
Computer Architecture Muchang Bahng Spring 2024

Computer Architecture

Muchang Bahng

Spring 2024

Contents
1 Transistors 4

1.1 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Implementation of NAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Propagation Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Sequential Chips 7
2.1 SR Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Level and Edge Triggered D-Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Flip Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Binary Encodings 26
3.1 Naturals/Unsigned and Integers/Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Arithmetic Operations on Binary Numbers . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Rationals and Countable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 ISO-10646, UCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Unicode, UTF-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Representation of General Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Combinational Logic 41
4.1 Multi-Bit Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Arithmetic Logical Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Memory Banks 50
5.1 Data Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Fetching and Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Hardware Description Languages 53
6.1 Structural and Behavioral Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1/ 90



Computer Architecture Muchang Bahng Spring 2024

6.2 Test Benching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Instruction Sets 59
7.1 Data Movement Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Arithmetic and Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Code and Data Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Stack Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.5 Heap Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.6 Assembling and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Caches 77
8.1 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3 Direct Mapped Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4 N way Set-Associative Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.5 Cache Misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Input Output 85
9.1 IO Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 IO Buses and Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3 Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.4 Device Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Disk 87
10.1 Expanding on von Neumann Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2 Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2/ 90



Computer Architecture Muchang Bahng Spring 2024

Now that we have learned the theory behind computer science, we will begin to start building a computer from
scratch, and the hardware (and low level software) design of the computer is within the realm of computer
architecture. Starting from the lowest levels allow you to both understand completely the abstractions and
appreciate what they do for you.

We should start with transistors, which allows you to then physically implement basic logic gates. This then
gives us a sequence of bits to work with, and to create meaningful representations, we define encoding schemes
on them. Then, these can then be used to do Boolean arithmetic and logical operations (e.g. conditionals),
which unlocks our first component of the CPU: the ALU. We must still figure out how to simulate volatile
and non-volatile storage, which allows us to define registers and memory. Finally, we wish to define a very
tiny language of instructions—called the instruction set architecture—that the CPU can understand. This
allows the MMU to also interact with the memory.

Definition 0.1 (Instruction Set Architecture)

The instruction set architecture (ISA) of a CPU is a description of what it can do. Its scope
covers the following.

1. What instructions it can execute, such as bit-length, decoding, and number of operations.
2. The performance vs power efficiency.

Example 0.1 ()

ISAs can be classified into two types.
1. The complex instruction set computer (CISC) is characterized by a large set of complex

instructions, which can execute a variety of low-level operations. This approach aims to reduce
the number of instructions per program, attempting to achieve higher efficiency by perform-
ing more operations with fewer instructions. An example is x86, which is the most common
architecture for personal computers.

2. The reduced instruction set computer (RISC) emphasizes simplicity and efficiency with a
smaller number of instructions that are generally simpler and more uniform in size and format.
This approach facilitates faster instruction execution and easier pipelining, with the philosophy
that simpler instructions can provide greater performance when optimized. Some examples are
the ARM and RISC-V architectures.

The actual method in which a given ISA is implemented in a processor is called the microarchitecture.

Definition 0.2 (Microarchitecture)

The microarchitecture.

3/ 90



Computer Architecture Muchang Bahng Spring 2024

1 Transistors
Note that computation is an abstract notion (a process) that is distinct from its physical implementations
(how the progress is run). While most modern computing devices are obtained by mapping logical gates to
semiconductor-based transistors, throughout history people have computed using a huge variety of mecha-
nisms, including mechanical systems, gas and liquid (known as fluidics), biological and chemical processes,
and even living creatures.

Example 1.1 (Biological Computing)

Computation can be based on biological or chemical systems. For example the lac-operon produces
the enzymes needed to digest lactose only if the conditions x∧(¬y) hold, where x is “lactose is present”
and y is “glucose is present.”

Example 1.2 (Cellular Automata and the Game of Life)

Cellular automata is a model of a system composed of a sequence of cells, each of which can have
a finite state. At each step, a cell updates its state based on the states of its neighboring cells and
some simple rules. As we will discuss later in this book, cellular automata such as Conway’s Game
of Life can be used to simulate computation gates.

Example 1.3 (Neural Network)

Another computation device is the brain. Even though the exact working of the brain is still not fully
understood, one common mathematical model for it is a (very large) neural network. A neural
network can be thought of as a circuit that—instead of AND/OR/NOT—uses other gates as the basic
basis. One particular basis we can use are threshold gates, which exist through action potentials n
neurons. Approximations of this simulation have been made through artificial netural networks: For
every vector w ∈ Rk, t ∈ Z, the threshold function corresponding to w, t is the function

Tw,t : {0, 1}k −→ {0, 1}, Tw,t(x) = 1 iff ⟨w, x⟩ ≥ t (1)

where ⟨·, ·⟩ represents the dot product. To a first approximation, a neuron has k inputs and a single
output, and the neurons “fires” or “turns on” its output when those signals pass some threshold.

A transistor can be thought of as an electric circuit with two inputs, known as the source and the gate and
an output, known as the sink. The gate controls whether current flows from the source to the sink. In a
standard transistor, if the gate is “ON” then current can flow from the source to the sink and if it is “OFF”
then it can’t. In a complementary transistor this is reversed: if the gate is “OFF” then current can flow from
the source to the sink and if it is “ON” then it can’t.

We can use transistors to implement various Boolean functions such as and AND, OR, and NOT. For each
a two-input gate G : {0, 1}2 −→ {0, 1}, such an implementation would be a system with two input wires
x, y and one output wire z, such that if we identify high—as in passes a threshold voltage—voltage with
1 and low voltage with 0, then the wire z will equal to 1 if and only if applying G to the values of the wires
x and y is 1.

1.1 Semiconductors
Okay, basic electronic construction and physics. Some substances are able to easily gain or lose electrons.
These allow electricity to flow well, as electrical current is simply electrons moving around. These are
"conductors." Other substances are highly resistant to gaining or losing electrons, which means they do not
allow electricity to flow well. These are called "insulators."

There is a third kind of substance that falls in between them, that holds on to its electrons harder than

4/ 90



Computer Architecture Muchang Bahng Spring 2024

conductors but not as hard as insulators. They are called "semiconductors," of which silicon is the most
important one.

Since everything that happens here is on the atomic level, it is very easy to make transistors on the small
scale. A mechanical switch with copper contacts would have to be much larger than a transistor. Copper is
a conductor, one of the best ones we have, so electrons can jump from one contact to another over a "decent
distance." A gap of a couple millimeters is enough to break the circuit, but compared to transistors, that’s
a massive gulf. Plus, you need something to mechanically move the contacts. Usually an electromagnet is
used. Put an electromagnet in a formation that it will cause contacts to open or close when the magnet is
energized, and you have a "relay." That’s what we used before transistors, and are often used today, though
we no longer use them for "thinking" in electronics.

But with semiconductors, they can change from being a conductor to being an insulator very easily. The
trick is to add just the right amount of impurities in just the right structure. This is called "doping," and
in the world of electronics, it’s a good thing. All it takes is a single atom to switch a properly doped piece
of silicon from an insulator to conductor and back again. Plus the process is purely electronic. There are no
moving parts, so no mechanical components are needed. All you need to do is apply an electrical current to
the third leg of a transistor, and the other two legs will go from "open" to "closed." Once the current on the
third leg stops, the transistor "opens" again and electricity can’t pass through.

You want semiconductors since.

You first make silicon wafers.

1.2 Doping

1.3 Implementation of NAND
We have seen in our theoretical computer science notes that the NAND gate is universal, and we have
implemented it with transistors in the previous chapter. Therefore using syntactic sugar, we can apply the
rest of the elementary gates. The common unary and binary logic gates are listed below as a refresher.

(a) AND Gate (b) OR Gate (c) NOT Gate

(d) NAND Gate (e) NOR Gate (f) XOR Gate

Figure 1: Common Logic Gates

1.4 Propagation Delay
We have described everything as if it were instantaneous, but it is not. The electric current—the flow of
charge carriers like electrons—travels quite slowly at the speed of millimeters per second. This is called
the drift velocity of electrons in a conductor. The electromagnetic field/signal that propagates through the
circuit travels much faster—typically at 50-99% of the speed of light, depending on the material and circuit
geometry.

1.5 Clocks
Analog clocks. Digital clocks. You need an RLC circuit to make a clock, falstad. Its supposed to be
consistent, so not really logical. Diode.

5/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 1.1 (Clock)

The master clock in a computer is an oscillator that alternates continuously between two phases—
labeled 0/1, low/high,. tick/tock, etc.

1. The elapsed time between the beginning of 0 and the end of 1 is called a cycle, which models
one discrete time unit.

2. The current clock phase refers to whether it is 0 or 1 now. Using the hardware circuitry, the
signal is simultaneously broadcast to every sequential chip throughout the computer platform.

6/ 90



Computer Architecture Muchang Bahng Spring 2024

2 Sequential Chips
Now that we know how the NAND gate—and therefore every other fundamental gate—works, and we have
constructed the clock, the next natural step is to be able to store a string of bits.1 Computers must be
equipped with memory elements that can preserve data over time. These memory elements are built from
sequential chips.

2.1 SR Latches
Ideally, we would like a way to store a bit in memory, and this can be done by cross-coupling gates with each
other, forming a sort of positive feedback.Therefore, given a certain signal into our circuit which we call a
latch, the outputs remain locked—or “latched”—into a state.

Definition 2.1 (SR Latch)

The set-reset (SR) latch is a circuit that stores 1-bit memory. This is based on pulses and we do
not care about the duration of a signal. That is, if we activate a signal to inputs S,R at any point
in time, then the output Q will remain locked in some state, even after the input signal disappears.

The SR latch—like all electronic circuits—require power to work, labeled with S and R. The output is really
just Q, but we can add redundancy by making the inverse Q available as well. There are two implementations
of an SRlatch, which have symmetric behaviors.

Theorem 2.1 (Active High SR Latch)

A NOR SR latch can be implemented in the following circuit below, with its corresponding truth
table.

S

R

Q

Q

(a) Circuit diagram.

S R Q Q
0 0 1 0

0 1
0 1 0 1
1 0 1 0
1 1 0 0

(b) Truth table.

Figure 2: XOR SR Latch. This is

Setting both R = S = 1 would result in an invalid state since they would attempt to turn Q back
and forth between 0 and 1, giving us a race condition.

1Most courses teach combinational logic first and then sequential, but this may not be the most optimal dependency sequence
for two reasons. We can indeed do arithmetic without memory by directly applying an electric current to the input wires in
a circuit, but this severely limits the computation that we can do. We would essentially have to do everything in “one shot”
and immediately collect the results. While this is fine for addition, I cannot introduce an efficient schema of multiplication
without knowing how to bit-shift, which is dependent on some form of memory. On a broader scale, almost all algorithms we
worked with require some memory at some point, so memory may be more fundamental than computation. Thanks the Phillip
Williams for talking with me on this!

7/ 90



Computer Architecture Muchang Bahng Spring 2024

S

R

Q

Q

(a)

S

R

Q

Q

(b)

Figure 3: Two possible initial states. The default state is R = 0, S = 0, which are both low states, and Q
may be either 0 or 1.

If one of R or S is set to a high state, the latch is activated, and hence this is called an active high
SR latch. Note that regardless of what the previous state the latch was in, the output signals are
completely determined.

S

R

Q

Q

(a) If we send a signal R = 1, then Q = 0, and even if we
reset R = 0, Q is still locked at 0.

S

R

Q

Q

(b) If we send a signal S = 1, then Q = 1, and even if
reset S = 0, Q is still locked at 1.

Figure 4

Now unlike the active high latches which are activated when the current is 1, active low latches are activated
when the current is 0.

Theorem 2.2 (Active Low SR Latch)

A NAND SR latch can be implemented in the following circuit below, with its corresponding truth
table.

S

R

Q

Q

(a) Circuit diagram.

S R Q Q
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 1

1 0

(b) Truth table.

Figure 5: NAND SR Latch

Setting both R = S = 0 would result in an invalid state since they would attempt to turn Q back
and forth between 0 and 1, giving us a race condition.

8/ 90



Computer Architecture Muchang Bahng Spring 2024

S

R

Q

Q

(a)

S

R

Q

Q

(b)

Figure 6: The default state is R = 1, S = 1, i.e. they are both high states, and Q may be either 0 or 1. This
is known as an active low SR latch.

If one of R or S is set to a low state, the latch is activated, and hence this is called an active low
SR latch. Note that regardless of what the previous state the latch was in, the output signals are
completely determined.

S

R

Q

Q

(a)

S

R

Q

Q

(b)

Figure 7: If we send a signal S = 0, then Q = 0, and even if reset S = 1, Q is still locked at 0.

These signals may be noisy, and we might want more control over whether a latch can change states, i.e its
transparency. This is done by adding an extra gate that explicitly tells us when the latch can change states.

Definition 2.2 (Gated SR Latch)

A gated SR latch is an SR latch that can only change state when it is enabled. This enabling is
done with an additional 2 NAND gates, and so the SR latch is enabled only when E = 1.

E

S

R

Q

Q

(a) Gated XOR SR Latch.

E

S

R

Q

Q

(b) Gated NAND SR Latch.

Figure 8: Note that if E = 0, then the output of the leftmost two NAND gates will be 1 no matter what, and
so the values of R,S does not have any effect.

Example 2.1 (Active High Gated SR Latch)

By keeping track of the voltages in the wires of interest and running them across a common time
axis, we can visualize this circuit in action. Note that in here, we assume that electric current is
instantaneous, resulting in the familiar square waves. Let’s look at an active high SR latch.

9/ 90



Computer Architecture Muchang Bahng Spring 2024

S

R

E

Q

Figure 9: In here the gate is always enabled as E = 1 always. In the beginning S = 1 causing Q = 1, and
this does not change until R = 1, at which point Q = 0. Note that the second pulse of S does not affect the
state because it is already Q = 1. Soon after S = 1 again, causing Q = 1 and when R = 1 Q = 0.

S

R

E

Q

Figure 10: Now we toggle E on and off throughout. We can start off by filling in all the places where E = 1,
where we want Q to basically copy S. At every other place, we just continue what the state Q was in.

2.2 Level and Edge Triggered D-Latches
Note that we still have the problem of invalid signals. For example, if there was an instance that at the same
clock time a signal of S = 1, R = 1 (on either an ungated latch or a gated latch with E = 1), then both Q
and Q will be 1, which will cause both to be 0, and then 1, and so on. This causes a race condition, which
leads to unpredictable behavior.

E

D Q

Q

Figure 11

It turns out that we can simplify this circuit, making it cheaper to produce while still behaving identically.
This gives us the D-latch.

10/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 2.3 (Level Triggered D-Latch)

The (gated) data latch (D-latch), also called a clocked D-latch, gives us more control over
storing a 1-bit in memory.

CLK Q

D Q

D Latch

D

E

Q

Q

E D Q Q

0 0 Qprev Qprev

0 1 Qprev Qprev

1 0 0 1
1 1 1 0

Figure 12: Chip notation and truth table of a D latch. Note that when E = 0, the latch simply outputs the
previously stored element Q = Qprev.

E

R Q

Q

(a) Gated XOR SR Latch.

E

R Q

Q

(b) Gated NAND SR Latch.

Figure 13

Example 2.2 (Level Triggered D-Latch)

The essence of the behavior is the output follows the input while E is enabled.

D

E

Q

Figure 14: Again, we just let the result Q follow the input D whenever E = 1,and continue the rest for when
E = 0.

Therefore, if we want to store a bit of information, we set E = 1, collect that bit from D, and then set E = 0
to latch it in place. This behavior is quite stable for storing 1-bit, but we need more control when storing a
multi-bit buffer, where we need several D-latches working in tandem. The general idea is that if we have a
multi-bit buffer, we want a set of D-latches to be enabled and disabled at once.

11/ 90



Computer Architecture Muchang Bahng Spring 2024

D
Q

E

D
Q

E

D
Q

E

clock

Figure 15: Multiple D-latches enabled and disabled by some external source. The system clock would be a good
candidate.

Therefore, given the system clock, our waveforms would look like this.

D

E

Q

Figure 16: E is connected to a clock that ocsillates at regular intervals.

This is still not a perfect solution for synchronizing some components. Depending on the frequency of the
clock, E may be high for as long at 50 microseconds. That’s a long time for the data latch to be open to
changes in D. For some applications, particularly those where the outputs are fed back to the inputs, we
can avoid disorder and noise from D by drastically limiting the amount of time E is open during each clock
cycle.

But simply increasing the frequency of the clock isn’t a practical solution, given that a computer contains
a mixture of fast and slow components. A more clever solution is to only allow changes to the latch when
the clock input E is changing from low to high. Due to propagation delay, this is indeed a feasible solution
since the waveforms are not truly square waves.

Definition 2.4 (Rising, Falling Edge)

The period when a signal
1. changes from 0 to 1 is called the rising edge.
2. changes from 1 to 0 is called the falling edge.

This usually takes a few nanoseconds.

12/ 90



Computer Architecture Muchang Bahng Spring 2024

E

Figure 17: Rising edges are in red, falling edges in blue.

As a summary, for level-triggered (transparent) latches, we have active high and active low. Analogously, for
edge-triggered latches, we have rising edge and falling edge. We want to build a D-latch that will respond
to changes in D at the rising edge, with subsequent changes in D being ignored until the next rising edge.

(a) By default the input current is 0, and
so the top input of the AND gate is 0 and
the bottom is 1.

(b) If the electric current of 1 travels
through the input wire, the top AND in-
put becomes 1. There is a small delay
where the current does not reach the out-
put of the NOT gate, so the output is 1.

(c) The signal goes through the NOT
gate, turning the AND output back to
0.

Figure 18: An edge detection device. Note that if we want to delay the signal even further, we can put an arbitrary
amount of NAND gates.

We take this idea to build an edge detection device.

Definition 2.5 (Edge Detection Device)

This is a rising edge detection device. Note that depending on many factors, like manufacturing,
temperature, etc., there may not be a long enough delay to actually detect an edge, and in this case
you can just add more (odd number of ) NOT gates

(a) Positive edge triggered detection device. (b) Negative edge triggered detection device.

Figure 19

It has the following waveform.

Figure 20: The clock cycle (top). Positive edge detection device (middle). Negative edge detection device
(bottom).

Now if we combine our D latch with the edge detection device, we change it from a level-triggered device to
an edge-triggered device. Since we are using a clock as our trigger, we also call this a pulse D-latch.

13/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 2.6 (Edge-Triggered D-Latch, Pulse Latch)

An edge-triggered D-latch, also known as a pulse D-latch,a is a D-latch that is enabled on the
rising edge of a clock cycle.

Q

D Q

Figure 21: A clocked D latch. Note that the triangle is used to indicate that the clock is inputted.

CLK

R Q

Q

Figure 22

aOften, edge-triggered latches are in general referred to as a flip flop, but we will distinguish that a bit later.

Example 2.3 (Edge-Triggered D-Latch Waveforms)

D

E

Q

Figure 23: Again, we just let the result Q follow the input D whenever E = 1,and continue the rest for when
E = 0.

Definition 2.7 (Set-Reset Inputs)

Another enhancement we can make is to have an option to manually set the latch to be either Q = 1
or 0, independent of the clock. This gives us the pulse D-latch, which allows us to initialize it
unconditionally.

14/ 90



Computer Architecture Muchang Bahng Spring 2024

CLK Q

D Q
SET

RST

Figure 24: D latch with asynchronous set/reset.

The implementation is to simply add extra inputs after the NAND gates.

CLK

R Q

Q

SET

RESET

Figure 25

This gives us a reliable device for storing 1 bit of memory. It is enabled and disabled by a clock signal, and
used in registers, memory circuits, and counters as we will see later.

2.3 Flip Flops
So far, we have considered various mechanisms that allowed for greater control of a latch, along with robust-
ness to noise. Now we revisit the final problem of attempting to coordinate a group of latches, where timing
is a fundamental consideration. Just like the conductor of an orchestra, the clock sets the timing and the
pace of everything in the computer, which consists of both fast and slow moving parts.

15/ 90



Computer Architecture Muchang Bahng Spring 2024

clock

Q

D Q

Q

D Q

Q

D Q

Figure 26

Ideally, to synchronize the setting of these latches we’d make all of the inputs the way we want them to
be while the clock signal is low. Then, when the clock signal becomes high, these input values would be
transmitted to the latches and their values stored.

But unwanted fluctuations—known as glitches—can occur on the data lines because of propagation delays
and even noise. Conceivably, we can have a situation in which our latches haven’t had enough time to
achieve their correct values before the clock pulse ends. It is crucial that these inputs are allowed to settle
into their correct values while the clock signal is high. This is because there is a different circuit ready to
make iemmediate use of the data in the register, even perhaps during the very next clock cycle. The outputs
of these latches have to be stable before they are sampled. The data in this register must be accurate before
something else reads it. Otherwise, we would have complete garbage outputs.

We could try to avoid the problem caused by glitches by speeding up the clock, allowing less time for them
to matter, but we also have to allow time for the components to do their jobs. We have to cater for their
propagation delays. If a clock is running too quickly, some components won’t be able to keep up.

We can also make circuits less susceptible to glitches by building edge-triggered devices like pulse latches,
but the rising edge of a clock cycle is only in the order of a few nanoseconds, and even with very careful
design, there might not be enough time for everything to keep pace. Therefore, the clock period must be so
that all of the other circuits have time to stabilize during the same high phase of the same clock cycle.

Ultimately, if all circuits in a computer work on the basis that only one signal change per clock cycle matters,
then their behavior can be coordinate reliably. One way that we can ensure that this is the case is to build
a memory device that is immune to glitches, called the master-slave D-type flip-flop. With this, we can
precisely control the moment at which a group of them will change state.

Definition 2.8 (Master-Slave D-Type Flip Flop)

The master-slave D-Type flip-flop (DFF) consists of two active-high gated latches. The left
portion, called the master, is a gated D-latch. The right portion, called the slave, is a gated SR latch
that takes the output of the master as its input and is enabled by the inverse of the clock signal.
Taken together, the data and the clock inputs enable to the DFF to implement the time-based
behavior

out(t) = in(t− 1) (2)

That is, the DFF outputs the input value from the previous time unit.

16/ 90



Computer Architecture Muchang Bahng Spring 2024

Q

QCLK

D

Figure 27: The master reads the input value D when the clock signal is high (or more specifically, the rising
edge of the clock cycle) and latches onto it. Meanwhile, the slave is disabled, so the new output from the flip
flop is not available just yet.

Q

QCLK

D

Figure 28: When the clock cycle falls to low, the slave is enabled, making this an edge triggered device. Data
is passed from the master to the slave and is therefore available at the output.

Essentially a DFF is analogous to an airlock consisting of two doors that can never be both open at the same
time. The flip flop is never open so an input signal cannot pass straight through like a regular D latch. The
output of the flip flop occurs during the next phase of the same clock cycle.

Example 2.4 (Waveforms of DFF)

Let’s look at an example where a regular D latch would be insufficient, but a DFF fixes the problem.
Note that Qm behaves just like a D-latch since it is.

1. t = 2. C has a rising edge and D = 0, so Qm = 0.
2. t = 5. D has become high, presumably because we want the output at Qm to go high. But

because C = 0, this doesn’t happen just yet, and the master is still latched in a low state.
3. t = 6. When C = 1, Qm reacts immediately to follow D, and so it becomes high.
4. t = 8. When C goes low again, D is high and so is Qm, and so the master is latched in a high

state.
5. t = 9. D goes low again, presumably because we want to change the state of the master latch

back to low again. But because C is low, Qm does not follow.
6. t = 10. When C goes high, Qm immediately goes low.
7. t = 11. We can see D changing again while the clock is high. Suppose that a completely

different circuit depended on the output of Qm being low. Since Qm was both low and then
high in the same high clock cycle, the circuit might have missed its chance to read from Qm.
We want to avoid this, and ideally, we want to (1) set the value of D before the clock goes high,
and (2) not have D change in the middle of a clock high cycle.

8. t = 12. Now C is low, and the master is latched in a high state.
9. t = 22. We can see that the value of D is changing again during a high phase of the clock

cycle—another glitch.
If we take a look at the output of the slave Qs, which follows Qm since the master’s output is the

17/ 90



Computer Architecture Muchang Bahng Spring 2024

slave’s input. But more importantly, Qs only follows Qm while C is low (because the slave is being
fed the inverse of the clock signal).

1. t = 6. Qm is changing from low to high, but Qs remains low since C is high. While the flip flop
is responding to a change in input, the output remains the same.

2. t = 8. At the falling edge of the clock cycle, Qs follows Qm to become high. Notice that the
master’s output Qm cannot be changed now because C is low. This means that changes to the
input of the flip-flop cannot impact the output at this point.

3. t = 9. The input at D has changed from high to low, as if in readiness for another change to
the state of the flip flop.

4. t = 10. When C goes high, the output of the master Qm changes but this has no impact on
Qs. The slave isn’t listening.

5. t = 11. D goes high again during the high phase of the clock cycle. But this glitch has no effect
on the output of the flip flop.

6. t = 20. We see Qs changing again to follow Qm while the clock signal is low. The master will
also ignore any changes in the input while the flip flop’s output is made available.

7. t = 21. We see D goes high, as if to set the state of the flip-flop to high on the next high cycle.
8. t = 22. When the clock goes high, Qm follows D to become high as well.
9. t = 23. But the input D falls to low while the clock is high, and so does Qm.

10. t = 24. By the time the clock falls to low again, and the slave is once again responding to
changes to its input, the flip flop has ignore yet another glitch.

In summary, the DFF effectively ignores any input fluctuations because the master and slave are
enabled on opposite phases of the clock cycle. It is safe because it allows sufficient time for propagation
delays and therefore time for the inputs to change and settle down without affecting the output. It
is however more complicated and resource-intensive than regular latches.

0 2 4 6 8 10 12 14 16 18 20 22 24

D

C

Qm

Qs

Figure 29

Now let’s look at two more types of flip-flops. We revisit the problem of invalid states for SR latches, which
lead to race conditions (both 1s for active high and both 0s for active low). We introduce the JK latch,
which is not a flip flop yet. Note that you put a pulse through K to reset Q = 0, and a pulse through J to
set Q = 1.

18/ 90



Computer Architecture Muchang Bahng Spring 2024

K

J

Q

Q

(a)

K

J

Q

Q

(b)

Figure 30: JK active high latch. When you set J = K = 1, the latch oscillates between Q = 0 and Q = 1 very fast,
but this eliminates the possibility where Q is both 1 or both 0.

Note that we can do the same with an active low JK latch, which will be functionally identical to the active
high one. Now we are a step closer to the JK flip flop.

Definition 2.9 (Level Triggered JK Flip-Flop)

By adding a gate/enabler and synching it with the clock, we can get the level triggered JK flip
flop.

K

J

CLK

Q

Q

Figure 31: Level Triggered JK Flip Flop.

Example 2.5 (Waveforms of Level Triggered JK Flip Flop)

Let’s go through the timing diagram.
1. t = 1. When K = 1, there is no change in Q since the clock is low. The flip flop is disabled.
2. t = 2. The clock is high and the reset signal goes through the AND gate, and Q = 0.
3. t = 10. J becomes high and the clock is high, enabling the latch again, and consequently Q is

high again.
4. t = 18, 22, 26. When C, J,K are all high, then the circuit begins to oscillate uncontrollably.

19/ 90



Computer Architecture Muchang Bahng Spring 2024

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

CLK

J

K

Q

Figure 32

To take advantage of this oscillation, we need a flip flop that will only react the inputs while the clock singal
is changing from low to high, i.e. on the rising edge.

Definition 2.10 (Edge Triggered JK Flip Flop)

To fix the weird oscillation issues, we can use the edge detection device to get the edge triggered
JK flip-flop.

CLK

K

J

Q

Q

Figure 33: Edge Triggered JK Flip Flop.

It is also called the universal programmable flip flop since you can make other types of flip flops from JK flip
flops.

Example 2.6 (Waveforms of Edge Triggered JK Flip Flop)

With the edge detector, only the rising edge of each clock pulse has any effect. Notice that when J
and K are both high, a clock pulse will cause the flip flop to toggle from one state to the other (at
times t = 18, 22, 26).

20/ 90



Computer Architecture Muchang Bahng Spring 2024

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

CLK

J

K

Q

Figure 34

Another simple modification of the JK flip flop gives us another type of flip flop. B simply connecting
together J and K to make one input, we now have a device that will toggle from one state to the other when
the input is high at the rising edge of the clock.

Definition 2.11 (Toggle Flip Flip)

The toggle flip-flop, also known as the T-Type flip-flop, is used as an oscillator (?).

CLK

T

Q

Q

Figure 35: Toggle flip flop.

2.4 Registers
The DFF then unlocks the our first type of memory.

Definition 2.12 (Register)

A w-bit register is a memory device, composed up of w DFFs, that can hold w bits of memory. It
supports

1. Read.
2. Write.

21/ 90



Computer Architecture Muchang Bahng Spring 2024

CLK Q

D Q

in0

out0

CLK Q

D Q

in1

out1

CLK Q

D Q

in2

out2

CLK Q

D Q

in3

out3

CLK
load

Figure 36: 4-bit register. Since Q is redundant we do not consider it as an output in our register.

So we now have the flexibility to construct memory of arbitrary size. The general convention is to make the
registers multiples of 2.

Definition 2.13 (Word)

The word size of a register w is the number of bits it can hold.
1. 8-bit and 16-bit registers were used in the early days of computing.
2. 32-bit personal computers were introduced in the 1980s, but they are mostly considered obsolete

as of 2025. These machines are known as 32-bit machines.
3. 64-bit personal computers are the most dominant, known as 64-bit machines.

It is sort of understandable that making word sizes as power of 2 makes things a bit more convenient. They
can be stacked and grouped together conveniently, giving us the following familiar terms of Byte, word,
quad, long, etc. Using hexadecimal notation makes them easier to read.

2.5 Applications

Definition 2.14 (Divide by 2 Chip)

The divide-by-2 chip simply splits the frequency of the clock input by 2. It is implemented with a
pulse latch—i.e. an edge-triggered D-latch.

Q

D Q

CLK

Figure 37: The output Q gets rewired into the input D, causing the frequency to slow down.

Example 2.7 (Waveforms of Divide by 2 Latch)

The way the divide-by-2 chip acts on a clock waveform is pretty straightforward.

22/ 90



Computer Architecture Muchang Bahng Spring 2024

0 2 4 6 8 10 12 14 16 18 20 22 24

C

Q

Figure 38

This actually gives us a pretty surprising circuit.

Definition 2.15 (Counter Chip)

A n-bit counter chip outputs values that increment at every transition of a clock cycle in the
following manner.

Q(t) = Q(t− 1) (3)

1 0...000
2 0...001
3 0...010
4 0...011
5 0...100
6 ...
7 1...111
8 0...000

It is implemented by stacking n divide-by-2 chips together, composing them to get lower and lower
frequencies of the same clock.

CLK Q

D Q

Q0

CLK Q

D Q

Q1

CLK Q

D Q

Q2

CLK Q

D Q

Q3
CLK

Figure 39: 4-bit register. Since Q is redundant we do not consider it as an output in our register. To reset it,
we can use the set-reset latches connected to one power source to initialize it to 0.

Example 2.8 (4-Bit Counter Chip)

If we analyze the waveforms of a clock and the effects of a 4-bit counter, note that at every step, we
simply divide by 2. However, if we look at the values of Q at every timestep, the oscillations of each
divide-by-2 chip result in a counter!

23/ 90



Computer Architecture Muchang Bahng Spring 2024

0 2 4 6 8 10 12 14 16 18 20 22 24

C

Q0

Q1

Q2

Q3

Figure 40: From t = 0 to t = 1, we have Q = Q3Q2Q1Q0 = 0000. The next time period, we have Q = 0001,
and so on. This is precisely a counter.

This is extremely useful in almost every situation. First, we can now implement a program counter. Second,
when multitasking in an operating system on a single core, we can have a scheduler that allows us to switch
from one application to another.

If we connect the latches a bit differently, we can get a shift register, which allows us to do bit-shift operations.

Definition 2.16 (Shift Registers)

A shift register takes in a serial input and gives a serial output. It essentially does a bitshift.

Q(t+ 1, in) = [Q3(t+ 1), Q2(t+ 1), Q1(t+ 1), Q0(t+ 1)] = [in, Q3(t), Q2(t), Q1(t)] (4)
out = Q0(t) (5)

CLK Q

D Q

CLK Q

D Q

CLK Q

D Q

CLK Q

D Q

CLK

outin

Figure 41: 4-bit register. Since Q is redundant we do not consider it as an output in our register.

Example 2.9 (4-Bit Shift Register)

Say that we start off with a buffer of 0000, and we input in a 1 every time interval. Then, with the
clock, the flip-flops will make sure to update the shift register consistently. Note that Din does not
have to be perfectly initialized to 1 at exactly the rising or falling edge. From our construction we
have flexibility.

24/ 90



Computer Architecture Muchang Bahng Spring 2024

0 2 4 6 8 10 12 14 16 18 20 22 24

C

din

Q0

Q1

Q2

Q3

Figure 42: From t = 0 to t = 4, we have Q = 0000. From t = 4 to t = 8, we have Q = 1000. From t = 8
to t = 12, we have Q = 1100. From t = 12 to t = 16, we have Q = 1110. From t = 16 to t = 20, we have
Q = 1111.

25/ 90



Computer Architecture Muchang Bahng Spring 2024

3 Binary Encodings
We have motivated the need for binary encodings through the construction of the transistor. In retrospect,
we can therefore see why we want to develop a theory around binary alphabets in {0, 1}∗. Now that we know
how to work with them, the remaining task of encoding elements of an arbitrary set S → {0, 1}∗ = ⊔n{0, 1}n
is mathematically trivial.

Definition 3.1 (Representation Scheme)

A representation scheme is an encoding of an object s to a unique binary string E(s) ∈ {0, 1}∗.
It is an injective function

E : X −→ {0, 1}∗ (6)

Therefore, when we say that a program P takes x as an input, we really mean that P takes as input the
representation of x as a binary string.

Since {0, 1}∗ is countable, there always exists an injective map f : S → {0, 1}∗ as long as S is at most
countable. But in practicality, we would like to find a good encoding that is easy to work with. Throughout
this chapter, we will consider different sets S and introduce the standard encodings for each set.

In order to get into memory, it is helpful to know the theory behind how primitive types are stored in
memory.

Definition 3.2 (Collections of Bits)

There are many words that are used to talk about values of different data types:
1. A bit (b) is either 0 or 1.
2. A Hex (x) is a collection of 4 bits, with a total of 24 = 16 possible values, and this is used since

it is easy to read for humans.
3. A Byte (B) is a collection of 8 bits or 2 hex, with a total of 28 = 256 possible values, and most

computers will work with Bytes as the smallest unit of memory.

3.1 Naturals/Unsigned and Integers/Signed

Definition 3.3 (Representation of the Naturals)

A representation for natural numbers (note that in this context, 0 ∈ N) is the (non-surjective) regular
binary representation denoted

NtS : N −→ {0, 1}∗ (NtS = "Naturals to Strings") (7)

recursively defined as

NtS(n) =


0 n = 0

1 n = 1

NtS(⌈n/2⌉ parity(n) n > 1

where given strings x, y ∈ {0, 1}∗, xy denotes the concatenation of x and y, and parity : N −→ {0, 1}∗
is defined

parity(n) =

{
0 n is even
1 n is odd

Since NtS in injective, its inverse StN : ImNtS ⊂ {0, 1}∗ −→ N is well-defined.

26/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 3.4 (Representation of the Integers)

To construct a representation scheme for Z, we can just add one more binary digit to represent the
sign of the number. The binary representation ZtS : Z −→ {0, 1}∗ is defined

ZtS(m) =

{
0NtS(m) m ≥ 0

1NtS(−m) m < 0

where NtS is defined as before. Again this function must be injective but need not be surjective.

The most primitive things that we can store are integers. Let us talk about how we represent some of the
simplest primitive types in C: unsigned short, unsigned int, unsigned long, unsigned long long.

Definition 3.5 (Unsigned Integer Types in C)

In C, there are several integer types. We use this hierarchical method to give flexibility to the
programmer on the size of the integer and whether it is signed or not.

1. An unsigned short is 2 bytes long and can be represented as a 4-digit hex or 16 bits, with
values in [0 : 65, 535]. Therefore, say that we have

2. An unsigned int is 4 bytes long and can be represented as an 8-digit hex or 32 bits, with
values in [0 : 4, 294, 967, 295].

3. An unsigned long is 8 bytes and can be represented as an 16-digit hex or 64 bits, but they
are only guaranteed to be stored in 32 bits in other systems.

4. An unsigned long long is 8 bytes and can be represented as an 16-digit hex or 64 bits, and
they are guaranteed to be stored in 64 bits in other systems.

Theorem 3.1 (Bit Representation of Unsigned Integers in C)

To encode a signed integer in bits, we simply take the binary expansion of it.

Figure 43: Unsigned encoding of 4-bit integers in C.

Example 3.1 (Bit Representation of Unsigned Integers in C)

We can see for ourselves how these numbers are represented in bits. Printing the values out in binary
requires to make new functions, but we can easily convert from hex to binary.

27/ 90



Computer Architecture Muchang Bahng Spring 2024

1 int main() {
2

3 unsigned short x = 13;
4 unsigned int y = 256;
5

6 printf("%x\n", x);
7 printf("%x\n", y);
8

9 return 0;
10 }

1 d
2 100
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .

So far, the process of converting unsigned numbers to bits seemed simple. Now let’s introduce signed integers.

Definition 3.6 (Signed Integer Types in C)

In C, there are several signed integer types. We use this hierarchical method to give flexibility to the
programmer on the size of the integer and whether it is signed or not.

1. A signed short is 2 bytes long and can be represented as a 4-digit hex or 16 bits, with values
in [−32, 768 : 32, 767].

2. A signed int is 4 bytes long and can be represented as an 8-digit hex or 32 bits, with values
in [−2, 147, 483, 648 : 2, 147, 483, 647].

3. A signed long is 8 bytes and can be represented as an 16-digit hex or 64 bits, but they are
only guaranteed to be stored in 32 bits in other systems.

4. A signed long long is 8 bytes and can be represented as an 16-digit hex or 64 bits, and they
are guaranteed to be stored in 64 bits in other systems.

To store signed integers, it is intuitive to simply take the first (left-most) bit and have that be the sign.
Therefore, we lose one significant figure but gain information about the sign. However, this has some
problems: first, there are two representations of zeros: −0 and +0. Second, the continuity from −1 to 0 is
not natural. It is best explained through an example, which doesn’t lose much insight into the general case.

Example 3.2 (Problems with the Signed Magnitude)

Say that you want to develop the signed magnitude representation for 4-bit integers in C. Then, you
can imagine the following diagram to represent the numbers.

Figure 44: Signed magnitude encoding of 4-bit integers in C.

28/ 90



Computer Architecture Muchang Bahng Spring 2024

You can see that there are some problems:
1. There are two representations for 0, which is 0000 and 1000.
2. -1 (1001) plus 1 becomes -2 (1010).
3. The lowest number -7 (1111) plus 1 goes to 0 (0000) when it should go to -6 (1100).
4. The highest number 7 (0111) plus 1 goes to 0 (1000).

An alternative way is to use the two’s complement representation, which solves both problems and makes it
more natural.

Theorem 3.2 (Bit Representation of Signed Integers in C)

The two’s complement representation is a way to represent signed integers in binary. It is defined
as follows. Given that you want to store a decimal number p in n bits,

1. If p is positive, then take the binary expansion of that number, which should be at most n− 1
bits (no overflow), pad it with 0s on the left.

2. If p is negative, then you can do two things: First, take the binary expansion of the posi-
tive number, flip all the bits, and add 1. Or second, represent p = q − 2n, take the binary
representation of q in n− 1 bits, and add a 1 to the left.

If you have a binary number b = bnbn−1 · · · b1 then to convert it to a decimal number, you simply
calculate

q = −bn2
n−1 + bn−12

n−2 + · · ·+ b1 (8)

Figure 45: Two’s complement encoding of 4-bit integers in C.

Example 3.3 (Bit Representation of Signed Integers in C)

We can see for ourselves how these numbers are represented in bits.

29/ 90



Computer Architecture Muchang Bahng Spring 2024

1 int main() {
2

3 short short_pos = 13;
4 short short_neg = -25;
5 int int_pos = 256;
6 int int_neg = -512;
7

8 printf("%x\n", short_pos);
9 printf("%x\n", short_neg);

10 printf("%x\n", int_pos);
11 printf("%x\n", int_neg);
12

13 return 0;
14 }

1 d
2 ffe7
3 100
4 ffffffe00
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .

1 #include<stdio.h>
2 #include<stdbool.h>
3

4 int main() {
5 printf("%lu\n", sizeof(bool));
6 printf("%lu\n", sizeof(short));
7 printf("%lu\n", sizeof(int));
8 printf("%lu\n", sizeof(long));
9 printf("%lu\n", sizeof(long long));

10 return 0;
11 }

1 1
2 2
3 4
4 8
5 8
6 .
7 .
8 .
9 .

10 .
11 .

Figure 46: Size of various integer types in C with the sizeof.

3.1.1 Arithmetic Operations on Binary Numbers

Theorem 3.3 (Inversion of Binary Numbers)

Given a binary number p, to compute −p, simply invert the bits and add 1.

Theorem 3.4 (Addition and Subtraction of Binary Numbers)

Given two binary numbers p and q.
1. To compute p + q, simply add the numbers together as you would in base 10, but carry over

when the sum is greater than 1.
2. To compute p− q, you can invert q to −q and compute p+ (−q).

3.2 Rationals and Countable Sets
When representing rational numbers, we cannot simply concatenate the numerator and denominator as such

a/b 7→ ZtS(a)ZtS(b)

since this map is not surjective (and may overlap with other integers).

30/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 3.7 (Representation of Rationals)

To represent a rational number a/b, we create a separator symbol | and map the rational number as
below in the alphabet {0, 1, |}.

q : a/b 7→ ZtS(a)|ZtS(b)

Then, we use a second map that goes through each digit in z and is defined

p : {0, 1, |} −→ {00, 11, 01} ⊂ {0, 1}2, p(n) =


00 n = 0

11 n = 1

01 n = |

Therefore, p maps the length n string z ∈ {0, 1}∗ to the length 2n string ω ∈ {0, 1}∗. The represen-
tation scheme for Q is simply

QtS ≡ p ◦ q

Example 3.4 ()

Given the rational number −5/8,

−5

8
7→ 1101|01000 7→ 11110011010011000000

This same idea of using separators and compositions of injective functions can be used to represent arbitrary
n-tuples of strings (since a finite Cartesian product of countable sets is also countable).

Theorem 3.5 (Representation of Vectors)

All vectors, matrices, and tensors over the field Q are representable.

Proof.

For vectors, we can simply create another separator symbol · and have the initial mapping q map to
a string over the alphabet {0, 1, |, ·}, which injectively maps to {00, 01, 10, 11}. For tensors, create
more separator symbols and map them to a sufficiently large set (which can be extended arbitrarily).
For example, to perhaps {000, 001, ..., 111}.

Corollary 3.1 (Representation of Graphs)

Directed graphs, which can be represented with their adjacency matrices, can therefore be represented
with binary strings.

Theorem 3.6 (Representation of Images)

Every finite-resolution image can be represented as a binary number.

Proof.

Since we can interpret each image as a matrix where each element (a pixel) is a color, and since
each color can be represented as a 3-tuple of rational numbers corresponding to the intensities of red,
green, and blue (for humans, we can restrict it to three primary colors), all images can eventually be
decomposed into binary strings.

31/ 90



Computer Architecture Muchang Bahng Spring 2024

3.3 Floats

Theorem 3.7 (Representation of Reals)

There exists no representation of the reals

NtR : R −→ {0, 1}∗ (9)

Proof.

By Cantor’s theorem, the reals are uncountable. That is, there does not exist a surjective function
NtR : N −→ R. The implies the nonexistence of an injective inverse; that is, there does not exist an
injective function

RtS : R −→ {0, 1}∗

However, since Q is dense in R, we can approximate every real number x by a rational number a/b to
arbitrary accuracy. There are multiple ways to construct these approximations (decimal approximation up
to kth digit, finite continued fractions, truncated infinite series, etc.), but computers use the floating-point
approximation.

Definition 3.8 (Floating-Point Representation)

The floating-point representation scheme of a real number x ∈ R is its approximation as a
number of the form

σb · 2e

where σ ∈ {0, 1} determines the sign of the representation of x, e is a (potentially negative) integer,
and b is a rational number between 1 and 2 expressed as a binary fraction

1.b0b1b2...bk = 1 +
b1
2

+
b2
4

+ ...+
bk
2k

, bi ∈ {0, 1}

where the number k is fixed (determined by the desired accuracy; greater k implies more digits and
better accuracy). The σb · 2e closest to x is the floating-point representation, or approximation, of x.
We can think of σ determining the sign, e the order of magnitude (in base 2) of x, and b the value of
the number scaled down to a value in [1, 2), called the mantissa.

Definition 3.9 (Floating Point Types in C)

In C, there are several floating point types. We use this hierarchical method to give flexibility to the
programmer on the size of the integer and whether it is signed or not.

1. A float is 4 bytes long and can be represented as an 8-digit hex or 32 bits, with values in
[1.2× 10−38 : 3.4× 1038].

2. A double is 8 bytes long and can be represented as an 16-digit hex or 64 bits, with values in
[2.3× 10−308 : 1.7× 10308].

3. A long double is 8 bytes and can be represented as an 16-digit hex or 64 bits, but they are
only guaranteed to be stored in 80 bits in other systems.

Theorem 3.8 (Bit Representation of Floating Point Types in C)

Floats are actually like signed magnitude. We have

(−1)n × 2e−127 × 1.s (10)

32/ 90



Computer Architecture Muchang Bahng Spring 2024

31 30 23 22 0

0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n e s

Figure 47: 32-bit representation of floats.

Doubles encode 64 bits, so now we have exponent having 11 bits (so bias is not 1023) and 52 bits for
mantissa.

3.4 Characters

Definition 3.10 (Booleans in C)

The most basic type is the boolean, which is simply a bit. In C, it is represented as bool, and it is
either true (1) or false (0).

We can manually check the size of the boolean type in C with the following code.

1 #include<stdio.h>
2 #include<stdbool.h>
3

4 int main() {
5 printf("%lu\n", sizeof(bool));
6 return 0;
7 }

1 1
2 .
3 .
4 .
5 .
6 .
7 .

Figure 48: We can verify the size of various primitive data types in C with the sizeof operator.

Note that it does not make sense to have a string without knowing what encoding it uses. We
can’t just assume that every plaintext is in ASCII, since there are hundreds of extended ASCII encodings.
If you have a string, in memory, in a file, or in an email message, you have to know what encoding it is in
or you cannot interpret it or display it to users correctly.

For example, when you are sending an email, Gmail is the only client that automatically converts your text
to UTF-8, regardless of what you set in the header. The browser also uses a certain encoding, which can be
accessed (and changed) under the "view" tab.

3.4.1 ASCII

Definition 3.11 (ASCII)

The ASCII (also called US-ASCII) code, which stands for American Standard Code for Information
Interchange is a 7 bit character code where every single bit represents a unique character. ASCII
codes represent text in computers, telecommunications equipment, and other devices. Most modern
character-encoding schemes are based on ASCII, although they support many additional characters.
The first 32 characters are called the control characters: codes originally intended not to represent
printable information, but rather to control devices (such as printers) that make use of ASCII, or
to provide meta-information about data streams. For example, character 10 (decimal) represents
the "line feed" function (which causes a printer to advance its paper) and character 8 represents
"backspace." Except for the control characters that prescribe elementary line-oriented formatting,

33/ 90



Computer Architecture Muchang Bahng Spring 2024

ASCII does not define any mechanism for describing the structure or appearance of text within a
document.

Dec Oct Hex Bin Symbol Description
0 000 00 0000000 NULL Null char
1 001 01 0000001 SOH Start of Heading
2 002 02 0000010 STX Start of Text
3 003 03 0000011 ETX End of Text
4 004 04 0000100 EOT End of Transmission
5 005 05 0000101 ENQ Enquiry
6 006 06 0000110 ACK Acknowledgement
7 007 07 0000111 BEL Bell
8 010 08 0001000 BS Back Space
9 011 09 0001001 HT Horizontal Tab
10 012 0A 0001010 LF Line Feed
11 013 0B 0001011 VT Vertical Tab
12 014 0C 0001100 FF Form Feed
13 015 0D 0001101 CR Carriage Return
14 016 0E 0001110 SO Shift Out/X-On
15 017 0F 0001111 SI Shift In/X-Off
16 020 10 0010000 DLE Data Line Escape
17 021 11 0010001 DC1 Device Control 1
18 022 12 0010010 DC2 Device Control 2
19 023 13 0010011 DC3 Device Control 3
20 024 14 0010100 DC4 Device Control 4
21 025 15 0010101 NAK Negative Acknowledgement
22 026 16 0010110 SYN Synchronous Idle
23 027 17 0010111 ETB End of Transmit Block
24 030 18 0011000 CAN Cancel
25 031 19 0011001 EM End of Medium
26 032 1A 0011010 SUB Substitute
27 033 1B 0011011 ESC Escape
28 034 1C 0011100 FS File Separator
29 035 1D 0011101 GS Group Separator
30 036 1E 0011110 RS Record Separator
31 037 1F 0011111 US Unit Separator

The rest of the characters are the ASCII printable characters.

34/ 90



Computer Architecture Muchang Bahng Spring 2024

Dec Oct Hex Bin Sym Description Dec Oct Hex Bin Sym Description
32 040 20 0100000 Space 80 120 50 1010000 P Uppercase P
33 041 21 0100001 ! Exclamation 81 121 51 1010001 Q Uppercase Q
34 042 22 0100010 " Double quotes 82 122 52 1010010 R Uppercase R
35 043 23 0100011 # Number 83 123 53 1010011 S Uppercase S
36 044 24 0100100 $ Dollar 84 124 54 1010100 T Uppercase T
37 045 25 0100101 % Per cent sign 85 125 55 1010101 U Uppercase U
38 046 26 0100110 & Ampersand 86 126 56 1010110 V Uppercase V
39 047 27 0100111 ’ Single quote 87 127 57 1010111 W Uppercase W
40 050 28 0101000 ( Open paren. 88 130 58 1011000 X Uppercase X
41 051 29 0101001 ) Closed paren. 89 131 59 1011001 Y Uppercase Y
42 052 2A 0101010 * Asterisk 90 132 5A 1011010 Z Uppercase Z
43 053 2B 0101011 + Plus 91 133 5B 1011011 [ Opening bracket
44 054 2C 0101100 , Comma 92 134 5C 1011100 \ Backslash
45 055 2D 0101101 - Hyphen 93 135 5D 1011101 ] Closing bracket
46 056 2E 0101110 . Period 94 136 5E 1011110 ^ Caret
47 057 2F 0101111 / Slash 95 137 5F 1011111 _ Underscore
48 060 30 0110000 0 Zero 96 140 60 1100000 ‘ Grave accent
49 061 31 0110001 1 One 97 141 61 1100001 a Lowercase a
50 062 32 0110010 2 Two 98 142 62 1100010 b Lowercase b
51 063 33 0110011 3 Three 99 143 63 1100011 c Lowercase c
52 064 34 0110100 4 Four 100 144 64 1100100 d Lowercase d
53 065 35 0110101 5 Five 101 145 65 1100101 e Lowercase e
54 066 36 0110110 6 Six 102 146 66 1100110 f Lowercase f
55 067 37 0110111 7 Seven 103 147 67 1100111 g Lowercase g
56 070 38 0111000 8 Eight 104 150 68 1101000 h Lowercase h
57 071 39 0111001 9 Nine 105 151 69 1101001 i Lowercase i
58 072 3A 0111010 : Colon 106 152 6A 1101010 j Lowercase j
59 073 3B 0111011 ; Semicolon 107 153 6B 1101011 k Lowercase k
60 074 3C 0111100 < Less than 108 154 6C 1101100 l Lowercase l
61 075 3D 0111101 = Equals 109 155 6D 1101101 m Lowercase m
62 076 3E 0111110 > Greater than 110 156 6E 1101110 n Lowercase n
63 077 3F 0111111 ? Question mark 111 157 6F 1101111 o Lowercase o
64 100 40 1000000 @ At symbol 112 160 70 1110000 p Lowercase p
65 101 41 1000001 A Uppercase A 113 161 71 1110001 q Lowercase q
66 102 42 1000010 B Uppercase B 114 162 72 1110010 r Lowercase r
67 103 43 1000011 C Uppercase C 115 163 73 1110011 s Lowercase s
68 104 44 1000100 D Uppercase D 116 164 74 1110100 t Lowercase t
69 105 45 1000101 E Uppercase E 117 165 75 1110101 u Lowercase u
70 106 46 1000110 F Uppercase F 118 166 76 1110110 v Lowercase v
71 107 47 1000111 G Uppercase G 119 167 77 1110111 w Lowercase w
72 110 48 1001000 H Uppercase H 120 170 78 1111000 x Lowercase x
73 111 49 1001001 I Uppercase I 121 171 79 1111001 y Lowercase y
74 112 4A 1001010 J Uppercase J 122 172 7A 1111010 z Lowercase z
75 113 4B 1001011 J Uppercase K 123 173 7B 1111011 { Opening brace
76 114 4C 1001100 L Uppercase L 124 174 7C 1111100 | Vertical bar
77 115 4D 1001101 M Uppercase M 125 175 7D 1111101 } Closing brace
78 116 4E 1001110 N Uppercase N 126 176 7E 1111110 ∼ Tilde
79 117 4F 1001111 O Uppercase O 127 177 7F 1111111 Delete

The Extended ASCII (EASCII or high ASCII) character encodings are 8-bit or larger encodings that
include the standard 7-bit ASCII characters, plus additional characters. Note that this does not mean that
the standard ASCII coding has been updated to include more than 128 characters nor does it mean that
there is an universal extension to the original ASCII coding. In fact, there are several (over 100) extended
ASCII encodings.

With the creation of the 7-bit ASCII format, increased need for more letters and symbols (such as characters
in other languages or more punctuation/mathematical symbols). With better computers and software, it
became obvious that they could handle text that uses 256-character sets at almost no additional cost in
programming or storage. The 8-bit format would allow ASCII to be used unchanged and provide 128 more
characters.

But even 256 characters is still not enough to cover all purposes, all languages, or even all European languages,
so the emergence of many ASCII-derived 8-bit character sets was inevitable. Translating between these sets

35/ 90



Computer Architecture Muchang Bahng Spring 2024

(transcoding) is complex, especially if a character is not in both sets and was often not done, producing
mojibake (semi-readable text resulting from text being decoded using an unintended character encoding.
The result is a systematic replacement of symbols with completely unrelated ones, often from a different
writing system). ASCII can also be used to create graphics, commonly called ASCII art.

But ASCII isn’t enough. We have lots of languages with lots of characters that computers should ideally
display. Unicode assigns each character a unique number, or code print. Computers deal with such numbers
as bytes: 8-bit computers would treat an 8-bit byte as the largest numerical unit easily represented on the
hardware, 16-bit computers would expand that to 2 bytes, and so forth. Old character encodings like ASCII
are from the (pre-) 8-bit era, and try to cram the dominant language in computing at the time, i.e. English,
into numbers ranging from 0 to 127 (7 bits). When ASCII got extended by an 8th bit for other non-English
languages, the additional 128 numbers/code points made available by this expansion would be mapped to
different characters depending on the language being displayed. The ISO-8859 standards are the most
common forms of this mapping:

1. ISO-8859-1

2. ISO-8859-15, also called ISO-Latin-1

But that’s not enough when you want to represent characters from more than one language, so cramming
all available characters into a single byte just won’t work. The following shows ways to do this (that is
compatible with ASCII).

3.4.2 ISO-10646, UCS

We can simply expand the value range by adding more bits. The UCS-2 uses 2 bytes (or 16 bits) and UCS-4
uses 4 bytes (32 bits). However, these codings suffer from inherently the same problem as ASCII and ISO-
8859 standards, as their value range is still limited, even if the limit is vastly higher. Note that these encode
from the ISO-10646, which defines several character encoding forms for the Universal Coded Character Set.

1. UCS-2 can store 216 = 65, 536 characters.

2. UCS-4 can store 232 = 4, 294, 967, 296 characters.

Notice that UCS encoding has a fixed number of bytes per character, which means that UCS-2 stores each
character in 2 bytes, and UCS-4 stores each character in 4 bytes. This is different from UTF-8 encoding.

ISO 10646 and Unicode have an identical repertoire and numbers—the same characters with the same
numbers exist on both standards, although Unicode releases new versions and adds new characters more
often. Unicode has rules and specifications outside the scope of ISO 10646. ISO 10646 is a simple character
map, an extension of previous standards like ISO 8859. In contrast, Unicode adds rules for collation,
normalization of forms, and the bidirectional algorithm for right-to-left scripts such as Arabic and Hebrew.
For interoperability between platforms, especially if bidirectional scripts are used, it is not enough to support
ISO 10646; Unicode must be implemented.

3.4.3 Unicode, UTF-8

Unicode is the universal character encoding, maintained by Unicode Consortium, and it covers the characters
for all the writing systems of the world, modern and ancient. It also includes technical symbols, punctuation,
and many other characters used in writing text. As of Unicode Version 13.0, the Unicode standard contains
143,859 characters, stored in the format U+****, where **** is a number in hexadecimal notation. Notice
that these ones are not fixed in the number of bits; that is,

U+27BD and U+1F886

are perfectly viable representations of characters in Unicode. Even though only 143,859 characters are in
use, Unicode currently allows for 1,114,112 (165 + 164) code values, and assigns codes covering nearly all
modern text writing systems, as well as many historical ones and for many non-linguistic characters such as
printer’s dingbats, mathematical symbols, etc.

36/ 90



Computer Architecture Muchang Bahng Spring 2024

Note that Unicode, along with ISO-10646, is a standard that assigns a name and a value (Character Code
or Code-Point) to each character in its repertoire. However, the Unicode format must be encoded in a
binary format for the computer to understand. When you save a document, the text editor has to explicitly
set its encoding to be UTF-8 (or whatever other format) the user wants it to be. Also, when a text editor
program reads a file, it needs to select a text encoding scheme to decode it correctly. Even further, when you
are typing and entering a letter, the text editor needs to know what scheme you use so that it will save it
correctly. Therefore, UTF-8 encoding is a way to represent these characters digitally in computer memory.
The way that UTF-8 encodes characters is with the following format:

1 1st Byte 2nd Byte 3rd Byte 4th Byte Number of Free Bits
2 0xxxxxxx 7
3 110xxxxx 10xxxxxx (5+6)=11
4 1110xxxx 10xxxxxx 10xxxxxx (4+6+6)=16
5 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx (3+6+6+6)=21

From this, we can see that UTF-8 uses a variable number of bytes per character. All UTF encodings work in
roughly the same manner: you choose a unit size, which for UTF-8 is 8 bits, for UTF-16 is 16 bits, and for
UTF-32 is 32 bits. The standard then defines a few of these bits as flags (e.g. the 0, 110, 1110, 11110, ...).
If they’re set, then the next unit in a sequence of units is considered part of the same character. If they’re
not set, this unit represents one character fully. Thus, the most common (English) characters only occupy
one byte in UTF-8 (two in UTF-16, 4 in UTF-32), but other language characters can occupy more bytes.
We can see that UTF-8 can encode up to (and slightly more than) 221 = 2, 097, 152 characters. UTF-8 is by
far the most common encoding for the World Wide Web, accounting for 96.0% of all web pages, and up to
100% for some languages, as of 2021.

For example, let’s take a random character, say with the Unicode value to be U+6C49. Then, we convert
this to binary to get

01101100 01001001

But we can’t just store this because this isn’t a prefix-free notation. This is when UTF-8 is needed. Using
the chart above, we need to prefix our character with some headers/flags. The binary Unicode value of the
character is 16 bits long, so we can store it in 3 bytes (in the format of the third row) as it provides enough
space. The headers are not bolded, while the binary values added are.

11100110 10110001 10001001

We can take another example of a character with the Unicode value U+1F886. Converting to binary gets

0001 1111 1000 1000 0110

There are 20 bits, so we will need to store it in 4 bytes (in the format of fourth row) as it provides enough
space (21). We convert the 20-bit-long binary Unicode value to a 21-bit-long value (so that it is compatible
with the 21 free bits) to get

0 0001 1111 1000 1000 0110

Encoding it in UTF-8 in 4 bytes gives

11110000 10011111 10100010 10000110

There is no need to go beyond 4 bytes since every Unicode value will have at most 5 hexadecimal digits
(since 165 = 1, 048, 576, which is far more than the number of characters there are). There is also another,
obsolete, encoding used called the UTF-7.

Both the UCS and UTF standards encode the code points as defined in Unicode. In theory, those encodings
could be used to encode any number (within the range the encoding supports) - but of course these encodings
were made to encode Unicode code points. Windows handles so-called "Unicode" strings as UTF-16 strings,
while most UNIXes default to UTF-8 these days. Communications protocols such as HTTP tend to work
best with UTF-8, as the unit size in UTF-8 is the same as in ASCII, and most such protocols were designed

37/ 90



Computer Architecture Muchang Bahng Spring 2024

in the ASCII era. On the other hand, UTF-16 gives the best average space/processing performance when
representing all living languages.

While UTF-7, 8, 16, and 32 all have the nice property of being able to store any code point correctly, there
are hundreds of encodings that can only store a set amount of characters. If there’s no equivalent for the
Unicode code point you’re trying to represent in the encoding you’re trying to represent it in, you usually get
a little question mark: ? For example, trying to store Russian or Hebrew letters in these encodings results
in a bunch of question marks.

3.4.4 Text Files

The ASCII character set is the most common compatible subset of character sets for English-language text
files, and is generally assumed to be the default file format in many situations.

In the Mac, checking the character encoding of a text file can be done with the command

1 >>>file -I filename.txt
2 filename.txt: text/plain; charset=us-ascii

ASCII covers American English, but for the British Pound sign, the Euro sign, or characters used outside
English, a richer character set must be used. In many systems, this is chosen based on the default setting on
the computer it is read on. Prior to UTF-8, this was traditionally single-byte encodings (such as ISO-8859-1
through ISO-8859-16) for European languages and wide character encodings for Asian languages. However,
most computers use UTF-8 as the natural extension. We can check this firsthand by inputting a non-ASCII
character in filename.txt, which would result in

1 >>>file -I filename.txt
2 filename.txt: text/plain; charset=utf-8

Because encodings necessarily have only a limited repertoire of characters, often very small, many are only
usable to represent text in a limited subset of human languages. Unicode is an attempt to create a common
standard for representing all known languages, and most known character sets are subsets of the very large
Unicode character set. Although there are multiple character encodings available for Unicode, the most
common is UTF-8, which has the advantage of being backwards-compatible with ASCII; that is, every
ASCII text file is also a UTF-8 text file with identical meaning. UTF-8 also has the advantage that it is
easily auto-detectable. Thus, a common operating mode of UTF-8 capable software, when opening files
of unknown encoding, is to try UTF-8 first and fall back to a locale dependent legacy encoding when it
definitely isn’t UTF-8.

Because of their simplicity, text files are commonly used for storage of information. When data corruption
occurs in a text file, it is often easier to recover and continue processing the remaining contents. A disad-
vantage of text files is that they usually have a low entropy, meaning that the information occupies more
storage than is strictly necessary. A simple text file may need no additional metadata (other than knowledge
of its character set) to assist the reader in interpretation. A text file may contain no data at all, which is a
case of zero-byte file.

3.5 Representation of General Sets
Let there exist some set O consisting of objects. Then, a representation scheme for representing objects in O
consists of an encoding function that maps an object in O to a string, and a decoding function that decodes
a string back to an object in O.

38/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 3.12 ()

Let O be any set. A representation scheme for O is a pair of functions E,D where

E : O −→ {0, 1}∗

is an injective function, and the induced mapping D is restriction of the inverse of E to the image of
E.

D : Im(E) ⊂ {0, 1}∗ −→ O

This means that (D ◦ E)(o) = o for all o ∈ O. E is known as the encoding function and D is known
as the decoding function.

Definition 3.13 (Prefix)

For two strings y, y′, y is a prefix of y′ if y′ "starts" with y. That is, y is a prefix of y′ if |y| ≤ |y′|
and for every i < |y|, y′i = yi.

With this, we can define the concept of prefix free encoding.

Definition 3.14 ()

Let O be a nonempty set and E : O −→ {0, 1}∗ be a function. E is prefix-free if E(o) is nonempty
for every o ∈ O and there does not exist a distinct pair of objects o, o′ ∈ O such that E(o) is a prefix
of E(o′).

Being prefix-free is a nice property that we would like an encoding to have. Informally, this means that no
string x representing an object o is an initial substring of string y representing a different object o. This
means that we can simply represent a list of objects simply by concatenating the representations of all the
list members and still get a valid, injective representation. We formalize this below.

Theorem 3.9 ()

Suppose that E : O −→ {0, 1}∗ is prefix free. Then the following map

E : O∗ −→ {0, 1}∗

over all finite length tuples of elements in O is injective, where for every o0, o1, ..., ok−1 ∈ O∗, we
define E to be the simple concatenation of the separate encodings of oi:

E(o0, ..., ok−1) ≡ E(o0)E(o1)...E(ok−1)

Even if the representation E of objects in O is prefix free, this does not imply that our representation E of
lists of such objects will be prefix free as well. In fact, it won’t be, since for example, given three objects
o, o′, o′′, the representation of the list (o, o′) will be a prefix of the representation of the list (o, o′, o′′).

However, it turns out that in fact we can transform every representation into prefix free form, and so will
be able to use that transformation if needed to represents lists of lists, lists of lists of lists, and so on.

Some natural representations are prefix free. For example, every fixed output length representation (i.e. an
injective function E : O −→ {0, 1}n) is automatically prefix-free, since a string x can only be a prefix of
an equal length x′ if x and x′ are identical. Moreover, the approach that was used for representing rational
numbers can be used to show the following lemma.

39/ 90



Computer Architecture Muchang Bahng Spring 2024

Lemma 3.1 ()

Let E : O −→ {0, 1}∗ be a one-to-one function. Then there is a one-to-one prefix-free encoding E
such that

|E(o)| ≤ 2|E(o)|+ 2 (11)

for every o ∈ O.

Proof.

The general idea is the use the map 0 7→ 00, 1 7→ 11 to "double" every bit in the string x and then
mark the end of the string by concatenating to it the pair 01. If we encode a string x in this way, it
ensures that the encoding of x is never a prefix of the encoding of a distinct string x′. (Note that this
is not the only or even the best way to transform an arbitrary representation into prefix-free form.)

40/ 90



Computer Architecture Muchang Bahng Spring 2024

4 Combinational Logic
Talk about how to construct arithmetic operations with these gates such as adding two integers or multiplying
them, and not just that, but other operations that we may need in a programming language.

4.1 Multi-Bit Gates
Note that we can naturally work with multiple bits. This could mean a few things for—say, an AND gate.

1. AND can take in multiple gates.

2.

Definition 4.1 (Multi-Bit NOT Gate)

Definition 4.2 (Multi-Bit AND Gate)

Definition 4.3 (Multi-Bit OR Gate)

Definition 4.4 (Multi-Bit NAND Gate)

Definition 4.5 (Multi-Bit XOR Gate)

Definition 4.6 (Multi-Bit Multiplexor Gate)

Definition 4.7 (Multi-Bit Demultiplexor Gate)

4.2 Multiplexer
Multiplexors are good for conditionals and implementing hierarchical functions.

Definition 4.8 (Multiplexer)

A 2n : 1 multiplexer is a gate that takes in
1. n control bits as inputs, denoted s = (s0, . . . , sn).
2. 2n input channels, denoted xs for s ∈ {0, 1}n.

and outputs the designated input channel according to s.

y(s, x) = xs (12)

41/ 90



Computer Architecture Muchang Bahng Spring 2024

Figure 49: General diagram of a multiplexer with n = 3 control bits, 2n = 8 input channels, and 1 output
channel.

Theorem 4.1 (Implementation of 2:1 Multiplexer)

w1

w2

s

y

Figure 50: The truth table grows exponentially large with n and does not provide much value, so it is omitted
here.

42/ 90



Computer Architecture Muchang Bahng Spring 2024

Theorem 4.2 (Implementation of 4:1 Multiplexer)

s0 s1

w3

w2

w1

w0

y

Figure 51: Implementation of 4:1 multiplexer.

There is a general method to build larger multiplexers, and so implementing for n control bits is easy.
Consider the simpler diagram for a 4:1 multiplexer.

s1

s0

w0

w1

w2

w3

y

Figure 52: With this pattern, we can build arbitrarily large multiplexors.

43/ 90



Computer Architecture Muchang Bahng Spring 2024

4.3 Comparator

Definition 4.9 (1-Bit Comparator)

A 1-bit (magnitude) comparator simply takes in 2 1-bit numbers a, b ∈ {0, 1} and outputs whether
a > b, a = b, or a < b.

−

+b

a l
e
g

(a)

a b aEQb aGTb bGTa
0 0 1 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

(b) Truth table.

The implementation is quite simple.

a
b l

e

g

Figure 54

Now that we have a 1-bit comparator, given two n-bit inputs, all we have to do is apply the 1-bit comparator
starting from the most significant bit to the least significant bit, and this gives us an n-bit comparator.
However, this is pretty slow since it is sequential, but implementing one-shot n-bit comparators requires an
exponentially large circuit. Therefore, we compromise between the two schemes. The general idea is that
we implement 2-bit and 4-bit one-shot comparators, and then use them to sequentially compare bigger—e.g.
32-bit—numbers.

Definition 4.10 (2-Bit Comparator)

A 2-bit comparator is implemented as such.

44/ 90



Computer Architecture Muchang Bahng Spring 2024

a1 a0 b1 b0

a > b

a = b

a < b

Figure 55: Credits to GeeksForGeeks.

Definition 4.11 (4-Bit Comparator)

A 4-bit comparator is implemented as such.

45/ 90



Computer Architecture Muchang Bahng Spring 2024

a3

b3

a2

b2

a1

b1

a0

b0

a < b

a > b

a = b

Figure 56: Implementation of 4-bit magnitude comparator.

Therefore,

Definition 4.12 (n-Bit Comparator)

A n-bit comparator is implemented sequentially with 4-bit comparators.

4.4 Addition and Subtraction
We present a hierarchy of three adders, leading to a multi-bit adder chip. Note that every single chip here
represents a finite function, and so from universality of AON gates we know that an implementation is
definitely possible.

Definition 4.13 (Half-Adder Chip)

A half-adder is designed to add two bits.

46/ 90



Computer Architecture Muchang Bahng Spring 2024

Inputs Outputs
a b carry sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) Truth table for half adder.

Half Adder

a

b

sum

carry

(b)

Figure 57: Chip diagram for half adder.

Theorem 4.3 (Implementation of Half-Adder)

To construct this chip, note that the way sum and carry acts on a, b is identical to the standard
XOR(a, b) and AND(a, b) functions.

a

b

sum

carry

(a)

1 module half_adder(
2 input a, b,
3 output s, c
4 );
5 assign s = a ^ b;
6 assign c = a & b;
7 endmodule

(b) HDL implementation.

Figure 58

Definition 4.14 (Full-Adder)

Now that we know how to add two bits, a full-adder chip allows us to add 3 bits.

Inputs Outputs
a b cin cout sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a) Truth table for full adder.

Full Adder

a

b

cin

sum

cout

(b) Block diagram for full adder.

Figure 59: Chip diagram for full adder.

Theorem 4.4 (Implementation of Full-Adder)

We can implement a full adder with 2 half-adders and an OR gate.

47/ 90



Computer Architecture Muchang Bahng Spring 2024

A

B

C

Half Adder

Half Adder

Carry

Sum

Figure 60

Definition 4.15 (N-Bit Adder)

Usually, N is 16, 32, 64, or 128.

Theorem 4.5 (Implementation of N-Bit Addition)

A3 B3 cin A2 B2 cin A1 B1 cin A0 B0

F A F A F A H A

Sum Sum Sum Sum

...

Figure 61: Ripple carry adder for the last 4 significant bits of two N -bit numbers.

Corollary 4.1 (Implemention for N-Bit Subtraction)

This is a standard construction and a goods start, but there are a few pitfalls of this. First, this does
not detect nor handle overflows after adding. This will be handled at the operating system level. Second,
addition is limited in that we can only apply it for precisely 2 arguments.

Ripple carry, carry select, carry look ahead adder to make it parallel (lecture 4)

Example 4.1 (More Arguments for Binary Addition)

Note that the full adder—which takes in 3 bits—was designed so that there is enough space for each
digit of the 2 inputs, plus a potential carry. If there were 3 inputs, then the full adder would need
to support 4 inputs. Even worse, if we have 1 + 1 + 1 + 1 = 100, then our carry digit will be greater
than 1 digit, which messes things up even more.

Finally, note that this is not a very efficient way to add because there are delays as the carry bit propagates
from the least significant to the most significant bit pair. We can improve this with carry look-ahead
techniques.

4.5 Multiplication
Booths algo to do multiplication fast with bitshifts and addition

The reason bitshift is introduced first is that in binary, bit-shifting is equivalent to multiplication!

48/ 90



Computer Architecture Muchang Bahng Spring 2024

Theorem 4.6 (Implementation of Multiplication in Circuits)

Theorem 4.7 (Implementation of Moving Data in Circuits)

4.6 Arithmetic Logical Unit (ALU)

4.7 Control Unit
The CPU also has a control unit, which is responsible for fetching instructions from memory through the
databus, which is literally a wire connecting the CPU and RAM, and executing them.

In total, we can summarize the role of the CPU as such: the CPU executes instructions from memory one
at a time and executes them, known as the fetch-execute cycle. It consists of 4 main operations.

1. Fetch: The program counter, which holds the memory address of the next instruction to be executed,
tells the control unit to fetch the instruction from memory through the databus.

2. Decode: The fetched data is passed to the instruction decoder, which figures out what the instruc-
tion is and what it does and stores them in the registers.

3. Execute: The arithmetic and logic unit then carries out these operations.

4. Store: Then it puts the results back on the databus, and stores them back into memory.

49/ 90



Computer Architecture Muchang Bahng Spring 2024

5 Memory Banks
Now that we have established registers, we can use them to build arbitrary sets of memory. For example,
by abstracting away the circuits and sticking a bunch of 1-bit registers together, we can get a sequence of
them. The location of a register in this sequence is called the memory address of the register.

AddressesValues
... ...

0b0010

0b0011

0b0100

0b0101

0b0110

0b0111

0b1000

0b1001

0b1010

1

1

0

1

0

0

0

1

1
... ...

Figure 62: You can visualize memory as a long array of boxes of bits, similar to PO boxes. Memory simply works as
a bunch of bits in your computer with each bit having some memory address, which is also a bit. For example, the
memory address 0b0010 (2) may have the bit value of 0b1 (1) stored in it.

However, computers do not need this fine grained level of control on the memory, and they really work
at the Byte level rather than the bit level. Therefore, we can visualize the memory as a long array of
boxes indexed by Bytes, with each value being a byte as well. In short, the memory is byte-addressable.
In certain architectures, some systems are word-addressable, meaning that the memory is addressed by
words, which are 4 bytes.2

2Note that in here the size of a word is 2 bytes rather than 4 as stated above. This is just how it is defined in some x86
architectures.

50/ 90



Computer Architecture Muchang Bahng Spring 2024

Byte Address Values Values Word Address
... ... ... ...

0x120

0x121

0x122

0x123

0x124

0x125

0x126

0x127

0x128

10010010 = 0x92

00000000 = 0x00

01101111 = 0x6F

10110000 = 0xB0

10010110 = 0x96

10010111 = 0x97

00010001 = 0x11

10011001 = 0x99

11111110 = 0xFE

0x92006FB0

0x96971199

0xFE...

0x48

0x49

0x4A
... ...

Figure 63: Visualization of memory as a long array of boxes of bytes. Every address is a byte and its corresponding
value at that address is also a byte, though we represent it as a 2-digit hex.

Definition 5.1 (Memory Bank)

A memory bank with respect to an ISA is the smallest unit of addressable memory units.

It is intuitive to think that given some multi-byte object like an int (4 bytes), the beginning of the int would
be the lowest address and the end of the int would be the highest address, like how consecutive integers are
stored in an array. However, this is not always the case (almost always not the case since most computers
are little-endian).

Definition 5.2 (Endian Architecture)

The endianness of an ISA refers to the byte order in which data is stored in memory.
1. A big-endian architecture (e.g. SPARC, z/Architecture) will store it so that the least sig-

nificant byte has the highest address.
2. A little-endian architecture (e.g. x86, x86-64, RISC-V) will store it so that the least signif-

icant byte has the lowest address.
3. A bi-endian architecture (e.g. ARM, PowerPC) can specify the endianness as big or little.

Little-Endian

Big-Endian

D4 C3 B2 A1

A1 B2 C3 D4
0x100 0x101 0x102 0x103

Figure 64: The big vs little endian architectures when storing 4-byte int data 0xA1B2C3D4 at address 0x100.

Note that endianness is not a property of memory, but a property of the ISA.

Example 5.1 ()

We can simply print out the hex values of primitive types to see how they are stored in memory, but
it does not provide the level of details that we want on which bytes are stored where. At this point,
we must use certain debuggers to directly look at the memory. For x86 architectures, we can use

51/ 90



Computer Architecture Muchang Bahng Spring 2024

gdb and for ARM architectures, we can use lldb. At this point, we need to understand assembly to
look through debuggers, so we will provide the example here.

Let’s clarify the differences between registers and memory banks. Memory is an overloaded term that is
thrown as an umbrella term for any type of data storage, or as RAM. Memory is addressed by an unsigned
integer while registers have names as we will see later (e.g. %rsi). RAM is much bigger at several GB, while
the total register space is much smaller at around a few KB at most. The memory is much slower than
registers, which is usually on a sub-nanosecond timescale. The memory is dynamic and can grow as needed
while the registers are static and cannot grow.

5.1 Data Buses
RAM gives us a large pool of memory to work with, albeit slow.

5.2 Fetching and Writing
Getting memory addresses is not just multiplexers since its too slow.

52/ 90



Computer Architecture Muchang Bahng Spring 2024

6 Hardware Description Languages
Look into ternary operators, which is structural. Also for loops. In gtkwave, look at edit/data,color format.
Select a bunch of wires and hit g to make a group.

Now that we know about chips, perhaps we are ready to mass produce them. Consider the following scenario
where you are a hardware engineer with three boxes full of AND,OR,NOT gates. You need to ship an order
of 1000 XOR gates. How would you do this? To construct one XOR gate, you can follow the example below.

a

b

out

Figure 65: XOR Chip from AON gates.

We would take two AND gates, two NOT gates, and one OR gate, mount them on a board according to the
figure’s layout, and connect the chips to one another by running copper wires among them and soldering the
wire ends to the respective input/output pins. After this, we will have 3 exposed wire ends—two inputs and
one output. We then solder a pin to each one of these wire ends, seal the entire device (except for the three
pins) in a plastic encasing, and label it as XOR. Do this 1000 times and you’re done.

There’s a lot of problems with this, with the foremost being that this might be error-prone, especially in more
complex chips. There is guarantee that the given chip diagram is correct. Although we can prove correctness
in simple cases like XOR, we cannot do so in realistically complex chips. Thus, we need to empirically test
the chip, i.e. connect it to a power supply, activate/deactivate the input pins in various configurations, and
hope that the chip outputs will agree with its specifications.

Even this debugging process can be quite time-intensive if we endlessly tinker with wires and circuits.
Therefore, engineers simulate the construction and testings of these circuits with hardware simulators.
Remember that we have established that straight-line programs are an equivalent model of finite computa-
tion, and so we can use lexical programs to model boolean circuits. These programs are called hardware
description languages (HDL) (analogous to software language) and are used to model and design these
digital systems. Once you have written a script in some HDL, you can use a hardware simulator (analo-
gous to compiler) to test the circuit. We will use the Verilog language along with the Icarus Verilog hardware
simulator.3

Definition 6.1 (Module)

A module represents some sort of class.
1. Ports represent the inputs and outputs of a gate, represented with the input and output

keywords. You might see a convention to put the outputs first and then the inputs.
2. Wires are used for connecting different elements, like physical wires between gates. You can

think of them as signals, which can be read (is current flowing?) or assigned, but no values
get stored in them. They are automatically updated when input changes are specified with the
wire keyword.

3. Regs are like variables that store values—similar to physical registers in CPUs. They are
specified with the reg keyword.

4. The output value is determined by some logic using the assign keyword.

3Historically the VHDL language was created as a military project—and is still in use—but is a bit ugly. Then, Verilog
became the most dominant, but it has been largely replaced by SystemVerilog. Regardless, both of these are a superset of
Verilog, and we will begin with this. Given the Verilog language, Icarus Verilog is its corresponding open-source hardware
simulator that runs on all platforms (Windows, Mac, Linux).

53/ 90



Computer Architecture Muchang Bahng Spring 2024

6.1 Structural and Behavioral Modeling
There are two paradigms of writing Verilog. Structural modeling refers to writing code in which we
describe the structure—i.e. each component—of our circuit. There are two main types.

1 module nand(
2 input x1, x2,
3 output y
4 );
5 wire z;
6 and and1(z, x1, x2);
7 not not1(y, z);
8 endmodule

(a) Gate level implementation.

1 module nand(
2 input x1, x2,
3 output y
4 );
5 assign y = ~(x1 & x2);
6

7

8 endmodule

(b) Dataflow level implementation.

Figure 66: Two different implementations of NAND. This example is just to show the difference between the two
types of structural modeling. We will assume that NAND is the fundamental operator.

Definition 6.2 (Gate Level Implementation)

Gate level implementation is a functional paradigm similar to a straight line program. Here we
use built-in primitive gates to work with bits, where the syntax is

1 gate gatename(*output, *input);

Here are some sample input signals for demonstration.

1 reg a, b, c;
2 wire out1, out2, out3, out4, out5, out6, out7, out8;
3 wire out9, out10, out11, out12, out13, out14, out15;

1 and gate1(out1, a, b);
2 or gate2(out2, a, b);
3 not gate3(out3, a);
4 nand gate4(out4, a, b);
5 nor gate5(out5, a, b);
6 xor gate6(out6, a, b);

(a) Basic logic gates.

1 and gate8(out8, a, b, c);
2 or gate9(out9, a, b, c);
3 nand gate10(out10, a, b, c);
4 nor gate11(out11, a, b, c);
5 // XOR limited to 2 inputs
6 .

(b) Multiple input gates.

Figure 67

Definition 6.3 (Dataflow Modeling)

Dataflow modeling models more of the flow of data, similar to mathematical notation. Here we
use built-in operators rather than primitive gates. Here are some sample inputs for demonstration.

1 reg [3:0] a = 4’b1010;
2 reg [3:0] b = 4’b1100;
3 reg [3:0] c;

There are many different types of operators one can use.

54/ 90



Computer Architecture Muchang Bahng Spring 2024

1 wire [3:0] and = a & b;
2 wire [3:0] or = a | b;
3 wire [3:0] not = ~a;
4 wire [3:0] xor = a ^ b;
5 wire [3:0] nand = ~(a & b);
6 wire [3:0] nor = ~(a | b);
7 wire [3:0] xnor = ~(a ^ b);

(a) Logical bitwise operators act on an array of bits and
outputs an array.

1 wire and = &a;
2 wire or = |a;
3 // not behaves identically
4 wire xor = ^a;
5 wire nand = ~&a;
6 wire nor = ~|a;
7 wire xnor = ~^a;

(b) Reduction operators reduce an entire array to 1 bit,
e.g. AND over n inputs.

1 wire [4:0] add_result = a + b;
2 wire [3:0] sub_result = a - b;
3 wire [7:0] mul_result = a * b;
4 wire [3:0] div_result = a
5 wire [3:0] mod_result = a % b;
6

7 wire logical_and = a && b;
8 wire logical_or = a || b;
9 wire logical_not = !a;

(c) Arithmetic and logical operators

1 wire less_than = a < b;
2 wire less_equal = a <= b;
3 wire greater_than = a > b;
4 wire greater_equal = a >= b;
5

6 wire logical_equal = a == b;
7 wire logical_not_equal = a != b;
8 wire case_equal = a === b;
9 wire case_not_equal = a !== b;

(d) Relational and equality operators.

Figure 68

We will assume that the nand gate is always implemented.

Definition 6.4 (Structural Implementation of AON)

1 module and(
2 input x1, x2
3 output y
4 );
5 wire z1;
6

7 nand nand1(z1, x1, x2);
8 nand nand2(y, z1, z1);
9

10 endmodule

(a) Gate Level AND

1 module or(
2 input x1, x2,
3 output y
4 );
5 wire z1, z2;
6

7 nand nand1(z1, x1, x1);
8 nand nand2(z2, x2, x2);
9 nand nand3(y, z1, z2);

10 endmodule

(b) Gate Level OR

1 module not(
2 input x,
3 output y
4 );
5 nand nand1(y, x, x);
6

7

8

9

10 endmodule

(c) Gate Level NOT

1 module (
2 input x1, x2,
3 output y
4 );
5 assign y = x1&x2;
6 endmodule

(d) Dataflow Level AND

1 module (
2 input x1, x2,
3 output y
4 );
5 assign y = x1|x2
6 endmodule

(e) Dataflow Level OR

1 module (
2 input x,
3 output y
4 );
5 assign y = ~x;
6 endmodule

(f) Dataflow Level NOT

Figure 69: Gate level implementations of elementary gates with NAND in Verilog (top). Notice that these
look like straight line programs. Dataflow implementations make things more concise, but less readable.

55/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 6.5 (Structural Implementation of NOR, XOR)

1

2

(a) Gate Level NOR

1

2

(b) Gate Level XOR

1 module nor(
2 input x1, x2,
3 output y
4 );
5 assign y = ~(x1 | x2);
6 endmodule

(c) Dataflow Level NOR

1 module xor(
2 input x1, x2,
3 output y
4 );
5 assign y = x1 ^ x2;
6 endmodule

(d) Dataflow Level XOR

Figure 70: Gate level and dataflow level implementations in Verilog.

Definition 6.6 (Structural Implementation of Multiplexor)

1 module mux(a, b, x, out1);
2 input a, b, x;
3 output out1;
4

5 wire not_x;
6 wire out_and1, out_and2;
7

8 not not1(not_x, x);
9 and and1(out_and1, not_x, a);

10 and and2(out_and2, x, b);
11 or or1(out1, out_and1, out_and2);
12 endmodule

(a)

1 module multiplex_gatel(a, b, x, out1);
2 input a, b, x;
3 output out1;
4

5 assign out1 = (~x & a)|(b & x);
6 endmodule

(b)

Figure 71

Can be efficient but a bit cryptic. So we really want to describe the behavior of the circuit rather than what
the circuit actually is. So we do not have to worry about the implementation details, and we trust that the
compiler will take care of it.

Example 6.1 (Behavioral Level Implementation of Multiplexor)

In here, we don’t care what the circuit looks like, and we model the behavior.

1 module multiplex_gate_level(A, B, X, out1);
2 input A, B, X;
3 output out1;
4

5 always @(*)
6 begin
7 if(X==0)

56/ 90



Computer Architecture Muchang Bahng Spring 2024

8 out1 = A;
9 else

10 out1 = B;
11 end
12 endmodule

6.2 Test Benching
We’ve seen how to construct certain gates/chips in Verilog, but we don’t know if the circuits actually do
what we want. For this, we need to set up test bench modules. With these, we can select a predetermined
set of inputs and test the signals through each intermediate wire and the output for each.

Definition 6.7 (Test Bench Module)

A testbench module represents a suite of inputs that you want to test. The device under test
(dut) connects the testbench signals to the DUT ports using named port connections.

1 module nand_gate_tb;
2 reg a, b; // registers that hold states
3 wire y;
4

5 // Instantiate device under test
6 nand_gate dut(.a(a), .b(b), .y(y));
7

8 initial begin
9 // Enable waveform dumping

10 $dumpfile("nand_gate.vcd");
11 $dumpvars(0, nand_gate_tb);
12

13 // Test all input combinations
14 a = 0; b = 0; #10;
15 a = 0; b = 1; #10;
16 a = 1; b = 0; #10;
17 a = 1; b = 1; #10;
18

19 $display("Test complete");
20 $finish;
21 end
22

23 // Monitor changes
24 initial
25 $monitor("At time %t: a=%b, b=%b, y=%b", $time, a, b, y);
26 endmodule

Example 6.2 (Test Benching Multiplexor)

Here we show a testbench module that takes a predetermined set of inputs (all 8) and shows the
signals traveling through each wire.

57/ 90



Computer Architecture Muchang Bahng Spring 2024

1 module tb_multiplex;
2 reg A, B, X;
3 wire out1;
4

5 multiplex_gate uut(A, B, X, out1);
6

7 initial begin
8 // Test all combinations
9 A = 0; B = 0; X = 0; #10;

10 A = 0; B = 1; X = 0; #10;
11 A = 1; B = 0; X = 0; #10;
12 A = 1; B = 1; X = 0; #10;
13 A = 0; B = 0; X = 1; #10;
14 A = 0; B = 1; X = 1; #10;
15 A = 1; B = 0; X = 1; #10;
16 A = 1; B = 1; X = 1; #10;
17 $finish;
18 end
19

20 initial begin
21 $dumpfile("waves.vcd");
22 $dumpvars(0, tb_multiplex);
23 end
24 endmodule

Figure 72: Test bench module for multiplexor in GTKwave.

Figure 73: View in GTKwave. You want to take a signal name in the bottom left and add it to the viewer
by either double clicking on it or clicking “append.”

58/ 90



Computer Architecture Muchang Bahng Spring 2024

7 Instruction Sets
Let’s review what we have so far. From only gates, we have constructed the three main components.

1. A CPU that can do various arithmetic operations with the ALU and multiplexors.

2. A larger memory bank, called RAM, where the CPU can load and store to.

3. Since a CPU cannot directly do operations in RAM, a set of registers is built into the CPU and is the
only place where the CPU can perform operations.4

While this is physically implemented in hardware, it is probably not the most efficient to take pieces of wires
and directly send electrical signals by physically tapping the pins on the processor. What we first need is
some interface to efficiently communicate with our machine—along with it some sort of standard that both
the machine and the human can understand. This naturally introduces an instruction set, which is a more
human-friendly abstraction above the hardware level.

Note that the instruction set is the border between the hardware and software level. Another name for
instruction sets is assembly, which has many different types of languages depending on the type of CPU.
The specific implementations of assembly languages—notably x86, ARM, and RISC-V—will be detailed in
my separate assembly notes. This section is to describe the general operations that are considered essential,
and we will talk about specific implementations in occasional examples. Note that instructions are simply
another layer of abstraction that maps binary sequences to human readable words.

Definition 7.1 (Instruction Set Architecture)

The instruction set architecture (ISA) of a CPU is basically a description of what it can do. It
specifies the following.a

1. A predetermined set of instructions—also known as opcodes—that describes the operations
that the CPU supports.

2. The instruction length and decoding, along with its complexity.
3. The performance vs power efficiency.

1 OPCODE1 arg1 arg2 arg3
2 OPCODE2 arg1 arg2
3 ...
4 OPCODEn arg1

(a) The syntax may differ across ISAs and opcodes, but it
is usually the opcode followed by its arguments/operands.
The specific opcodes available are usually documented in
the ISA’s provider page online.

aThe ISA is really just the instruction set. The microarchitecture is everything.

1 0100 0010 0110 1111
2 0001 000001 010100
3 ...
4 1101 1100 00000000

(b) Every instruction (opcode and arguments) has a di-
rect binary representation which can entirely fit into a
register. In here, we consider a register of 16 bits, and
unused bits are zero-padded.

Note that it only makes sense to talk about the instruction set architecture of some processing unit (e.g.
CPU, GPU), and nothing more/less. It does not make sense to talk about the ISA of a computer, and it is

4which is why it must move data from memory to registers before it can perform operations on it.

59/ 90



Computer Architecture Muchang Bahng Spring 2024

usually implied that we are talking about the CPU residing in the computer. The ISA is also a subset of
the more general computer architecture.

Example 7.1 (CISC vs RISC)

ISAs can be classified into two types.
1. The complex instruction set computer (CISC) is characterized by a large set of complex

instructions, which can execute a variety of low-level operations. This approach aims to reduce
the number of instructions per program, attempting to achieve higher efficiency by performing
more operations with fewer instructions.

2. The reduced instruction set computer (RISC) emphasizes simplicity and efficiency with a
smaller number of instructions that are generally simpler and more uniform in size and format.
This approach facilitates faster instruction execution and easier pipelining, with the philosophy
that simpler instructions can provide greater performance when optimized.

We should first start off with describing the high level categories of an opcode and an operand. Like higher
level programming languages, we can perform operations, do comparisons, and jump to different parts of the
code.

Definition 7.2 (Types of Instructions)

There are generally three types of instructions.
1. Data Movement: These instructions move data between memory and registers or between the

registery and registery. Memory to memory transfer cannot be done with a single instruction.

1 %reg = Mem[address] # load data from memory into register
2 Mem[address] = %reg # store register data into memory

2. Arithmetic Operation: Perform arithmetic operation on register or memory data.

1 %reg = %reg + Mem[address] # add memory data to register
2 %reg = %reg - Mem[address] # subtract memory data from register
3 %reg = %reg * Mem[address] # multiply memory data to register
4 %reg = %reg / Mem[address] # divide memory data from register

3. Control Flow: What instruction to execute next both unconditional and conditional (if state-
ments) ones. With if statements, loops can then be defined.

1 jmp label # jump to label
2 je label # jump to label if equal
3 jne label # jump to label if not equal
4 jg label # jump to label if greater
5 jl label # jump to label if less
6 call label # call a function
7 ret # return from a function

Definition 7.3 (Types of Operands)

These are equivalently determined by their mode of access:
1. Immediate addressing is denoted with a $ sign, e.g. a constant integer data $1.
2. Register addressing is denoted with a % sign with the following register name, e.g. %rax.
3. Memory addressing is denoted with the hexadecimal address in memory, e.g. 0x034AB.

60/ 90



Computer Architecture Muchang Bahng Spring 2024

7.1 Data Movement Operations
When we parse an instruction, its operands are one of three things: literals, registers, and memory forms.
The method in which we access each type of data is known as a mode of access. These three types are
pretty universal, but the syntax in the modes of access vary quite a bit.

Definition 7.4 (Literals)

A literal is a constant value, which we will label as L or some other capital letter when specified.

Definition 7.5 (Immediate Addressing)

A literal is accessed through immediate addressing modes, when the operand of an instruction is
a literal L.a

aThis seems a bit repetitive, saying that L is accessed by L. In our syntax it is, but in other languages, like x86,
literals are prepended with $, e.g. $1 or $0x13.

Every ISA has a predetermined set of registers.

Definition 7.6 (Registers)

The set of registers of a n-bit ISA correspond to the physical registers on the CPU of bit length n.
There are two types.

1. General-purpose registers—labeled as R1, R2, ..., Ri—can be used to store any value that the
coder wants.

2. Special-purpose registers are reserved for storing special values and should not in general be
used. We will introduce special purpose registers and their notations along the way.

One example of a special purpose register is the stack pointer, which always keep track of the next memory
location for the CPU to retrieve. We will cover this later, but note that if we were to override the stack
pointer (which we have the power to do), then the program will most likely break. Another example is the
frame pointer, which points to the base of the current stack frame, and instruction pointers, which point to
the next instruction to be executed.

Furthermore, there are general conventions even for general-purpose registers. This is to set some standard
that programmers can work with, given that assembly is hard enough to learn on its own. For example, certain
general registers are generally known to store the parameters of a functions. Return registers store return
values of functions. In order to see which registers are on or off limits, you must refer to the documentation
of each language.

Example 7.2 (Types of Registers)

Here is a snippet from the Apple Developer Docs for ARM64 assembly: The ARM standard delegates
certain decisions to platform designers. Apple platforms adhere to the following choices:

• The platforms reserve register x18. Don’t use this register.
• The frame pointer register (x29) must always address a valid frame record. Some functions—

such as leaf functions or tail calls—may opt not to create an entry in this list. As a result, stack
traces are always meaningful, even without debug information.

Definition 7.7 (Normal/Register Addressing)

The value residing in a register Ri is accessed through normal/register addressing modes, in the
following syntax.

Reg[Ri] (13)

61/ 90

https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms


Computer Architecture Muchang Bahng Spring 2024

Finally, we have talked about accessing data on memory banks. By definition, a memory bank must be
accessed through its memory address, and fortunately, we have designed our architecture so that all memory
addresses can be indexed by a number that fits in our n-bit width register. We can refer to this address plus
its value at the address as a memory form.

Definition 7.8 (Memory Form)

A memory form refers to some representation of a memory address.

Therefore the next addressing mode should be very natural.

Definition 7.9 (Direct Addressing)

In direct accessing modes, an instruction contains the memory address to access. We will denote
it as

Mem[L] (14)

Note that the literal L was not interpreted as a value itself, but rather as a memory address. Therefore, if we
store L in a register, then we can interpret the contents of a register as sort of like a pointer to some other
location in memory. This introduces us the familiar concept in low-level programming languages. There can
be multiple levels of indirection here. A register may point to a memory address and a memory bank may
itself point to another memory address.

Definition 7.10 (Pointer)

A memory device that stores a memory address is said to be a pointer. To access the value at a
location in memory, we dereference the pointer as follows.

Mem[Reg[Ri]], Mem[Mem[L]] (15)

Above, Ri is a pointer since it is a register that contains Reg[Ri], an address to another memory.
Similarly, Mem[L] is a pointer since the value at this location in memory points to another memory
address.

Therefore, there is a duality. A literal L can be interpreted both as a value or a pointer. This allows us to use
syntactic sugar to compute offset memories through a technique called pointer arithmetic. The following
addressing modes are just fancy names for computing offsetting addresses.

Definition 7.11 (Offset Addressing)

Take a base memory address B, an offset D, and a scale factor S.a We can access the offset memory
address

Mem[B + S * D] (16)

in the following ways.b
1. If the base address is a literal and D = Reg[Ri] is stored in a register, i.e. Ri is a pointer, then

this is called indexed addressing.

Mem[B + S * Reg[Ri]] (17)

2. If the base address B = Reg[Rb] and offset is a literal, then this is called displacement ad-
dressing.

Mem[Reg[Rb] + S * D] (18)

3. If the base address B = Reg[Rb] and offset is also a pointer D = Reg[Ri], then this is called
indirect addressing.

Mem[Reg[Rb] + S * Reg[Ri]] (19)

62/ 90



Computer Architecture Muchang Bahng Spring 2024

aWe need a scale factor since the word size—the bit length of memory banks—may be several Bytes.
bThe names are very interchangeable depending on context, so rather than just memorizing these, just know that

you can always replace literals with addresses, and use them to calculate offsets.

Note that this is just syntax, and the + and * signs do not mean anything yet.

Now that we have developed syntax for accessing data, the next thing to do is to know how to move data
around. Let’s define a simple operator for this.

Definition 7.12 (mov)

The move operation has the following syntax. It is more of a copy rather than a move.

mov (source) (destination) (20)

and supports the following combination of operands.

1 mov L Ri // move literal L to register Ri
2 mov L Mem[A] // move literal L to memory address at A
3 mov Ri Rj // copy value at register Ri to register Rj
4 mov Ri Mem[A] // move value at register Ri to memory address at A
5 mov Mem[A] Ri // move value at memory address A to register Ri
6 mov Mem[A1] Mem[A2] // move value at memory address A1 to address A2

Note the following details on the syntax.
1. We cannot set a literal as the destination, and so there are no operands that support this.
2. The syntax for moving the value at register Ri to Rj is not mov Reg[Ri] Rj.

Note that when a move instruction is called, the opcode mov along with its operands will get translated into
binary. Consider a 16-bit machine with 6-bit opcodes and 5-bit operands. If the opcode for mov is 111000
and say that we look for the two cases.

1. We want to move the value at register Ri, which may translate to the binary encoding 11111, to the
value at register Rj, which may have the binary encoding 00000.

2. We want to move the literal 11111 to the value at register Rj with binary encoding 00000.

Both scenarios give us the instruction encoding as

111000 11111 00000 (21)

The CPU—only able to interpret the instruction as a sequence of bits, will not be able to differentiate the
two. The solution is to have different binary encodings for each version of the mov operation.

Example 7.3 (mov Opcodes in x86)

The mov instruction in x86_64 has the following opcodes. Note that in here, the first operand is the
destination

63/ 90



Computer Architecture Muchang Bahng Spring 2024

Opcode Description
0x88 mov r/m8, r8 (byte register to memory/register)
0x89 mov r/m32/64, r32/64 (32/64-bit register to memory/register)
0x8A mov r8, r/m8 (memory/register to byte register)
0x8B mov r32/64, r/m32/64 (memory/register to 32/64-bit register)
0xB0-0xB7 mov r8, imm8 (immediate byte to 8-bit register)
0xB8-0xBF mov r32/64, imm32/64 (immediate to 32/64-bit register)
0xC6 mov r/m8, imm8 (immediate byte to memory/register)
0xC7 mov r/m32/64, imm32 (immediate to memory/register)

Figure 75: Opcodes for x86.

We can see this in the object dump file.

1 > objdump -d exit
2

3 exit: file format elf64-x86-64
4

5 Disassembly of section .text:
6

7 0000000000401000 <_start>:
8 401000: b8 01 00 00 00 mov $0x1,%eax
9 401005: bb 12 00 00 00 mov $0x12,%ebx

10 40100a: cd 80 int $0x80

Figure 76

One final note is that in actual implementation, the load (ldr) operation is actually used to move data from
memory to registers, while mov is used to move from registers to registers/memory. Memory to memory
transfer cannot be done with a single execution.

7.2 Arithmetic and Logical Operations
Now we start abstracting away the implementations of combinational circuits into a language.

Definition 7.13 (Flag Register)

The flg register keep tracks of all this stuff. The most common flags are as follows.

64/ 90



Computer Architecture Muchang Bahng Spring 2024

Flag Name Description
Z Zero flag Indicates that the result of an arithmetic or logical

operation (or, sometimes, a load) was zero.
C Carry flag Enables numbers larger than a single word to be

added/subtracted by carrying a binary digit from a
less significant word to the least significant bit of a
more significant word as needed. It is also used to
extend bit shifts and rotates in a similar manner on
many processors (sometimes done via a dedicated X
flag).

S / N Sign flag
Negative flag

Indicates that the result of a mathematical operation
is negative. In some processors, the N and S flags are
distinct with different meanings and usage: One in-
dicates whether the last result was negative whereas
the other indicates whether a subtraction or addition
has taken place.

V / O / W Overflow flag Indicates that the signed result of an operation is too
large to fit in the register width using two’s comple-
ment representation.

Figure 77: Most common CPU status register flags, implemented in almost all modern processors.

Some less common flags are shown below.

Flag Name Description
H / A / DC Half-carry flag

Auxiliary flag
Digit carry
Decimal adjust flag

Indicates that a bit carry was produced between the
nibbles (typically between the 4-bit halves of a byte
operand) as a result of the last arithmetic operation.
Such a flag is generally useful for implementing BCD
arithmetic operations on binary hardware.

P Parity flag Indicates whether the number of set bits of the last
result is odd or even.

I Interrupt flag On some processors, this bit indicates whether inter-
rupts are enabled or masked. If the processor has
multiple interrupt priority levels, such as the PDP-
11, several bits may be used to indicate the priority
of the current thread, allowing it to be interrupted
only by hardware set to a higher priority. On other
architectures, a bit may indicate that an interrupt is
currently active, and that the current thread is part
of an interrupt handler.

S Supervisor flag On processors that provide two or more protection
rings, one or more bits in the status register indi-
cate the ring of the current thread (how trusted it
is, or whether it must use the operating system for
requests that could hinder other threads). On a pro-
cessor with only two rings, a single bit may distin-
guish Supervisor from User mode.

Figure 78

65/ 90



Computer Architecture Muchang Bahng Spring 2024

Example 7.4 (Flag Registers in x86 and ARM)

Here are some common flag register implementations.
1. In x86, the FLAGS register contains.
2. In ARM, the NZCV register stores the sign, zero, carry, and overflow flags.
3. In RISC-V, comparison instructions store the comparison result in a general-purpose register,

and conditional branches act based on the value in the general purpose register.
4. In MIPS, we do not use a dedicated flag register.

With the flag registers, we can have a complete implementation of the following.

Definition 7.14 (Addition)

The addition operation performs arithmetic addition and stores the result in the destination.

add (source) (destination) (22)

and supports the following combination of operands.

1 add L Ri // add literal L to register Ri
2 add L Mem[A] // add literal L to value at memory address A
3 add Ri Rj // add value at register Ri to register Rj
4 add Ri Mem[A] // add value at register Ri to value at memory address A
5 add Mem[A] Ri // add value at memory address A to register Ri
6 add Mem[A1] Mem[A2] // add value at memory address A1 to value at address A2

Note the following details on the syntax.
1. The destination operand is modified to contain the sum of source and destination.
2. We cannot set a literal as the destination, and so there are no operands that support this.
3. The operation affects processor flags including zero, carry, overflow, and sign flags.

Definition 7.15 (Addition with Carry)

Definition 7.16 (Subtraction)

The subtraction operation performs arithmetic subtraction and stores the result in the destination.

sub (source) (destination) (23)

and supports the following combination of operands.

1 sub L Ri // subtract literal L from register Ri
2 sub L Mem[A] // subtract literal L from value at memory address A
3 sub Ri Rj // subtract value at register Ri from register Rj
4 sub Ri Mem[A] // subtract value at register Ri from value at memory address A
5 sub Mem[A] Ri // subtract value at memory address A from register Ri
6 sub Mem[A1] Mem[A2] // subtract value at memory address A1 from value at address A2

Note the following details on the syntax.
1. The destination operand is modified to contain the difference (destination - source).
2. We cannot set a literal as the destination, and so there are no operands that support this.
3. The operation affects processor flags including zero, carry, overflow, and sign flags.

66/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 7.17 (Multiplication)

The multiplication operation performs arithmetic multiplication and stores the result in the destina-
tion.

mul (source) (destination) (24)

and supports the following combination of operands.

1 mul L Ri // multiply register Ri by literal L
2 mul L Mem[A] // multiply value at memory address A by literal L
3 mul Ri Rj // multiply register Rj by value at register Ri
4 mul Ri Mem[A] // multiply value at memory address A by value at register Ri
5 mul Mem[A] Ri // multiply register Ri by value at memory address A
6 mul Mem[A1] Mem[A2] // multiply value at address A2 by value at address A1

Note the following details on the syntax.
1. The destination operand is modified to contain the product of source and destination.
2. We cannot set a literal as the destination, and so there are no operands that support this.
3. The operation may produce results larger than register width, affecting overflow flags.

Definition 7.18 (Division)

The division operation performs arithmetic division and stores the result in the destination.

div (source) (destination) (25)

and supports the following combination of operands.

1 div L Ri // divide register Ri by literal L
2 div L Mem[A] // divide value at memory address A by literal L
3 div Ri Rj // divide register Rj by value at register Ri
4 div Ri Mem[A] // divide value at memory address A by value at register Ri
5 div Mem[A] Ri // divide register Ri by value at memory address A
6 div Mem[A1] Mem[A2] // divide value at address A2 by value at address A1

Note the following details on the syntax.
1. The destination operand is modified to contain the quotient (destination ÷ source).
2. We cannot set a literal as the destination, and so there are no operands that support this.
3. Division by zero typically triggers an exception or sets error flags.

Definition 7.19 (Increment, Decrement)

The increment and decrement operations add or subtract 1 from the operand.

inc (operand) dec (operand)

and support the following operands.

1 inc Ri // increment register Ri by 1
2 inc Mem[A] // increment value at memory address A by 1
3 dec Ri // decrement register Ri by 1
4 dec Mem[A] // decrement value at memory address A by 1

Note the following details on the syntax.
1. These are unary operations that modify the operand in place.
2. Literals cannot be used as operands since they cannot be modified.

67/ 90



Computer Architecture Muchang Bahng Spring 2024

3. The operations affect flags but typically preserve the carry flag.

Definition 7.20 (Negation)

The negation operation performs two’s complement negation of the operand.

neg (operand) (26)

and supports the following operands.

1 neg Ri // negate value in register Ri
2 neg Mem[A] // negate value at memory address A

Note the following details on the syntax.
1. This is a unary operation that modifies the operand in place.
2. Literals cannot be used as operands since they cannot be modified.
3. The operation sets flags based on the result, including overflow for minimum values.

Definition 7.21 (Bitwise Operations)

The bitwise operations perform logical operations on operands bit by bit.

and (source) (destination)

or (source) (destination)

xor (source) (destination)

and support the following combination of operands.

1 and L Ri // bitwise AND register Ri with literal L
2 or L Mem[A] // bitwise OR value at memory address A with literal L
3 xor Ri Rj // bitwise XOR register Rj with value at register Ri
4 and Ri Mem[A] // bitwise AND value at memory address A with register Ri
5 or Mem[A] Ri // bitwise OR register Ri with value at memory address A
6 xor Mem[A1] Mem[A2] // bitwise XOR value at address A2 with value at address A1

Note the following details on the syntax.
1. The destination operand is modified to contain the result of the logical operation.
2. We cannot set a literal as the destination, and so there are no operands that support this.
3. These operations clear the carry and overflow flags, setting zero and sign flags.

Definition 7.22 (Bitshift)

The bitshift operations shift bits left or right by a specified number of positions.

shl (count) (operand) shr (count) (operand) (27)

and support the following combination of operands.

1 shl L Ri // shift register Ri left by L positions
2 shr L Mem[A] // shift value at memory address A right by L positions
3 shl Ri Rj // shift register Rj left by value in register Ri
4 shr Ri Mem[A] // shift value at memory address A right by value in register Ri

Note the following details on the syntax.

68/ 90



Computer Architecture Muchang Bahng Spring 2024

1. The operand is modified to contain the shifted result.
2. Left shift (shl) multiplies by powers of 2; right shift (shr) divides by powers of 2.
3. The carry flag receives the last bit shifted out of the operand.

Definition 7.23 (Unconditional Jumps)

The unconditional jump operation transfers control to a specified address.

jmp (target) (28)

and supports the following target specifications.

1 jmp L // jump to literal address L
2 jmp Ri // jump to address stored in register Ri
3 jmp Mem[A] // jump to address stored at memory address A
4 jmp Label // jump to labeled instruction

Note the following details on the syntax.
1. This operation unconditionally transfers control, updating the program counter.
2. Labels are resolved to addresses during assembly or linking.
3. No processor flags are affected by the jump operation itself.

Definition 7.24 (Compare)

The compare operation performs subtraction but only sets flags without modifying operands.

cmp (source) (destination) (29)

and supports the following combination of operands.

1 cmp L Ri // compare register Ri with literal L
2 cmp L Mem[A] // compare value at memory address A with literal L
3 cmp Ri Rj // compare register Rj with value at register Ri
4 cmp Ri Mem[A] // compare value at memory address A with value at register Ri
5 cmp Mem[A] Ri // compare register Ri with value at memory address A
6 cmp Mem[A1] Mem[A2] // compare value at address A2 with value at address A1

Note the following details on the syntax.
1. Neither operand is modified; only processor flags are set based on (destination - source).
2. We cannot set a literal as the destination, and so there are no operands that support this.
3. Sets zero, carry, overflow, and sign flags for use by conditional jump instructions.

Definition 7.25 (Conditional Jump)

The conditional jump operation transfers control to a specified address based on processor flags.

jcc (target) (30)

where cc represents condition codes, and supports the following target specifications.

1 je L // jump if equal (zero flag set)
2 jne L // jump if not equal (zero flag clear)
3 jl L // jump if less than (sign != overflow)
4 jg L // jump if greater than (zero clear and sign == overflow)
5 jc L // jump if carry set

69/ 90



Computer Architecture Muchang Bahng Spring 2024

6 jo L // jump if overflow set
7 js L // jump if sign set

Note the following details on the syntax.
1. Control transfers only if the specified condition is met; otherwise execution continues.
2. Conditions are based on flags set by previous operations like compare or arithmetic.
3. Common conditions include equality, inequality, and signed/unsigned comparisons.

7.3 Code and Data Segments
Okay, now that we are familiar with the syntax, let’s step back to consider how a series of bits are actually
converted into code. Given a program, it must work with data, either to store its own code or to access data
from memory itself. Whenever there is data, there exists memory, and whenever there is memory, there is
the address where it is located in.

Definition 7.26 (Address Space)

An address space is the range of memory addresses available to a program or a process. Each
address space of a program is also called a segment.

The program itself—i.e. the list of instructions—is also data, and so it will be stored in some address space.
We have a name for this.

Definition 7.27 (Text/Code Segment)

The text/code segment is the address space where the program instructions are stored. It is
readable, executable, and of fixed size. It is not writable.

Okay, so assume that we have the binary encodings of instructions in the text segment, along with the
relevant data in the data segment. The CPU is apparently supposed to execute each line of instruction, but

Definition 7.28 (Instruction Pointer)

The instruction pointer, which we will denote ip, is a register that stores the address of the next
instruction to execute.

Example 7.5 (Execution of Simple Program)

Definition 7.29 (Data Segment)

The data segment is the address space where static global variables are stored. It is readable and
writable, but not executable.

Definition 7.30 (Read Only Data Segment)

The read only data segment, also known as rodata, is the address space that stores read-only
data, i.e. constants.

These two address spaces are so important that every script written in assembly must specify this. Having
no data segment implies that the data segment is empty.

70/ 90



Computer Architecture Muchang Bahng Spring 2024

1 .section .text
2 .globl _start
3

4 _start:
5 movl $1, %eax
6 movl $0, %ebx
7 int $0x80

(a) x86 assembly (b) ARMv8 assembly

Figure 79: Every script must have a text section.

At this point, we introduced the text and data segments as simply some blocks of memory that are allocated
before a program starts executing. We will see the full significance of this segments soon.

Example 7.6 (Maximum of Array of Integers)

1 .section .data
2

3 data_items:
4 .long 3,67,34,222,45,75,54,34,44,33,22,11,66,0
5

6 .section .text
7

8 .globl _start
9

10 _start:
11 movl $0, %edi
12 movl data_items(, %edi,4), %eax
13 movl %eax, %ebx
14

15 start_loop:
16 cmpl $0, %eax
17 je loop_exit
18 incl %edi
19 movl data_items(,%edi,4), %eax
20 cmpl %ebx, %eax
21 jle start_loop
22 movl %eax, %ebx
23 jmp start_loop
24

25 loop_exit:
26 movl $1, %eax
27 int $0x80

7.4 Stack Memory
Say you are working with an architecture consisting of 32 8-bit registers. You might be working on a program
that—during runtime—works with a lot more than just 32 numbers. To solve this, you take advantage of
the large pool of RAM that you have already built for yourself. Say you want to store 0x18 originally in
register r1 into memory. If you do it, then you will have to store the address of 0x18 somewhere in one of
your registers. Therefore you have simply replaced the value with its address and have not saved any space

71/ 90



Computer Architecture Muchang Bahng Spring 2024

at all! In fact, it is counterproductive since now you have to wait for slow access times into the memory. 5

Designing the memory so that it works like a stack data structure turns out to solve this problem, along with
other ones such as function call traces. In fact, the stack is so important that is pretty much universal across
all computer architectures. The general idea is to simulate intermediate storage by pushing and popping
temporary variables onto the stack.6

Definition 7.31 (Stack Memory/Segment)

The stack memory is an address space that stores
1. Intermediate calculations, i.e. temporary results when registers are insufficient.
2. Return addresses, which specifies where to resume execution after function calls.
3. Local variables. temporary data within functions.
4. Saved registers. Preserved register values during function calls.
5. Processor state. Flags and registers during interrupts/exceptions.

Note that the problem of extra storage is only the first application of the stack. The main API of the stack
is at the top address, which is at the stack pointer.

Definition 7.32 (Stack Pointer)

The stack pointer is a register—denoted sp—that stores the address of the top of the stack.

Definition 7.33 (Push, Pop)

The push and pop operations manage data on the stack using the stack pointer.

push (operand) pop (operand) (31)

and support the following operands.

1 push L // push literal L onto stack
2 push Ri // push value in register Ri onto stack
3 push Mem[A] // push value at memory address A onto stack
4 pop Ri // pop top of stack into register Ri
5 pop Mem[A] // pop top of stack into memory address A

Note the following details on the syntax.
1. Push decrements the stack pointer then stores the value; pop retrieves then increments.
2. We cannot pop into a literal since literals cannot be modified.
3. Stack grows downward in memory (higher addresses to lower addresses).

Definition 7.34 (Function)

A function is a series of instructions.

5If you read up on the implementation of arrays in my DSA notes, you might think of putting them into a list, storing
the front of the array in memory, and having a special terminating character indicating the end of an array. But not all data
structures can—nor should—be nicely formatted in this list.

6The model of memory as a stack is not a fundamental part of memory since memory is just an array of bytes. The stack,
along with the ideas of a stack/base pointer is a part of the ISA.

72/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 7.35 (Call, Return)

The call and return operations manage function invocation and return.

call (target) ret (32)

and support the following target specifications for call.

1 call L // call function at literal address L
2 call Ri // call function at address stored in register Ri
3 call Mem[A] // call function at address stored at memory address A
4 call Label // call labeled function
5 ret // return from current function

Note the following details on the syntax.
1. Call pushes the return address onto the stack then jumps to the target.
2. Return pops the return address from the stack and jumps to it.
3. The stack pointer must be properly maintained for correct return behavior.

Definition 7.36 (Stack Frame)

The stack frame refers to the portion of the stack allocated to a single function call. The currently
executing function is always at the top of the stack, and its stack frame is referred to as the active
frame.

Definition 7.37 (Base/Frame Pointer)

When a function is called,
1. a new stack frame is created on the call stack.
2. The base point is set to the base/start of this frame, called the frame/base pointer, denoted

bp.

Note that the active frame is bounded by the stack pointer (at the top of stack) and the frame pointer (at
the bottom of the frame). The stack pointer helps us execute the current function in the active frame, while
the base pointer helps us backtrack to the previous function (that called the current function) to continue
the program. Both pointers serve a dual purpose.

73/ 90



Computer Architecture Muchang Bahng Spring 2024

0xFFFF
...

0x4156
0x4160
0x4164
0x4168
0x4172

0x4148
0x4152

0x4136
0x4140
0x4144

0x4108
0x4112
0x4116
0x4120
0x4124
0x4128
0x4132

0x4096
0x4100
0x4104

bp

sp

...

0x0000

Figure 80: The entire memory is shown as an array, with high address at the top. The stack in practice turns out to
start from the high addresses and grow down. So the “top” of the stack is really the bottom. The red indicates the
outermost function, i.e. our first stack frame. The blue indicates a function called with red, our second stack frame.
Continuing with green, and the yellow is our active frame. The stack pointer is at the bottom while the base pointer
stores the last address in green right before going into the yellow stack frame.

Example 7.7 ()

Example 7.8 ()

Example 7.9 ()

The opcodes that are used to interact with the stack frame are called control transfers, since they take care
of storing variables on the stack before “transferring” control to another stack frame. Let’s introduce two
more.

Definition 7.38 (Continue)

Definition 7.39 (Leave)

You can get out of stack with leave.

Example 7.10 (Control Transfer Example)

We show this with a minimal example with psuedocode.

74/ 90



Computer Architecture Muchang Bahng Spring 2024

Example 7.11 (Multiple Functions Example)

Now what happens if there are multiple functions calling each other? Take a look at the following
example with two functions.

There is a bit of a concern here from the previous example. The main function had two functions that
returned two values. As the subfunction stack frame is removed from the stack, the return value is stored in
the %rax register. If another function is called right after, then the return value of the second function will
overwrite that of the previous one. This was not a problem in the previous example since the return value
of the assign function was not used. However, if it was, then the return value of the adder function would
have overwritten it. This is known as register saving, and there are two types.

Definition 7.40 (Caller-Saved Registers)

For caller-saved registers, the caller function is responsible for saving the value of the register
before calling a function and restoring it after the function returns. The caller should save values in
its stack frame before calling the callee function, e.g. by pushing all the return values of each callee
in the caller stack frame. Then it will restore values after the call.
Therefore, if we have a set of registers {%reg}, the caller must take everything and push them in the

caller stack frame. Then it will restore them after the call.

Definition 7.41 (Callee-Saved Registers)

For callee-saved registers, it is the callee’s responsibility to save any data in these registers before
using the registers.
Therefore, if we have a set of registers {%reg}, then inside the callee stack frame, the callee must
take everything and push them in the callee stack frame. Once it computes the final return value,

then it will restore all the saved register values from the callee stack frame back into the registers for
the caller to use.

Ideally, we want one calling convention to simply separate implementation details between caller and callee.
In general, however, neither is best. If the caller isn’t using a register, then caller-save is better, and if callee
doesn’t need a register, then callee-save is better. If we do need to save, then callee save generally makes
smaller programs, so we compromise and use a combination of both caller-save and callee-save.

7.5 Heap Memory

Definition 7.42 (Heap Memory)

The heap address space

75/ 90



Computer Architecture Muchang Bahng Spring 2024

text/code

Initialized data

Unitialized data

heap

stack

0x0000

0xFFFF

Figure 81: Division of address spaces in total memory.

7.6 Assembling and Linking
The conversion of assembly code into a full binary executable is done through a two step process. First, the
code is assembled into a set of object files, and then these object files are linked into a binary executable.7

7Common assemblers are gas, as and common linkers are ld (GNU linker) or lld (LLVM linker).

76/ 90



Computer Architecture Muchang Bahng Spring 2024

8 Caches
In order to actually do computations on the data stored in the memory, the CPU must first fetch the data,
perform the computations, and then store the results back into memory. This can be done in two ways.

1. Load and Store Operations: CPUs use load instructions to move data from memory to registers (where
operations can be performed more quickly) and store instructions to move the modified data back into
memory.

2. If the data is too big to fit into the registers, the CPU will use the cache to store the data, and in
worse cases, the actual memory itself. Compilers optimize code by maximizing the use of registers for
operations to minimize slow memory access. This is why you often see assembly code doing a lot in
registers.

8.1 Locality
So far, we have abstracted away most of these memory types as a single entity with nearly instantaneous
access, but in practice this is not the case. The most simple way is to simply have RAM and our CPU
registers, but by introducing more intermediate memory types, we can achieve greater efficiency.

Definition 8.1 (Locality)

Locality is a principle that generally states that a program that accesses a memory location n at
time t is likely to access memory location n+ ϵ at time t+ ϵ. This principle motivates the design of
efficient caches.

1. Temporal locality is the idea that if you access a memory location, you are likely to access it
again soon.

2. Spatial locality is the idea that if you access a memory location, you are likely to access
nearby memory locations soon.

This generally means that if you access some sort of memory, the values around that address is also
likely to be accessed and therefore it is wise to store it closer to your CPU. In CPUs, both the
instructions and the data are stored in the cache, which exploits both kinds of locality (repeated
operations for temporal and nearby data for spatial).

Example 8.1 (Locality)

Consider the following code.

1 int sum_array(int *array, int len) {
2 int i;
3 int sum = 0;
4

5 for (i = 0; i < len; i++) {
6 sum += array[i];
7 }
8

9 return sum;
10 }

1. Temporal Locality
(a) We cycle through each loop repeatedly with the same add operation, exploiting temporal

locality.
(b) The CPU accesses the same memory (stored in variables i, len, sum, array) within each

iteration and therefore at similar times.
2. Spatial Locality

77/ 90



Computer Architecture Muchang Bahng Spring 2024

(a) The spatial locality is exploited when the CPU accesses memory locations from each ele-
ment of the array, which are contiguous in memory.

(b) Even though the program accesses each array element only once, a modern system loads
more than one int at a time from memory to the CPU cache. That is, accessing the first
array index fills the cache with not only the first integer but also the next few integers
after it too. Exactly how many additional integers get moved depends on the cache’s block
size. For example, a cache with a 16 byte block size will store array[i] and the elements
in i+1, i+2, i+3.

We can see the differences in spatial locality in the following example.

Example 8.2 ()

One may find that simply changing the order of loops can cause a significant speed up in your program.
Consider the following code.

1 float averageMat_v1(int **mat, int n) {
2 int i, j, total = 0;
3

4 for (i = 0; i < n; i++) {
5 for (j = 0; j < n; j++) {
6 // Note indexing: [i][j]
7 total += mat[i][j];
8 }
9 }

10 return (float) total / (n * n);
11 }

1 float averageMat_v2(int **mat, int n) {
2 int i, j, total = 0;
3

4 for (j = 0; j < n; j++) {
5 for (i = 0; i < n; i++) {
6 total += mat[i][j];
7 }
8 }
9 return (float) total / (n * n);

10 }
11 .

Figure 82: Two implementations of taking the total sum of all elements in a matrix.

It turns out that the left hand side of the code executes about 5 times faster than the second version.
Consider why. When we iterate through the i first and then the j, we access the values array[i][j]
and then by spatial locality, the next few values in the array, which are array[i][j+1], ... are stored
in the cache.

1. In the left hand side of the code, these next stored values are exactly what is being accessed,
and the CPU can access them in the cache rather than having to go into memory.

2. In the right hand side of the code, these next values are not being accessed since we want to
access array[i+1][j], .... Unfortunately, this is not stored in the cache and so for every n2

loops we have to go back to the memory to retrieve it.

8.2 Caches
In theory, a cache should know which subsets of a program’s memory it should hold, when it should copy
a subset of a program’s data from main memory to the cache (or vice versa), and how it can determine
whether a program’s data is present in the cache. Let’s talk about the third point first. It all starts off with
a CPU requesting some memory address, and we want to determine whether it is in the cache or not. To do
this, we need to look a little deeper into memory addresses.

Definition 8.2 (Portions of Memory Addresses)

A memory address is a m-bit number.a It is divided up into three portions.
1. The tag field with t bits at the beginning.

78/ 90



Computer Architecture Muchang Bahng Spring 2024

2. The index field with i bits in the middle.
3. The offset field with o bits at the end.

The tag plus the index together refers to the block number.

Tag Index Offset

1010 0000011 00100

Figure 83: Portions of a 16 bit memory address with t = 4, i = 7, o = 5.

a64 in 64-bit machines.

Before we see why we do this, we should also define the portions of a CPU.

Definition 8.3 (CPU Cache)

A CPU cache divides its storage space as follows. A cache is essentially an array of sets, where S is
the number of sets. Each set is divided into E units called cache lines/rows, with each cache line
independent of all others and contains two important types of information.

1. The cache block stores a subset of program data from main memory, of size 2o.a Sometimes,
the block is referred to as the cache line. Note that is the cache block size is 2o bytes, then the
block offset field has length log2 2

o = o.
2. The metadata stores the valid bit (which tells us if the actual data in memory is valid),

and the tag of length t (the same as the tag length of the memory address) which tells us the
memory address of the data in the cache.

Therefore, the cache size is defined to be C = S · E ·B (the metadata is not included).

Line V Tag Cache Data Block
0
1
2
3
4
5
6
7

1 01110010...

Figure 84: Diagram of a direct-mapped cache.

CPU caches are built-in fast memory (SRAM) that stores stuff. There are two types:
1. i-cache stores copies of instructions.
2. d-cache stores copies of data from commonly referenced locations.

We saw that caches come in different levels, they all just hold words retrieved from a higher level of
memory.

1. CPU registers hold words retrieved from L1 cache.
2. L1 holds cache lines retrieved from L2 cache.
3. L2 cache holds cache lines retrieved from L3 cache or the main memory.
4. Main memory holds disk blocks retrieved from local disks.
5. Local disks hold blocks retrieved from remote disks or network servers.

79/ 90



Computer Architecture Muchang Bahng Spring 2024

Figure 85: How caches retrieve data from higher levels of memory.

aIn Intel computers, it is typically 64 bytes long and for Mac Silicon, it is 128 bytes.

Example 8.3 (Simple Calculations)

Given a direct-mapped cache specified by a block size of 8 bytes and a cache capacity of 4 KB,
1. the cache can hold 512 blocks.
2. the block offset field is log2 8 = 3 bits wide.
3. the address 0x1F = 0b00011111 is in block number 3 since the last three bits are the offset, and

whatever is left (passed through the hashamp, which is simply modulo), is the block number.

In I/O caches, software keeps copies of cached items in memory, indexed by name via a hash table.

At the lowest level, registers are explicitly program-controlled, but when accessing any sort of higher memory,
the CPU doesn’t know whether some data is in the cache, memory, or the disk. That is,

Level Storage Type Management
CPU Registers Registers Explicitly program-controlled

(e.g., refer to %rax, %rbx)
L1 Cache On-chip L1 cache (SRAM) Program sees main memory

hardware manages cachingL2/L3 Cache On-chip L2/off-chip L3
cache (SRAM)

Main Memory Main memory (DRAM) Explicitly managed by software
(e.g., OS, web browser)Local Storage Local secondary storage

(local disks)
Remote Storage Remote secondary storage

(distributed file systems, web servers)

Figure 86

Finally, let’s compare software vs hardware caches.

80/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 8.4 (Software Caches)

When implementing caches in software, there are large time differences (DRAM vs disk, local vs
remote), and they can be tailored to specific uses cases. They also have flexible and sophisticated
approaches with data structures (like trees) and can perform complex computation.

Theoretically, when implementing hash tables, you never actually have to evict something. You can have
the values of the table to be a linked list where we add to the head. If there is unlimited chaining, we have
a full associative cache, and if we have limited chaining (e.g. 5), it is like a 5-way set associative cache. If it
goes out of bound, we can implement LRU by removing the tail of the linked list.

Definition 8.5 (Hardware Caches)

In hardware caches, there are smaller time differences, needs to be as fast as possible, and paralleliza-
tion is emphasized.

There are slightly different implementations of caching, and for each implementation, we will describe

1. how to load data from memory into the cache,

2. how to retrieve data from the cache,

3. how to write data to the cache.

8.3 Direct Mapped Cache
A direct mapped cache is a caching implementation when we assume that E = 1, which means that for any
given memory address, there is only one possible cache line that can store this data at that memory address.
That is, the cache is really just a bunch of sets with one cache line each, and each cache line is completely
isolated from the others. Whether we load data from memory into cache or try to retrieve data from the
cache, it’s really the same process.

Theorem 8.1 (Placement)

To load data from memory into the cache, which happens when there is a cache miss, we do the
following.

1. The CPU requests a memory address M = (T, I,O).
2. There exists a hashmap H that maps the index I to a cache line.
3. At line H(I), we can get a cache miss and must load from memory into this cache.
4. We wait until the memory has retrieved the data from the portion of the memory. i.e. we wait

for the 2o bytes located at addresses (T, I, 0 . . . 0) to (T, I, 1 . . . 1). Call this data D.
5. The 2o byte string D is stored in the cache data block at line M(I),ready to be used.

Theorem 8.2 (Lookup)

To see whether a requested memory address is in the cache, we do the following.
1. The CPU requests a memory address M = (T, I,O).
2. There exists a hashmap H that maps the index I to a cache line.
3. At line H(I), check the cache line’s valid bit. If it is not valid, then this is a cache miss and we

must go to the memory to retrieve the data, leading to the above process.
4. Since there could be multiple I that maps to the same cache line, there will be overlap. But

this is where the tag portion comes in. At cache line H(I), the CPU checks the cache tag to
see if it matches the memory tag T .

5. If it does, then we have just found a way to identify the first t+ i bits of the requested memory

81/ 90



Computer Architecture Muchang Bahng Spring 2024

address, and we have gotten a cache hit. Now, we know that the cache’s data block holds the
data that the program is looking for. We use the low-order offset bits of the address to extract
the program’s desired data from the stored block.

Figure 87: Diagram of a cache request. Note that since the entire data in the memory block stored in the
cache, we can take advantage of spatial locality.

So far, we’ve talked about reading operations, but what about writing to the cache? It is generally imple-
mented in two ways.

Definition 8.6 (Write-Through, Write-Back Cache)

Note that when we write data to cache, it does not need to be immediately written to memory,
but rather it can be flushed to memory at a later time. This is efficient since if we have repeated
operations on a single memory address, we don’t have to go back and forth between the CPU and
memory.

1. In a write-through cache, a memory write operation modifies the value in the cache and
simultaneously writes the value to the corresponding location in memory. It is always synchro-
nized.

2. In a write-back cache, a memory write operation modifies the value stored in the cache’s data
block, but does not update main memory. Instead, the cache sets a dirty bit in the metadata
to indicate that the cache block has been modified. The modified block is only written back to
memory when the block is replaced in the cache.

Line V D Tag Cache Data Block
0

1

2

3

Figure 88: A dirty bit (labeled with D) is a one bit flag that indicates whether the data stored in a cache
line has been modified. When set, the data in the cache line is out o sync with main memory and must be
written back (flushed) back to memory before eviction.

As usual, the difference between the designs reveals a trade-off. Write-through caches are less complex
than write-back caches, and they avoid storing extra metadata in the form of a dirty bit for each
line. On the other hand, write-back caches reduce the cost of repeated writes to the same location in
memory.

82/ 90



Computer Architecture Muchang Bahng Spring 2024

Theorem 8.3 (Replacement)

Replacement occurs exactly the same way as if we just did a placement and is trivial. We retrieve
the data block from the memory and store it in the cache. Direct-mapping conveniently determines
which cache line to evict when loading new data. Given new memory M = (T, I,O), you must evict
the cache line at H(I).

8.4 N way Set-Associative Cache
Note that for both examples, given a fixed hashmap H it is not possible to store data in two memory
addresses M1 and M2 where both H(I1) = H(I2). Therefore, the choice of hashing must be done so that
it minimizes the number of collisions. So far, we have only considered memory read operations for which a
CPU performs lookups on the cache. Caches must also allows programs to store values. However, there is a
better way to do this: just construct it so that each set has more than one cache line, and so data in index
portions of different memory addresses can be stored in different cache lines.

In here, we deal with E ̸= 1, and so there are multiple set each with multiple lines. This means that the
cache is more like a 2D array, and when we want to retrieve an index, we must look through the H(I)th line
in each set to see if the tag matches.

Theorem 8.4 (Lookup)

To see whether a requested memory address is in the cache, we do the following.
1. The CPU requests a memory address M = (T, I,O).
2. We iterate through each of the S sets in the cache, looking at cache line M(I).
3. For each line, we check if it is valid and if so, whether the line tag matches the memory tag. If

we get a hit, then we have found the data in the cache.

Figure 89: Diagram of a 2 set-associative cache.

If you have a fully associative cache, then you have one set with E = C/B lines. Therefore, you can
really put any memory address data in any cache line. There is a clear tradeoff here. As we increase N , we
can get more flexibility in using all of our cache space, but the time complexity of retrieving and writing
data scales linearly. In fact, this linear scan is too slow for a cache, which is why you need to implement
some parallel tag search, but this turns out to be quite expensive to build.8

8You have to copy the request tag with a circuit and compare it to all the tags in the cache, which turns out to be a much
larger circuit.

83/ 90



Computer Architecture Muchang Bahng Spring 2024

Though we have a more robust implementation with associative mapping, placement and replacement now
face the problem of which set to place the data in or evict existing data.

Theorem 8.5 (Placement)

To load data from memory into the cache this is trivial since we can just go through the sets, find
one where the valid bit is 0, and just place the data there.

In replacement, this is a bit trickier, but using the principle of temporal locality, we can try and replace the
least recently used cache. This tries to minimize cache misses, but not slow down the lookup too much.

Theorem 8.6 (Replacement)

To replace data on the cache, we use the least recently used (LRU) algorithm. This matches
temporal locality, but it also requires some additional state to be kept.

8.5 Cache Misses
There are three types of cache misses.

Definition 8.7 (Cold (Compulsory) Miss)

A cold miss occurs when the cache is empty and the CPU requests a memory address. This is the
first time the CPU is requesting this memory address, and so it must go to the memory to retrieve
the data.

Definition 8.8 (Capacity Miss)

A capacity miss occurs when the cache is full and the CPU requests a memory address that is not
in the cache. This is because the cache is full and so the CPU must evict some data to make space
for the new data.

Definition 8.9 (Conflict Miss)

A conflict miss occurs from premature eviction of a warm block.

Valgrind’s cachegrind mode.

84/ 90



Computer Architecture Muchang Bahng Spring 2024

9 Input Output
Obviously, a computer consists more than just a CPU and memory. There are other external devices, most
notably the keyboard, the mouse, and the monitor. These devices fit into our model as our input-output
devices.

Definition 9.1 (Input-Output)

Input refers to data/signals that a computer receives from an external source, while output refers
to data/signals that a computer produces. We fer to this as input-output (IO).

1. The physical devices that handle IO are called IO devices.
2. The data that flows in and out of the computer through IO devices is called the IO stream.

9.1 IO Devices
IO devices are generally categorized into:

1. User Interface: keyboard, monitor, mouse, speakers, USB ports, card/CD readers.

2. Disk : such as HDD and SSDs.9

3. Network Communications: Wifi chips/drivers, ethernet ports.10

9.2 IO Buses and Interconnects
Hardware/physical layer. How devices physically connect (USB, PCI, SATA). Electrical signaling and timing.

9.3 Control Strategies
Hardware interface layer. Why we need controllers (protocol translation, timing management). MMIO,
PMIO, along with Polling, Interrupts, and DMA.

Within the context of computer architecture, we want to integrate these devices without modifying the von
Neumann architecture. The way that we do this is to treat these IO devices as memory.

Definition 9.2 (Memory Mapped IO)

Memory mapped IO is an adaption of the von Neumann architecture where for every IO device
and corresponding IO stream is designated a specific subset of memory addresses that it can write
to. As data is fed through the stream, it continuously changes the values of the bits at the memory
address. The CPU can then access this memory, which simulates the computer interacting with the
outside environment.

Example 9.1 (Webcams)

Suppose that in a webcam, each frame is 128 bits. The webcam’s memory mapped IO has a set
location in memory where you can read from that address as if it were reading from your RAM. But
there is an extra layer of signal that tells you its not from the RAM but the memory.

Port mapped IO.

9We will elaborate on this in the next section.
10This will be covered in Computer Networks.

85/ 90



Computer Architecture Muchang Bahng Spring 2024

Definition 9.3 (Port Mapped IO)

Port Mapped IO uses a special class of CPU instructions designed specifically for performing IO.

Example 9.2 (Port Mapped IO on x86)

The in and out instructions found on microprocessors based on the x86 architecture are specific for
performing IO. Different forms of these two instructions can copy one, two or four bytes (outb, outw
and outl, respectively) between the eax register and a specified IO port address which is assigned to
an IO device.

One merit of memory-mapped IO is that, by discarding the extra complexity that port IO brings, a CPU
requires less internal logic and is thus cheaper, faster, easier to build, consumes less power and can be
physically smaller.

To access memory in real-time, there are two methods.

Definition 9.4 (Polling)

Every once in a while (usually every few clock cycles), the CPU will ask the memory mapped IO to
retrieve the data. That is, the CPU initiates the processing of the IO stream, and this is useful for
continuous IO streams.

Definition 9.5 (Interrupts)

Whenever there is a new reading, a sensor sends a signal to the CPU. That is, the device initiates
the processing of the IO stream, and this is useful for data you don’t get very often.

Or we can bypass the CPU for data transfer.

Definition 9.6 (Direct Memory Access)

A direct memory access (DMA) controller is a piece of hardware that allows peripherals (like
hard drives, network cards, graphics cards) to directly access memory without involving the CPU.

Example 9.3 ()

9.4 Device Controllers
Now that we know the general strategies for control, we look at the implementations for each device. Con-
troller architecture (e.g. keyboard controller, disk controller).

1. Keyboard controller: Uses memory-mapped registers + interrupts

2. Disk controller: Uses memory-mapped registers + interrupts + DMA

3. Network controller: Uses memory-mapped registers + interrupts + DMA

4. Display controller: Uses memory-mapped framebuffer + polling/interrupts

86/ 90



Computer Architecture Muchang Bahng Spring 2024

10 Disk

10.1 Expanding on von Neumann Architecture
So far, our model of the computer has been a simple von Neumann architecture which consists of a CPU
and memory. However, there are many other intricacies that are extremely important in practice, and we’ll
expand on each one by one.

Definition 10.1 (Computer Architecture)

In our elaborated computer architecture, a computer consists of the components.
1. A CPU that consists of an arithmetic logic unit (ALU), registers, and a bus interface that

controls the input and output.
2. The IO bridge that handles communication between everything.
3. The system bus that connects the CPU to the IO bridge.
4. The memory bus that connects the memory to the IO bridge.
5. The IO bus that connects the IO devices and disk to the IO bridge.
6. IO devices like mouse, keyboard, and monitor.
7. The disk controller and disk that stores data.

Figure 90: Diagram of the IO bus.

We can see from the diagram above that the CPU can directly access registers (since it’s in the CPU itself)
and the main memory (since it’s connected to the memory bus). However, to access something like the disk,
it must go through the disk controller. This gives us our first categorization of memory.

Definition 10.2 (Primary Storage)

Primary storage devices are directly accessible by the CPU and are used to store data that is
currently being processed. This includes CPU registers, cache memory, and RAM. In memory, the
basic storage unit is normally a cell (one bit per cell), which is the physical material that holds
information. A supercell has address and data widths (number of bits), which is analogous to a lock
number and the lock capacity, respectively. It is called random access since it takes approximately
the same amount of time to access any cell in memory. There are two primary ways that this is

87/ 90



Computer Architecture Muchang Bahng Spring 2024

implemented:
1. Static RAM (SRAM) stores data in small electrical circuits (e.g. latches) and is typically

the fastest type of memory. However, it is more expensive to build, consumers more power, and
occupies more space, limiting the SRAM storage.

2. Dynamic RAM (DRAM) stores data using electrical components (e.g. capacitors) that
hold an electrical charge. It is called dynamic because a DRAM system must frequently refresh
the charge of its capacitors to maintain a stored value. It also requires error correction which
introduces redundancy.

Device Capacity Approx. latency RAM type
Register 4 - 8 bytes < 1 ns SRAM
CPU cache 1 - 32 megabytes 5 ns SRAM
Main memory 4 - 64 gigabytes 100 ns DRAM

Table 1: Memory hierarchy characteristics

Definition 10.3 (Secondary Storage)

Secondary storage devices are not directly accessible by the CPU and are used to store data that
is not currently being processed. This includes hard drives, SSDs, and magnetic tapes. There are
two primary ways:

1. Spinning disks store data on a magnetic surface that spins at high speeds.
2. Solid state drives (SSDs) store data on flash memory chips.

There are three key components of memory that we should think about:

1. The capacity, i.e. amount of data, it can store (how large the water tank is).

2. The latency, i.e. amount of time it takes for a device to respond with data after it has been instructed
to perform a data retrieval operation (how fast the data flows).

3. The transfer rate or thoroughput, i.e. amount of data that can be moved between the device and
main memory (how wide the pipe is). Naively, with one channel and sequential transfer the transfer
rate is one over the latency.

We must provide a good balance of these three qualities, and also note that there are some physical limitations
(i.e. latency cannot be faster than speed of light), and this is more effectively done through a hierarchical
memory system.

Storage Type Access Time Category
Registers 1 cycle Primary Storage
Caches ∼10 cycles Primary Storage
Main Memory ∼100 cycles Primary Storage
Flash Disk ∼1 M cycles Secondary Storage
Traditional Disk ∼10 M cycles Secondary Storage
Remote Secondary Storage Depends on Latency Secondary Storage
(e.g., Internet)

Figure 91: Memory hierarchy.

For example when we want to read from the disk, the CPU must request to the bus interface, which travels
through the bus interface, I/O bridge, I/O bus, disk controller, and to the disk itself. Then the data goes
back through the disk controller, I/O bus, I/O bridge, through the memory bus, and resides in the main
memory. Note that disks are block addressed, so it will transfer the entire block of data into the memory.

88/ 90



Computer Architecture Muchang Bahng Spring 2024

It must specify a destination memory address (DMA). When the DMA completes, the disk controller
notifies the CPU with an interrupt (i.e. asserts a special interrupt pin on the CPU), letting it know that the
operation has finished. This signal goes through the disk controller to the IO bridge to the CPU. From now
on, the CPU knows that there is memory that it can access to run an application loaded in memory.

10.2 Disk

Definition 10.4 (Hard Disk Drives)

Back then, there were hard disk drives (HDDs) that literally had a spinning wheel and a needle
head that read the data.

Figure 92: Visual diagram of hard disk drive with its sectors.

1. HDDs are not random access since the data must be sequentially read. This was disadvantageous
since the spinning wheel had to spin to the correct location, which took time. The needle also
had to move to the correct location, which also took time and therefore read and write speeds
were dominated by the time it took to move the needle.

2. The smallest unit of data that can be read is a complete disk sector (not a single byte like
RAM).

Definition 10.5 (Solid State Drives)

Now, we have solid state drives (SSDs) that store data on flash memory chips. This is advanta-
geous since there are no moving parts, so the latency is much lower and the latency is not dominated
by the time it takes to move the needle.

1. SSDs are random access.
2. The smallest unit of data is a page, which is usually 4KB and maybe for high scale computers

2-4 MB (but on “Big Data” applications big but computers, it can be up to 1GB).
3. A collection of pages, usually 128 pages, is called a block, making is 512KB.

While virtually all RAM and primary storage devices are byte addressable (i.e. you can access any byte
in memory), secondary storage devices are block addressable (i.e. you can only access a block of memory
at a time). Therefore, to access a single byte in secondary storage, you must first load the entire block into
memory, calculate which byte from that block you want, and then access it. Therefore, you need both the
block number x and the offset o to access a byte in secondary storage, which is why it is even slower than
accessing RAM.

89/ 90



Computer Architecture Muchang Bahng Spring 2024

Figure 93: Block offset.

Therefore, you can think of raw data in units of blocks of size 2b for some b bits.

1. Take the low order b bits of a byte address as an integer, which is the offset of the addressed byte in
the block.

2. THe rest of the bits are the block number x, which is an unsigned long.

3. You request the block number x, receive the block contents, and then extract the requested byte at
offset in x i.e. calculate block[x][offset].

90/ 90


	Transistors
	Semiconductors
	Doping
	Implementation of NAND
	Propagation Delay
	Clocks

	Sequential Chips
	SR Latches
	Level and Edge Triggered D-Latches
	Flip Flops
	Registers
	Applications

	Binary Encodings
	Naturals/Unsigned and Integers/Signed
	Arithmetic Operations on Binary Numbers

	Rationals and Countable Sets
	Floats
	Characters
	ASCII
	ISO-10646, UCS
	Unicode, UTF-8
	Text Files

	Representation of General Sets

	Combinational Logic
	Multi-Bit Gates
	Multiplexer
	Comparator
	Addition and Subtraction
	Multiplication
	Arithmetic Logical Unit (ALU)
	Control Unit

	Memory Banks
	Data Buses
	Fetching and Writing

	Hardware Description Languages
	Structural and Behavioral Modeling
	Test Benching

	Instruction Sets
	Data Movement Operations
	Arithmetic and Logical Operations
	Code and Data Segments
	Stack Memory
	Heap Memory
	Assembling and Linking

	Caches
	Locality
	Caches
	Direct Mapped Cache
	N way Set-Associative Cache
	Cache Misses

	Input Output
	IO Devices
	IO Buses and Interconnects
	Control Strategies
	Device Controllers

	Disk
	Expanding on von Neumann Architecture
	Disk


