr x0, x1, #3 # Logical shift right by immediate

10 asr x0, x1, #2 # Arithmetic shift right by immediate
11 ror x0, x1, #4 # Rotate right by immediate

Definition 1.31 (Pattern Operations)

1 # Extract and duplicate patterns
2 extr x0, x1, x2, #8 # Extract from register pair
3 dup v0.8b, w1 # Duplicate scalar to vector
4

5 # Bit pattern generation
6 movz x0, #0x1234 # Move with zero (clear other bits)
7 movn x0, #0x1234 # Move with NOT (invert pattern)
8 movk x0, #0x5678, lsl #16 # Move and keep (insert pattern)

1.4 Assembling and Disassembling

Definition 1.32 (Instruction Syntax)

Every ARM instruction—regardless of whether we’re in 32-bit or 64-bit ARM—can be fit into 32 bits
of memory. The fixed-length variable of this is good for speed.

31 30 29 28-24 23-22 21 20-16 15-10 9-5 4-0
Bits Opcode Set Condition Code Opcode Shift 0 Rm Imm Rn Rd

Figure 1: Instruction encoding format.

1. Bits. If this bit is 0, then any registers are interpreted as the 32-bit W version. If 1, then they
are the full 64-bit version of the register.a
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2. Opcode. which instruction are we performing, e.g. ADD or MUL.
3. Shift. These two bits specify shifting operations that could be applied to the data.
4. Set Condition Code. A single bit indicating if this instruction should update any condition

flags. If we don’t want the result of this instruction to affect following branch instructions, we
set it to 0.

5. Rm, Rn. Operand registers to use as input.
6. Rd. Destination register, i.e. where to put the result of whatever this instruction does.
7. Imm6. An immediate operand which is usually a small bit of data that you can specify directly

in the instruction. So, if you want to add 1 to a register, you could have this as 1, rather than
putting 1 in another register and adding the two registers. These are usually the bits left over
after everything else is specified.

aYou cannot mix W and Z bits in the same instruction!

A dump refers to a representation of the contents and structure of an object file or memory at a specific
point in time. Once a file is assembled it’s almost impossible to read. Fortunately, there are some nice shell
commands to help us.

Definition 1.33 (objdump)

Taken from the man pages, the objdump utility prints the contents of object files and final linked
images named on the command line.

1. -d, –disassemble. Disassemble all executable sections found in the input files. On some
architectures (AArch64, PowerPC, x86), all known instructions are disassembled by default.

2. -t, –syms. Display the symbol table.

Example 1.2 (objdump -d)

1 .text
2 .globl _main
3 _main:
4 mov x0, #0x1
5 b _exit

Figure 2
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1 > objdump -d hello
2

3 hello: file format mach-o arm64
4

5 Disassembly of section __TEXT,__text:
6

7 00000001000003c0 <_main>:
8 1000003c0: d2800020 mov x0, #0x1 ; =1
9 1000003c4: 14000001 b 0x1000003c8 <_exit+0x1000003c8>

10

11 Disassembly of section __TEXT,__stubs:
12

13 00000001000003c8 <__stubs>:
14 1000003c8: 90000030 adrp x16, 0x100004000 <_exit+0x100004000>
15 1000003cc: f9400210 ldr x16, [x16]
16 1000003d0: d61f0200 br x16

Figure 3

The mov command has the hex command d2800020, which translates in binary to

1 1101 0010 1000 0000 0000 0000 0010 0000

1. The first bit is 1, meaning use the 64-bit version of the registers, in this case X0 rather than
W0.

2. The third bit is 0, which means that this instruction doesn’t set any flags that would affect
conditional instructions.

3. The second bit combined with the fourth to ninth bits make up the opcode for this MOV
instruction. This is move wide immediate, meaning it contains a 16-bit immediate value.

4. The next 2 bits of 0 indicate there is no shift operation involved.
5. The next 16 bits are the immediate value which is 1.
6. The last 5 bits are the register to load. These are 0 since we are loading register X0.

Definition 1.34 (xxd)

Taken from the man pages, the xxd utility makes hex dump of a given file or standard input. It can
also convert a hex dump back to its original binary form.

1.5 Directive

Definition 1.35 (Directive)

A directive is an instruction to the assembler. It tells the assembler how to process your code, but
doesn’t generate machine instructions, making it like commands for the assembler and not the CPU.

1.

Example 1.3 (Symbol Control)

1 .globl _main // Make symbol globally visible
2 .local helper // Keep symbol local to this file
3 .extern _printf // Reference external symbol
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4 .weak _optional // Make symbol weakly defined

Example 1.4 (Data Creation)

1 .byte 0x42 // Create 1-byte value
2 .word 42 // Create 4-byte value
3 .quad 42 // Create 8-byte value
4 .asciz "hello" // Create null-terminated string
5 .ascii "hello" // Create string (no null terminator)
6 .space 64 // Reserve 64 bytes of space
7 .fill 10, 4, 0 // Fill 10 4-byte words with 0

Example 1.5 (Alignment)

1 .align 4 // Align to 4-byte boundary
2 .p2align 2 // Align to 2^2 = 4-byte boundary
3 .balign 16 // Align to 16-byte boundary

Example 1.6 (Section Control)

1 .text // Switch to code section
2 .data // Switch to data section
3 .bss // Switch to uninitialized data section
4 .section my_custom // Create/switch to custom section

Example 1.7 (Conditional Assembly)

1 .ifdef DEBUG
2 .asciz "Debug build"
3 .else
4 .asciz "Release build"
5 .endif

Example 1.8 (Macros)

1 .macro SAVE_REGS
2 stp x29, x30, [sp, #-16]!
3 mov x29, sp
4 .endm
5

6 # Usage:
7 _my_function:
8 SAVE_REGS // Expands to the macro content
9 // ... function body
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10 ret

Example 1.9 ()

1

2

Example 1.10 ()

1 # DIRECTIVES (instructions to assembler):
2 .globl _main # "Make this symbol global"
3 .align 4 # "Align the next thing to 4 bytes"
4 .asciz "hello" # "Create a null-terminated string here"
5

6 # INSTRUCTIONS (actual CPU operations):
7 mov x0, #42 # CPU instruction: move 42 into x0
8 bl _printf # CPU instruction: branch with link
9 ret # CPU instruction: return

You open up your text editor on an M1 Mac, and every assembly program should start with this.

1 .globl _main
2 _main:
3 ...
4 b _exit

.globl is an assembler directive that makes the symbol _main globally visible to the linker. This allows
other files/modules to reference this _main function. b _exit is a specific function that tell the program to
shut down.
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2 ARM Arithmetic Operations
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3 ARM Control Flow
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4 x86 Data Movement

Definition 4.1 (Data Types)

In x86,
1. A word refers to

4.1 Registers
The specific type of registers that are available to a CPU depends on the computer architecture, or more
specifically, the ISA, but here is a list of common ones for the x86-64. We have %rax, %rbx, %rcx, %rdx,
%rsi, %rdi, %rbp, %rsp, %r8, %r9, %r10, %r11, %r12, %r13, %r14, %r15. Therefore, the x86-64 Intel CPU
has a total of 16 registers for storing 64 bit data. However, it is important to know which registers are used
for what.

Definition 4.2 (Parameter Registers)

Compilers typically store the first six parameters of a function in registers

%rdi, %rsi, %rdx, %rcx, %r8, %r9, (1)

respectively.

Definition 4.3 (Return Register)

The return value of a function is stored in the

%rax (2)

register.

Definition 4.4 (Stack and Frame Pointers)

The %rsp register is the stack pointer, which points to the top of the stack. The %rbp register is the
frame pointer, or base pointer, which points to the base of the current stack frame. In a typical
function prologue, %rbp is set to the current stack pointer (%rsp) value, and then %rsp is adjusted
to allocate space for the local variables of the function. This establishes a fixed point of reference
(%rbp) for accessing those variables and parameters, even as the stack pointer (%rbp) moves.

Definition 4.5 (Instruction Pointer)

The %rip register is the instruction pointer, which points to the next instruction to be executed.
Unlike all the registers that we have shown so far, programs cannot write directly to %rip.

Definition 4.6 (Notation for Accessing Lower Bytes of Registers)

Sometimes, we need a more fine grained control of these registers, and x86-64 provides a way to access
the lower bits of the 64 bit registers. We can visualize them with the diagram below.
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Figure 4: The names that refer to subsets of register %rax.

A complete list is shown below.

64-bit Register 32-bit Register Lower 16 Bits Lower 8 Bits
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rdi %edi %di %dil
%rsi %esi %si %sil
%rsp %esp %sp %spl
%rbp %ebp %bp %bpl
%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

Table 1: Register mapping in x86-64 architecture

4.2 Addressing Modes

Example 4.1 (Immediate Addressing)

1 movq $0x4, %rax

Example 4.2 (Normal Addressing)

The following example shows the source operand being a memory address, with normal addressing,
and the destination operand being a register.

1 movq (%rax), %rbx
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Example 4.3 (Displacement Addressing)

The following example shows the source operand being a memory address and the destination operand
being a register. They are both addressed normally.

1 movq 8(%rdi), %rdx

Example 4.4 (Indexed Addressing)

The following shows the source operand being a memory address and the destination operand being
a register. Say that %rdx = 0xf000 and %rcx = 0x0100. Then

0x80(,%rdx,2) = Mem[2*0xF000 + 0x80] = Mem[0x1E080] (3)

We see that

1 movq 0x100(%rdi, %rsi, 8), %rdx
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5 x86 Arithmetic Operations

Definition 5.1 (Size Specifier)

In x86 assembly, the size specifier can be appended to this instruction mnemonic to specify the size
of the operands.

1. b (byte) for 1 byte
2. w (word) for 2 bytes
3. l (long) for 4 bytes
4. q (quad word) for 8 bytes

Note that due to backwards compatibility, word means 2 bytes in instruction names. Furthermore,
the maximum size is 8 bytes since that is the size of each register in x86_64.

Like higher level programming languages, we can perform operations, do comparisons, and jump to different
parts of the code. Instructions can be generally categorized into three types:

1. Data Movement: These instructions move data between memory and registers or between the reg-
istery and registery. Memory to memory transfer cannot be done with a single instruction.

1 %reg = Mem[address] # load data from memory into register
2 Mem[address] = %reg # store register data into memory

2. Arithmetic Operation: Perform arithmetic operation on register or memory data.

1 %reg = %reg + Mem[address] # add memory data to register
2 %reg = %reg - Mem[address] # subtract memory data from register
3 %reg = %reg * Mem[address] # multiply memory data to register
4 %reg = %reg / Mem[address] # divide memory data from register

3. Control Flow: What instruction to execute next.

1 jmp label # jump to label
2 je label # jump to label if equal
3 jne label # jump to label if not equal
4 jg label # jump to label if greater
5 jl label # jump to label if less
6 call label # call a function
7 ret # return from a function

Now unlike compiled languages, which are translated into machine code by a compiler, assembly code is
translated into machine code through a two-step process. First, we assemble the assembly code into an
object file by an assembler, and then we link the object file into an executable by a linker. Some common
assemblers are NASM (Netwide Assembler) and GAS/AS (GNU Assembler), and common linkers are ld
(GNU Linker) and lld (LLVM Linker), both installable with sudo pacman -S nasm ld.

Definition 5.2 (mov)

Let’s talk about the mov instruction. A good diagram to see is the following:

Parantheses indicate that we are using a pointer dereference.
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Definition 5.3 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

Definition 5.4 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Example 5.1 (Swap Function)

In gdb, we may have a function that swaps two integers.

1 swap:
2 movq (%rdi), %rax
3 movq (%rsi), %rdx
4 movq %rdx, (%rdi)
5 movq %rax, (%rsi)
6 ret

which is the assembly code for the following C code.

1 void swap(long *xp, long *yp) {
2 long t0 = *xp;
3 long t1 = *yp;
4 *xp = t1;
5 *yp = t0;
6 }

Let’s talk about moving instructions first.

Definition 5.5 (mov)

Let’s talk about the mov instruction which copies data from the source to the destination (the data
in the source still remains!) and has the syntax

mov_ src, dest (4)

1. The source can be a register (%rsi), a value ($0x4), or a memory address (0x4).
2. The destination can be a register or a memory address.
3. The _ is defined to be one of the size operands, which determine how big the data is. For

example, we can call movq to move 8 bytes of data (which turns about to be the maximum size
of a register).

A good diagram to see is the following:
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Even with just the mov instruction, we can look at a practical implementation of a C program in Assembly.

Example 5.2 (Swap Function)

Let us take a look at a function that swaps two integers. Let’s see what they do.
1. In C, we dereference both xp and yp (note that they are pointers to longs, so they store 8 bytes),

and assign these two values to two temporary variables. Then, we assign the value of yp to xp
and the value of xp to yp.

2. In Assembly, we first take the registers %rdi and %rsi, which are the 1st and 2nd arguments of
the function, dereference them with the parantheses, and store them in the temporary registers
%rax and %rdx. Then, we store the value of %rdx into the memory address of %rdi and the
value of %rax into the memory address of %rsi. Note that the input values (the actual of )

1 void swap(long *xp, long *yp) {
2 long t0 = *xp;
3 long t1 = *yp;
4 *xp = t1;
5 *yp = t0;
6 }

1 swap:
2 movq (%rdi), %rax
3 movq (%rsi), %rdx
4 movq %rdx, (%rdi)
5 movq %rax, (%rsi)
6 ret

Definition 5.6 (movz and movs)

The movz and movs instructions are used to move data from the source to the destination, but with
zero and sign extension, respectively. It is used to copy from a smaller source value to a larger
destination, with the syntax

movz__ src, dest

movs__ src, dest

where the first _ is the size of the source and the second _ is the size of the destination.
1. The source can be from a memory or register.
2. The destination must be a register.

Example 5.3 (Simple example with movz)

Take a look at the code below.

1 movzbq %al, %rbx

The %al represents the last byte of the %rax register. It is 1 byte long. The %rbx register is 8 bytes
long, so we can fill in the rest of the 7 bytes with zeros.

Example 5.4 (Harder example with movs)

Take a look at the code below.

1 movsbl (%rax), %ebx

You want to move the value at the memory address in %rax into %ebx. Since the source size is set to
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1 byte, you take that byte, say it is 0x80, from the memory, and then sign extend it (by a size of 4
bytes!) into %ebx. Note that therefore, the first four bytes of %rbx will not be affected since it’s not
a part of %ebx. An exception to this is that in x86-64, any instruction that generates a 32-bit long
word value for a register also sets the high-order 32 bits of the register to 0, so this ends up clearing
the first 4 bytes to 0.

Now we can talk about control transfer. Say that you have the following C and Assembly code.

1 int add(int x) {
2 return x + 2;
3 }
4

5 int main() {
6 int a = 2;
7 int b = add(a);
8 return 0;
9 }

1 add:
2 movq %rdi, %rax
3 addq $2, %rax
4 ret
5 main:
6 movq $3, $rdi
7 call add
8 movq $0, %rax
9 ret

Figure 5: A simple function.

If you go through the instructions, you see that in main, you first move $3 into the %rdi register. Then, you
call the add function, and within it you also have the %rdi register. This is a conflict in the register, and we
don’t want to simply overwrite the value of %rdi in the main function. Simply putting it to another register
isn’t a great idea since we can’t always guarantee that it will be free. Therefore, we must use the memory
itself.

Recall the stack, which we can think of as a giant array in which data gets pushed and popped in a last-in-
first-out manner. The stack is used to store data and return addresses, and is used to manage function calls.
Visually, we want to think of the elements getting pushed in from the bottom (upside down) towards lower
memory addresses.

Definition 5.7 (Stack Pointer)

Note that every time we want to push or pop something from the stack, we must know where to push
or pop it. This is where the stack pointer comes in. It is a special register that always points to
the top of the stack, and is used to keep track of the stack.

Definition 5.8 (Push and Pop)

The push and pop instructions are used to push and pop data onto and off the stack, respectively.

push_ src rsp = rsp - 8; Mem[rsp] = src

pop_ dest dest = Mem[rsp]; rsp = rsp + 8

1. When we push the source, we fetch the value at the source and store it at the memory address
pointed to by the stack pointer %rsp. Then, we decrement %rsp by 8.
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2. When we pop from the stack, we fetch the value at the memory address pointed to by the stack
pointer %rsp and store it in the destination. Then, we increment %rsp by 8.

Note that no matter what the size of the operand, we always subtract 8 from the stack pointer. This
is because the stack grows downwards, and we want to make sure that the next element is pushed
into the next available space.

Note that the register %rsp is the stack pointer, which points to the top of the stack. The stack is used to
store data and return addresses, and is used to manage function calls.

Definition 5.9 (Push and Pop)

The push and pop instructions are used to push and pop data onto and off the stack, respectively.

push_ src rsp = rsp - 8; Mem[rsp] = src

pop_ dest dest = Mem[rsp]; rsp = rsp + 8

The _ is a size operand, which determines how big the data is.

Definition 5.10 (Call and Ret)

The call instruction pushes the return address onto the stack and jumps to the function. The ret
instruction pops the return address from the stack and jumps to it.

We also talked about how there is instruction code that is even below the stack that is stored. This is where
all the machine code/assembly is stored, and we want to find out where we are currently at in this code.
This is done with the program counter.

Definition 5.11 (Program Counter, Instruction Pointer)

The program counter, or instruction pointer, is a special register rip that points to the current
instruction in the program. It is used to keep track of the next instruction to be executed.

Let’s go through one long example to see in detail how this is calculated.

Example 5.5 (Evaluating a Function)

Say that we have the following C code.

1 int adder2(int a) {
2 return a + 2;
3 }
4

5 int main() {
6 int x = 40;
7 x = adder2(x);
8 printf("x is: %d\n", x);
9 return 0;

10 }

When we compile this program, we can view its full assembly code by calling objdump -d a.out.
The output is quite long, so we will focus on the instruction for the adder2 function.
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1 0000000000400526 <adder2>:
2 400526: 55 push %rbp
3 400527: 48 89 e5 mov %rsp,%rbp
4 40052a: 89 7d fc mov %edi,-0x4(%rbp)
5 40052d: 8b 45 fc mov -0x4(%rbp),%eax
6 400530: 83 c0 02 add $0x2,%eax
7 400533: 5d pop %rbp
8 400534: c3 retq

Figure 6: The output of objdump for the adder2 function. The leftmost column represents the addresses
(in hex) of where the actual instructions lie. The second column represents the machine code that is being
executed. The third column represents the assembly code.

Note some things. Since adder2 is taking in an integer input value, we want to load it into the lower
32 bits (4 bytes) of the %rdi register, which is the first parameter. So we use %edi. Likewise for the
return value, we want to output an int so we use %eax rather than %rax. Let’s go through some of
the steps.

1. By the time we get into calling adder2, we can take a look at the relevant registers.

(a) First, the %eax is filled with garbage, which are leftovers from previous programs that
haven’t been overwritten yet.

(b) Second, the %edi=0x28 since we have set x=40 in main, before calling adder2, so it lingers
on.

(c) %rsp=0xd28 since that is where the top of the stack is.
(d) %rbp=0xd40
(e) %rip=0x526 since that is where we are currently at in our instruction (we are about to do

it, but haven’t done it yet).
2. When we execute the first line of code, we simply push the value at %rbp into the stack. The

top of the stack gets decremeneted by 8 and the value at %rbp is stored there. This means that
the top of the stack is at %rsp=0xd20 and the next instruction will be at %rip=0x527.
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3. The reason we have pushed %rbp onto the stack is that we want to save it before it gets
overwritten by this next execution. We basically move the value of %rsp into %rbp, and the
%rip advances to the next instruction. %rip moves to the next instruction.

4. Now we want to take our first argument %edi and store it in memory. Note that since this is 4
bytes, we can move this value into memory that is 4 bytes below the stack (-0x4(%rbp)). Note
that the storing the value of %edi into memory doesn’t affect the stack pointer %rsp. As far as
the program is concerned, the top of this stack is still address 0xd20.

5. The next instruction simply goes into memory 4 bytes below the stack pointer, takes the value
there, and stores it into %eax. This is the value of %edi that we just stored. This may seem
redundant since we are making a round trip to memory and back to ultimately move the value
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of %edi into %eax, but compilers are not smart and just follow these instructions.

6. Finally, we add the value $0x2 to %eax and store it back into %eax.

7. Finally, we pop the value at the top of the stack and store it into %rbp. Note that this is not
the value 0x28. It is simply the value that is stored at %rsp=0xd20, which is (%rsp)=0xd40.

8. Finally, we return the value with retq.

Note that the final values in the registers %rsp and %rip are 0xd28 and 0x534, respectively, which are the
same values as when the function started executing! This is normal and expected behavior with the call
stack, which just stores temporary variable sand data of each function as it executes a program. Once a
function completes executing, the stack returns to the state it was in prior to the function call. Therefore,
it is common to see the following two instructions at the beginning of a function:
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1 push %rbp
2 mov %rsp, %rbp

and the following two at the end of a function

1 pop %rbp
2 retq

Now arithemtic operations are quite simple.

Definition 5.12 (Add, Subtract, Multiply)

The add and sub instructions are used to add and subtract data from the destination.

add_ src, dest dest = dest + src

sub_ src, dest dest = dest - src

The imul instruction is used to multiply data between the source and destination and store it in the
destination.

imul_ src, dest dest = dest * src

Again the _ is a size operand, which determines how big the data is.

Definition 5.13 (Increment, Decrement)

The inc and dec instructions are used to increment and decrement the value in the destination.

inc_ dest dest = dest + 1

dec_ dest dest = dest - 1

Definition 5.14 (Negative)

The neg instruction is used to negate the value in the destination.

neg_ dest dest = -dest

Example 5.6 (Basic Arithmetic Function)

The following represents the same program in C and in assembly. Let’s go through each one:
1. In C, we first initialize a = 4, then b = 8, add them together to get c, and then return c.
2. In Assembly, we move the value 4 to the %rax register, then move the value 8 to the %rbx

register, add the two values together to store it into %rax, and then return the value in the %rax
register.

1 int main() {
2 int a = 4, b = 8;
3 int c = a + b;
4 return c;
5 }

1 main:
2 movq $4, %rax
3 movq $8, %rbx
4 addq %rbx, %rax
5 ret

It is slightly different in Assembly since rather than storing 4 in some intermediate register, we
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immediately store it in the return register. In a way it is more optimized, and this is what the
compiler does for you so that as few registers are used.

A shorthand way to do this is with lea, which stands for load effective address.

Definition 5.15 (Load Effective Address)

The lea instruction is used to load the effective address of the source into the destination. For now,
we will focus on the arithmetic operations that it can do

lea_ (src1, src2), dest dest = src1 + src2

lea_ (src1, src2, scale), dest dest = src1 + src2*scale

lea_ const(src1, src2), dest dest = src1 + src2 + const

lea_ const(src1, src2, scale), dest dest = src1 + src2*scale + const

This is useful for doing arithmetic operations on the address of a variable.

Definition 5.16 (Bitwise)

The and, or, xor, and not instructions are used to perform bitwise operations on the source and
destination.

and src, dest dest = dest & src

or src, dest dest = dest | src

xor src, dest dest = dest ŝrc

neg dest dest = -dest

not dest dest = ∼dest

Definition 5.17 (Arithmetic and Logical Bit Shift)

The sal arithmetic instruction is used to shift the bits of the destination to the left by the number
of bits specified in the source. The shr instruction is used to shift the bits of the destination to the
right by the number of bits specified in the source.

sal src, dest dest = dest « src

shr src, dest dest = dest » src

The sar instruction is used to shift the bits of the destination to the right by the number of bits
specified in the source, and fill the leftmost bits with the sign bit. The shl instruction is used to
shift the bits of the destination to the left by the number of bits specified in the source, and fill the
rightmost bits with zeros.

sar src, dest dest = dest » src

shl src, dest dest = dest « src

Example 5.7 (Harder Arithmetic Example)

The following two codes are equivalent.
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1 long arith(long x, long y, long z) {
2 long t1 = x + y;
3 long t2 = z + t1;
4 long t3 = x + 4;
5 long t4 = y * 48;
6 long t5 = t3 + t4;
7 long rval = t2 * t5;
8 return rval;
9 }

10 .
11 .
12 .
13 .
14 .

1 arith:
2 # rax/t1 = x + y
3 leaq (%rdi, %rsi), %rax
4 # rax/t2 = z + t1
5 addq %rdx, %rax
6 #rdx = 3 * y
7 leaq (%rsi, %rsi, 2), %rdx
8 #rdx/t4 = (3*y) * 16
9 salq $4, %rdx

10 #rcx/t5 = x + t4 + 4
11 leaq 4(%rdi, %rdi), %rcx
12 # rax/rval = t5 * t2
13 imulq %rcx, %rax
14 ret

The final thing in our list is condition codes.

Sometimes, we want to move (really copy) some value to another register if some condition is met. This is
where we use conditional moves. These conditions are met by the flags register, which is a special register
that stores the status of the last operation. It is the value of these flags that determine whether all future
conditional statements are met in assembly.

Definition 5.18 (Condition Code Flags)

The flags register in the x86 CPU keeps 4 condition code flag bits internally. Think of these as status
flags that are implicitly set by the most recent arithmetic operation (think of it as side effects). Note
that condition codes are NOT set by lea or mov instructions!

1. Zero Flag: if the last operation resulted in a zero value.
2. Sign Flag: if the last operation resulted in a negative value (i.e. the most significant bit is 1).
3. Overflow Flag: if the last operation resulted in a signed overflow.
4. Carry Flag: if the last operation resulted in a carry out of the most significant bit, i.e. an

unsigned overflow.
Every operation may or may not changes these flags to test for zero or nonzero, positive or negative,
or overflow conditions, and combinations of these flags express the full range of conditions and cases,
e.g. for signed and unsigned values.

Example 5.8 (Zero Flag)

If the code below was just run, then ZF would be set to 1.

1 movq $2, %rax
2 subq $2, %rax

Example 5.9 (Sign Flag)

If the code below was just run, then SF would be set to 1.

1 movq $2, %rax
2 subq $4, %rax
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Example 5.10 (Overflow Flag)

If either code below was just run, then OF would be set to 1.

1 movq $0x7fffffffffffffff, %rax
2 addq $1, %rax

1 movq 0x8000000000000000, %rax
2 addq 0xffffffffffffffff, %rax

This is because in the left in signed arithmetic, we have a positive + positive = negative (result is
0x8000000000000000), which is a signed overflow. Furthermore, in the right we have negative +
negative = positive (result is 0x7fffffffffffffff).

Example 5.11 (Carry Flag)

If the code below was just run, then CF would be set to 1.

1 movq $0xffffffffffffffff, %rax
2 addq $1, %rax

This is because the result is 0x0, which is a carry out of the most significant bit and an unsigned
overflow.

It would be tedious to always set these flags manually, so there are two methods that can be used to explicitly
set these flags.

Definition 5.19 (Compare)

The cmp instruction is used to perform a subtraction between the source and destination, and set
the flags accordingly, but it does not store the result.

cmp_ src, dest dest - src

The following flags are set if the conditions are met:
1. ZF = 1 if dest == src
2. SF = 1 if dest < src (MSB is 1)
3. OF = 1 if signed overflow
4. CF = 1 if unsigned overflow

Definition 5.20 (Test)

The test instruction is used to perform a bitwise AND operation between the source and destination,
and set the flags accordingly.

test_ src, dest dest & src

The following flags are set if the conditions are met. Note that you can’t have carry out (CF) or
overflow (OF) if these flags are set.

1. ZF = 1 if dest & src == 0
2. SF = 1 if dest & src < 0 (MSB is 1)

Example 5.12 (Compare)

Assuming that %al = 0x80 and %bl = 0x81, which flags are set when we execute cmpb %al, %bl?
Well we must first compute

%bl - %al = 0x81 - 0x80 = 0x81 + ∼ 0x80 + 1 = 0x81 + 0x7F + 1 = 0x101 = 0x01 (5)
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1. CF=1 since the result is greater than 0xFF (i.e. larger than byte)
2. ZF=0 since the result is not 0
3. SF=0 since the MSB is 0, i.e. there is unsigned overflow
4. OF=0 since there is no signed overflow

For conditional moves and jumps later shown, it basically uses these explicit sets and always compares them
to 0. We will see what this means later.

Finally, we can actually set a byte in a register to 1 or 0 based on the value of a flag.

Definition 5.21 (Set)

We can then talk about conditional moves and jumps.

Definition 5.22 (Equality with 0)

The test instruction is used to perform a bitwise AND operation between the source and destination,
and set the flags accordingly.

test_ src, dest dest & src

The sete instruction is used to set the destination to 1 if the zero flag is set, and 0 otherwise.

sete_ dest dest = (ZF == 1) ? 1 : 0

The cmovne instruction is used to move the source to the destination if the zero flag is not set.

cmovne_ src, dest dest = (ZF == 0) ? src : dest

Definition 5.23 (Jump)

There are several jump instructions, but essentially they are used to jump to another part of the
code. We can use the following mnemonic to jump to a label.

Letter Word
j jump
n not
e equal
s signed
g greater (signed interpretation)
l less (signed interpretation)
a above (unsigned interpretation)
b below (unsigned interpretation)

Table 2: Letter to Word Mapping

Figure 7: Mnemonic for Jump Instructions

For completeness, we include all the jump instructions.
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Signed Comparison Unsigned Comparison Description
je (jz) jump if equal (==) or jump if zero
jne (jnz) jump if not equal (!=)
js jump if negative
jns jump if non-negative
jg (jnle) ja (jnbe) jump if greater (>)
jge (jnl) jae (jnb) jump if greater than or equal (>=)
jl (jnge) jb (jnae) jump if less (<)
jle (jng) jbe (jna) jump if less than or equal (<=)

Table 3: Comparison Instructions in Assembly

Figure 8: All jump instructions

Definition 5.24 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

Definition 5.25 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Now we can have a basic idea of how if statements can be used as a sequence of conditionals and jump
operators. Let’s first look at the goto version of C.

Definition 5.26 (Goto Syntax)

The goto version processes instructions sequentially as long as there is no jump. This is useful because
compilers translating code into assembly designate a jump when a condition is true. Contrast this
behavior with the structure of an if statement, where a "jump" (to the else) occurs when conditions
are not true. The goto form captures this difference in logic.

1 int getSmallest(int x, int y) {
2 int smallest;
3 if ( x > y ) { //if (conditional)
4 smallest = y; //then statement
5 }
6 else {
7 smallest = x; //else statement
8 }
9 return smallest;

10 }
11 .
12 .
13 .
14 .
15 .

1 int getSmallest(int x, int y) {
2 int smallest;
3

4 if (x <= y ) { //if (!conditional)
5 goto else_statement;
6 }
7 smallest = y; //then statement
8 goto done;
9

10 else_statement:
11 smallest = x; //else statement
12

13 done:
14 return smallest;
15 }

Figure 9: C vs GoTo code of the same function. While GoTo code allows us to view C more like assmebly, it is
generally not readable and is not considered best practice.
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Now let’s see how if statements are implemented by taking a look at this function straight up in assembly.

1 int getSmallest(int x, int y) {
2 int smallest;
3 if ( x > y ) { //if (conditional)
4 smallest = y; //then statement
5 }
6 else {
7 smallest = x; //else statement
8 }
9 return smallest;

10 }
11 .

1 Dump of assembler code for function getSmallest:
2 0x40059a <+4>: mov %edi,-0x14(%rbp)
3 0x40059d <+7>: mov %esi,-0x18(%rbp)
4 0x4005a0 <+10>: mov -0x14(%rbp),%eax
5 0x4005a3 <+13>: cmp -0x18(%rbp),%eax
6 0x4005a6 <+16>: jle 0x4005b0 <getSmallest+26>
7 0x4005a8 <+18>: mov -0x18(%rbp),%eax
8 0x4005ae <+24>: jmp 0x4005b9 <getSmallest+35>
9 0x4005b0 <+26>: mov -0x14(%rbp),%eax

10 0x4005b9 <+35>: pop %rbp
11 0x4005ba <+36>: retq

Figure 10: Assembly code of a simple if statement

Again, note that since we are working with int types, the respective parameter registers are %edi and %esi,
the respective lower 32-bits of the registers %rdi and %rsi. Let’s walk through this again.

1. The first mov instruction copies the value located in register %edi (the first parameter, x) and places it
at memory location %rbp-0x14 on the call stack. The instruction pointer (%rip) is set to the address
of the next instruction, or 0x40059d.

2. The second mov instruction copies the value located in register %esi (the second parameter, y) and
places it at memory location %rbp-0x18 on the call stack. The instruction pointer (%rip) updates to
point to the address of the next instruction, or 0x4005a0.

3. The third mov instruction copies x to register %eax. Register %rip updates to point to the address of
the next instruction in sequence.

4. The cmp instruction compares the value at location %rbp-0x18 (the second parameter, y) to x and sets
appropriate condition code flag registers. Register %rip advances to the address of the next instruction,
or 0x4005a6.

5. The jle instruction at address 0x4005a6 indicates that if x is less than or equal to y, the next instruction
that should execute should be at location <getSmallest+26> and that %rip should be set to address
0x4005b0. Otherwise, %rip is set to the next instruction in sequence, or 0x4005a8.

With the cmov instruction, this can be a lot shorter. With the gcc compiler with level 1 optimizations turned
on, we can see that a lot of redundancies are turned off.

1 <getSmallest>:
2 0x400546 <+0>: cmp %esi,%edi #compare x and y
3 0x400548 <+2>: mov %esi,%eax #copy y to %eax
4 0x40054a <+4>: cmovle %edi,%eax #if (x<=y) copy x to %eax
5 0x40054d <+7>: retq #return %eax

Figure 11: Compiled with gcc -01 -o getSmallest getSmallest.c

Like if statements, loops in assembly can be implementing using jump functions that revisit some instruction
address based on the result on an evaluated condition. Let’s take a look at a basic loop function.
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1 int sumUp(int n) {
2 int total = 0;
3 int i = 1;
4

5 while (i <= n) {
6 total += i;
7 i++;
8 }
9 return total;

10 }
11 .
12 .
13 .
14 .
15 .
16 .

1 Dump of assembler code for function sumUp:
2 0x400526 <+0>: push %rbp
3 0x400527 <+1>: mov %rsp,%rbp
4 0x40052a <+4>: mov %edi,-0x14(%rbp)
5 0x40052d <+7>: mov $0x0,-0x8(%rbp)
6 0x400534 <+14>: mov $0x1,-0x4(%rbp)
7 0x40053b <+21>: jmp 0x400547 <sumUp+33>
8 0x40053d <+23>: mov -0x4(%rbp),%eax
9 0x400540 <+26>: add %eax,-0x8(%rbp)

10 0x400543 <+29>: add $0x1,-0x4(%rbp)
11 0x400547 <+33>: mov -0x4(%rbp),%eax
12 0x40054a <+36>: cmp -0x14(%rbp),%eax
13 0x40054d <+39>: jle 0x40053d <sumUp+23>
14 0x40054f <+41>: mov -0x8(%rbp),%eax
15 0x400552 <+44>: pop %rbp
16 0x400553 <+45>: retq

Figure 12: Simple loop function in C and assembly.

Finally, we want to let the reader know the convention of calle and caller saved registers. The compiler tries
to pick these registers, and by convention in x86, we have the following.

Figure 13: Caller save and callee save registers.

So far, we’ve traced through simple functions in assembly. In this section, we discuss the interaction between
multiple functions in assembly in the context of a larger program. We also introduce some new instructions
involved with function management.

Definition 5.27 (Leave)

The leave instruction is used to deallocate the current stack frame. For example, the leaveq instruc-
tion is a shorthand that the compiler uses to restore the stack and frame pointers as it prepares to
leave a function. When the callee function finishes execution, leaveq ensures that the frame pointer
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is restored to its previous value. It is equivalent to the following two instructions:

leaveq movq %rbp, %rsp

popq %rbp

Definition 5.28 (Call and Return)

The call instruction is used to call a function and the ret to return from a function. The callq
and retq instructions play a prominent role in the process where one function calls another. Both
instructions modify the instruction pointer (register %rip).

1. When the caller function executes the callq instruction, the current value of %rip is saved on
the stack to represent the return address, or the program address at which the caller resumes
executing once the callee function finishes. The callq instruction also replaces the value of %rip
with the address of the callee function.

callq addr <fname> push %rip

mov addr, %rip

2. The retq instruction restores the value of %rip to the value saved on the stack, ensuring that
the program resumes execution at the program address specified in the caller function. Any
value returned by the callee is stored in %rax or one of its component registers (e.g., %eax).
The retq instruction is usually the last instruction that executes in any function.

retq pop %rip

Let’s work through an example to solidify our knowledge.

Example 5.13 (Calling Functions in Assembly)

Let’s take the following code and trace through main.
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1 #include <stdio.h>
2

3 int assign(void) {
4 int y = 40;
5 return y;
6 }
7

8 int adder(void) {
9 int a;

10 return a + 2;
11 }
12

13 int main(void) {
14 int x;
15 assign();
16 x = adder();
17 printf("x is:

%d\n", x);
18 return 0;
19 }
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .

1 0000000000400526 <assign>:
2 400526: 55 push %rbp
3 400527: 48 89 e5 mov %rsp,%rbp
4 40052a: c7 45 fc 28 00 00 00 movl $0x28,-0x4(%rbp)
5 400531: 8b 45 fc mov -0x4(%rbp),%eax
6 400534: 5d pop %rbp
7 400535: c3 retq
8

9 0000000000400536 <adder>:
10 400536: 55 push %rbp
11 400537: 48 89 e5 mov %rsp,%rbp
12 40053a: 8b 45 fc mov -0x4(%rbp),%eax
13 40053d: 83 c0 02 add $0x2,%eax
14 400540: 5d pop %rbp
15 400541: c3 retq
16

17 0000000000400542 <main>:
18 400542: 55 push %rbp
19 400543: 48 89 e5 mov %rsp,%rbp
20 400546: 48 83 ec 10 sub $0x10,%rsp
21 40054a: e8 e3 ff ff ff callq 400526 <assign>
22 40054f: e8 d2 ff ff ff callq 400536 <adder>
23 400554: 89 45 fc mov %eax,-0x4(%rbp)
24 400557: 8b 45 fc mov -0x4(%rbp),%eax
25 40055a: 89 c6 mov %eax,%esi
26 40055c: bf 04 06 40 00 mov $0x400604,%edi
27 400561: b8 00 00 00 00 mov $0x0,%eax
28 400566: e8 95 fe ff ff callq 400400

<printf@plt>
29 40056b: b8 00 00 00 00 mov $0x0,%eax
30 400570: c9 leaveq
31 400571: c3 retq

Figure 14: C code and its assembly equivalent. Main function calls two other functions.

Let’s trace through what happens here in detail. This will be long.
1. %rbp is the base pointer that is initialized to something. Before we even begin main, say that

we have the following initializations, where %eax, %edi is garbage. %rsp denotes where on the
stack we are right before calling to main, %rbp is the base pointer to the current program, and
%rip should be the address of the first instruction in main. Again since we work with integers
we use the lower 32-bits of the registers. %rip now points to the next instruction.
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2. Now we start the main function. By calling main, the base pointer %rbp of the stack outside
of the main frame will be overwritten by the base of the main stack frame, so we must save it
for when main is done. Therefore, we push it onto the stack where %rsp is pointing. %rip now
points to the next instruction.

3. Then we actually change the location of the base pointer to the top of the stack, which now
includes the first instruction in main.
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4. Now we manually change the stack pointer and have it grow by two bytes (0x10). Therefore,
%rsp is decremented by 0x10 and %rip points to the next instruction at 0x54a.

5. Now the next instruction pointed at by %rip is the callq instruction, which tells to go to the
address of the assign function. We by default first update %rip to point to the next instruction
at 0x55f. However, this should not be the actual next instruction that we execute since we are
calling another function. Rather, we want to update %rip to address 0x526 where assign is
located at, but after completion we also want to know that we want to execute the instruction
after it at address 0x55f. Therefore, we should save address 0x55f onto the stack and then
update %rip to point to 0x526. This is what we refer to as a return address.
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6. %rip is incremented to the next address. We step into the assign function, which is now a
new stack frame, so the first thing we do is save the base pointer of the main stack frame onto
the stack since we must immediately update it with the base pointer of the assign stack frame,
which is where %rsp is pointing to.

7. %rip is incremented to the next address. We then update the base pointer to the top of the
stack.
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8. Now we want to move the number 0x28 (40) into the memory location -0x4(%rbp) of the stack,
which is 4 bytes above the frame pointer, which is also the stack pointer. It is common that
the frame pointer is used to reference locations on the stack. Note that this does not update
the stack pointer.

9. Now we take the same address where we stored 0x28 to and move it into %eax, effectively
loading 40 onto the return value.
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10. We see that we will return this value soon, but before we do, we want to make sure that when
the assign stack frame gets deleted (not really, but overwritten), we want to restore the base
pointer of the main stack frame. We have already saved this before at %rsp, which hasn’t
changed since we only worked with displacements from the base pointer. We retrieve the main
stack pointer data and load it back into %rbp. Note that this increments %rsp by 8 bytes,
shrinking the stack, and we are technically out of the assign stack frame.

11. Note that at this point, since %rbp was popped off, the next value that is at the top of the stack
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is the address %rip that we store earlier, which points to the next execution in main. When
retq executes, this value at the top of the stack is popped into %rip, allowing main to continue
executing within the main stack frame. Note that the return value is stored in %eax.

12. Now we execute the next instruction in %rip which is a call to the adder function. %rip is
automatically updated to the next address at 0x554, but since this is a callq instruction, we
first want to store this %rip into the stack so we can come back to it, and then update %rip to
the first instruction in adder, which is address 0x536.

13. Since we are in the adder function, this creates a new stack frame and we must update %rbp.
Again, we don’t want to overwrite the base pointer of main, so we save it onto the stack by
pushing %rbp.
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14. Then we update %rbp to the current stack pointer.

15. This part is a bit tricky. Note that the value of 0x28 still lives at 0xd1c, which is conveniently
at address -0x4(%rbp). Therefore, when we call int a; in that corresponding line in adder,
we can actually add 2 to it, though it seems like there was no value assigned to it. This is just
a trick though. So, we can take these remnant value and store it into %eax.
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16. We then add 2 to it.

17. Now we are almost done, so we pop the base pointer of the main stack frame, at 0xd40, back
into %rbp.
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18. We now return the value in %eax and pop the base pointer of the adder stack frame, which
simply updates the instruction pointer %rip back to the next instruction in main. This is
equivalent to pop %rip, which is equivalent to moving the stack pointer %rsp into %rip and
then shrinking the stack by 8 bytes subq $8, %rsp.

19. Now it is relatively straightforward since we do the rest in main (except for the print statement).
The current value in %eax represents the return value of adder. We want to put this in the
variable x, which we have already allocated some memory for right above the base pointer in
the main stack frame. We move it there. Note that right after, it places this right back into
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%eax.

20. the mov instruction at address 0x55a copies the value in %eax (or 0x2A) to register %esi, which
is the 32-bit component register associated with %rsi and typically stores the second parameter
to a function. We can see why since this will be put into a print statement, which is a function,
and x = %esi is the second argument of printf.

21. Now we want to retrieve the first argument of the print function. The address at $0x400604 is
some address in the code segment memory that holds the string "x is %d\n".
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22. Then we move 0 into the %eax register to clear it.

23. We then call the printf function, which we won’t trace through but it outputs to stdout.
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24. The print function might have returned something, but we don’t care. We want to main function
to return 0, so we move 0 into %eax.

25. Finally we execute leaveq, which prepares the stack for returning from the function call. It
essentially moves the base pointer back to the stack pointer and then pops the base pointer off
the stack. The new %rbp is the original base pointer of whatever was outside the main function,
0x830.
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26. Finally, we execute retq, which pops the return address off the stack and puts it into %rip.

We have omitted the details of caller and callee saved registers, but they do exist and are important for the
general implementations.

For arrays, there’s not anything new here. Let’s go over some code and follow through it.

1 int sumArray(int *array, int length) {
2 int i, total = 0;
3 for (i = 0; i < length; i++) {
4 total += array[i];
5 }
6 return total;
7 }

This function takes the address of an array and the length of it and sums up all the elements in the array.

1 0x400686 <+0>: push %rbp # save %rbp
2 0x400687 <+1>: mov %rsp,%rbp # update %rbp (new stack frame)
3 0x40068a <+4>: mov %rdi,-0x18(%rbp) # copy array to %rbp-0x18
4 0x40068e <+8>: mov %esi,-0x1c(%rbp) # copy length to %rbp-0x1c
5 0x400691 <+11>: movl $0x0,-0x4(%rbp) # copy 0 to %rbp-0x4 (total)
6 0x400698 <+18>: movl $0x0,-0x8(%rbp) # copy 0 to %rbp-0x8 (i)
7 0x40069f <+25>: jmp 0x4006be <sumArray+56> # goto <sumArray+56>
8 0x4006a1 <+27>: mov -0x8(%rbp),%eax # copy i to %eax
9 0x4006a4 <+30>: cltq # convert i to a 64-bit integer

10 0x4006a6 <+32>: lea 0x0(,%rax,4),%rdx # copy i*4 to %rdx
11 0x4006ae <+40>: mov -0x18(%rbp),%rax # copy array to %rax
12 0x4006b2 <+44>: add %rdx,%rax # compute array+i*4, store in %rax
13 0x4006b5 <+47>: mov (%rax),%eax # copy array[i] to %eax
14 0x4006b7 <+49>: add %eax,-0x4(%rbp) # add %eax to total
15 0x4006ba <+52>: addl $0x1,-0x8(%rbp) # add 1 to i (i+=1)
16 0x4006be <+56>: mov -0x8(%rbp),%eax # copy i to %eax
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17 0x4006c1 <+59>: cmp -0x1c(%rbp),%eax # compare i to length
18 0x4006c4 <+62>: jl 0x4006a1 <sumArray+27> # if i<length goto <sumArray+27>
19 0x4006c6 <+64>: mov -0x4(%rbp),%eax # copy total to %eax
20 0x4006c9 <+67>: pop %rbp # prepare to leave the function
21 0x4006ca <+68>: retq # return total
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6 x86 Control Flow
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7 RISC-V Data Movement
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8 RISC-V Arithmetic Operations
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9 RISC-V Control Flow
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