
Optimization Muchang Bahng Spring 2025

Optimization

Muchang Bahng

Spring 2025

Contents
1 Gradient Methods 4

1.1 Newton-Raphson Method for Root Finding . 4
1.2 Stochastic Gradient Descent . 5
1.3 Learning Rates and Schedulers . 7
1.4 Momentum and Nesterov . 8
1.5 Block Coordinate Descent . 9

2 Subgradient Methods 10
2.1 Proximal Gradient Descent . 11

3 Adaptive Gradient Methods 13
3.1 Adagrad . 13
3.2 RMSProp and Adadelta . 13
3.3 Adam . 13

4 Second-Order Optimizers 14
4.1 Newton’s Method . 14
4.2 Gauss Newton Method . 14

5 Quasi-Newton Methods 15
5.1 Secant Method . 15
5.2 Davidon-Fletcher-Powell (DFP) . 15
5.3 Broyden’s Method . 16
5.4 Symmetric Rank-1 Update (SR1) . 16
5.5 BFGS . 16

6 Gradient Free Methods 21
6.1 Simulated Annealing . 21
6.2 Nelder-Mead . 21

7 Lagrangian Optimizers for Constraints 22
7.1 Lagrange Multipliers . 22
7.2 KKT Conditions . 22
7.3 ADMM . 22

8 Non-Lagrangian Optimizers for Constraints 23
8.1 Penalty . 23
8.2 Projection . 23
8.3 Saddle Point Problem in Nonconvex Optimization . 24

9 Sparsity-Inducing Optimizers 25

1/ 26

Optimization Muchang Bahng Spring 2025

9.1 Clipping . 25

References 26

2/ 26

Optimization Muchang Bahng Spring 2025

Optimization is such an important tool that it deserves a set of notes in itself. All problems in model training
essentially stems from non-ideal optimization. Knowing the strengths and weaknesses of each optimizer allows
you to diagnose which ones to use.

Generally, we (non-exclusively) categorize optimization algorithms as such:

1. Convex? Convex optimization is pretty easy to solve and has been studied extensively. For nonconvex
optimization, none of the algorithms can guarantee that we will find the global minima, and this is one
of the hardest problems in statistics.1

2. Constrained? Is the parameter space constrained to a certain manifold?

3. Order. Do we use derivatives at all? First-order derivatives (gradient)? Second-order (Hessian)?

These algorithms try to solve the following potential problems.

1. Convergence. Do we converge to some point?

2. Optimality. Is this point close to the true global minima?

3. Efficiency. Can we iterate efficiently?

As a benchmark test, the following function will be used a lot.

Definition 0.1 (Rosenbrock Function)

The Rosenbrock function is defined

f(x, y) = (a− x)2 + b(y − x2)2 (1)

which has a global minimum at (a, b).

Figure 1: Typically, we set a = 1, b = 100.

1In practice, when we are doing high-dimensional nonconvex optimization, the best we can do is play around with some
properties. In these cases, 0th order approximations are hopeless since the dimensions are too high, and second order approxi-
mations are hopeless either since computing the Hessian is too expensive for one run. Therefore, we must resort to some first
order methods.

3/ 26

Optimization Muchang Bahng Spring 2025

1 Gradient Methods
The first thing you learn about gradients in multivariate calculus is that they point in the step of steepest
ascent. Generally, you can think of the function you’re trying to minimize as a “landscape.” This inspires
a greedy approach to simply walk in this direction ∇f(x) to maximize a function (or walk in the opposite
direction −∇f(x)). This gives the following.

Algorithm 1.1 (Gradient Descent)

Generally speaking, at every point you should point in the direction of steepest descent, and move
in that direction. The only question that remains is: how far? This is manually adjusted by the
learning rate.

Require: Function f(x), initialization x0, learning rate
1: procedure GradientDescent(f, x0)
2: x← x0

3: while not converged do
4: x← x− η∇f(x)
5: end while
6: return x
7: end procedure

1.1 Newton-Raphson Method for Root Finding
Before we talk more about gradient descent methods, let’s take a look at one of the simplest numerical
root-finders.2

Theorem 1.1 (Convergence)

Given a differentiable function f : R→ R, the sequence (xn) defined

xn = xn−1 −
f(xn−1)

f ′(xn−1)
(2)

for any x0 ∈ R, converges to a root of f .

Proof.

Need to verify this.

2Optimization and root finding are very similar, since to optimize f you should first find a root of f ′.

4/ 26

Optimization Muchang Bahng Spring 2025

Algorithm 1.2 (Newton-Raphson Method)

Require: Function f(x), initial guess x0

1: procedure NewtonRaphson(f, f ′, x0, ϵ,Nmax)
2: x← x0

3: while not converged do
4: if f ′(x) = 0 then
5: Retry with another x0.
6: end if
7: x← f(x)

f ′(x)

8: end while
9: return x

10: end procedure

1.2 Stochastic Gradient Descent
Now let’s go back to gradient descent. Usually, in machine learning, we are trying to optimize a parameteric
model P = {Pθ | θ ∈ Θ} over a dataset D = {xi}ni=1., For example, our estimator in the maximum-likelihood
approach will be

δ(D) = argmax
θ

L(θ | D) = log p(D | θ) (3)

for some loss function L.

If we assume that the samples are iid, then we can decompose the gradient as

∇θ log p(D | θ) =
∑
i

∇θ log p(di | θ) (4)

which scales linearly with the size of a dataset. This is not scalable with extremely large datasets, and so we
must remove this O(n) term. Intuitively, we can think of approximating this gradient by taking a minibatch
b of D and computing the gradient only across that minibatch.

Theorem 1.2 (Minibatch Gradient is an Unbiased Estimator)

Let us take a minibatch of b samples B ⊂ D without replacement, where b << D. Then, our
approximation of the gradient of the log likelihood

∇θ log p(B | θ) :=
1

b

∑
x∈B
∇θ log p(x | θ) (5)

is an unbiased estimator of the true gradient ∇θ log p(D | θ). That is, settingM as a random variable
of samples over D, we have

EM[∇LM(w)] = ∇L(w) (6)

Proof.

We use linearity of expectation for all M⊂ D of size M .

This also has the additional advantage of saving memory. You don’t have to load in the gradients for the
whole dataset (which may be a few TB), and can allocate just enough memory for each batch (perhaps a
few GB).

5/ 26

Optimization Muchang Bahng Spring 2025

Algorithm 1.3 (Stochastic Gradient Descent)

Require: Function L(θ), initialization θ0, learning rate, batch size b, dataset D
1: procedure StochasticGradientDescent(f, θ0, b)
2: θ ← θ0
3: while not converged do
4: Sample minibatch B ⊂ D.
5: θ ← θ − η∇θ log p(B | θ)
6: end while
7: return θ
8: end procedure

Example 1.1 (Linear Regression)

We have assumed knowledge of gradient descent in the back propagation step in the previous section,
but let’s revisit this by looking at linear regression. Given our dataset D = {x(n), y(n)}, we are fitting
a linear model of the form

f(x;w, b) = wTx+ b (7)

The squared loss function is

L(w, b) =
1

2

N∑
n=1

(
y − f(x;w, b)

)2
=

1

2

N∑
n=1

(
y − (wTx+ b)

)2 (8)

If we want to minimize this function, we can visualize it as a d-dimensional surface that we have to
traverse. Recall from multivariate calculus that the gradient of an arbitrary function L points in the
steepest direction in which L increases. Therefore, if we can compute the gradient of L and step
in the opposite direction, then we would make the more efficient progress towards minimizing this
function (at least locally). The gradient can be solved using chain rule. Let us solve it with respect
to w and b separately first. Beginners might find it simpler to compute the gradient element-wise.

∂

∂wj
L(w, b) =

∂

∂wj

(
1

2

N∑
n=1

(
f(x(n);w, b)− y(n)

)2
)

(9)

=
1

2

N∑
n=1

∂

∂wj

(
f(x(n);w, b)− y(n)

)2

(10)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
f(x(n);w, b)− y(n)

)
(11)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
wTx(n) + b− y(n)

)
(12)

=

N∑
n=1

(
f(x(n);w, b)− y(n)

)
· x(n)

j (for j = 0, 1, . . . , d) (13)

As for getting the derivative w.r.t. b, we can redo the computation and get

∂

∂wj
L(w, b) =

N∑
n=1

(
f(x(n);w, b)− y(n)

)
(14)

6/ 26

Optimization Muchang Bahng Spring 2025

and in the vector form, setting θ = (w, b), we can set

∇L(w) = XT (ŷ − y) (15)
∇L(b) = (ŷ − y) · 1 (16)

where ŷn = f(x(n);w, b) are the predictions under our current linear model and X ∈ Rn×d is our
design matrix. This can easily be done on a computer using a package like numpy.
Rather than updating the vector θ in batches, we can apply stochastic gradient descent that
works incrementally by updating θ with each term in the summation. That is, rather than updating
as a batch by performing the entire matrix computation by multiplying over N dimensions,

∇L(w) = XT︸︷︷︸
D×N

(ŷ − y)︸ ︷︷ ︸
N×1

(17)

we can reduce this load by choosing a smaller subset M⊂ D of M < N elements, which gives

∇LM(w) = XT
M︸︷︷︸

D×M

(ˆyM − y︸ ︷︷ ︸
M

)M×1 (18)

Even though these estimators are noisy, we get to do much more iterations and therefore have a faster net
rate of convergence. But now we have an additional choice to make. What should our minibatch size be?

Heuristic 1.1 (Choosing Batch Size)

It really depends on your hardware, but generally,
1. A smaller batch size might mean more noisy estimates, and therefore may not converge. How-

ever, it tends to escape local minima better.
2. A high batch size means more exact estimates, but it tends to get stuck in local minima.

You want to make sure that the batches fit into memory.

1.3 Learning Rates and Schedulers
The algorithm may not converge if α (the step size) is too high, since it may overshoot. This can be solved
by reducing the α with each step, using schedulers.

Ideally, we would want to have a variable step size h(t) so that h→ 0 as t→ +∞.

Algorithm 1.4 (Decay on Plateau Learning Rate)

Basically, this says that if the loss doesn’t decrease for the past p epochs, then decrease the learning
rate η ← γ · η.

7/ 26

Optimization Muchang Bahng Spring 2025

Require: Patience p, decay rate 0 < γ < 1, initial θ0, loss L
1: procedure LRDecayOnPlateau(p, γ, θ, η)
2: best_loss← L(θ)
3: bad_epochs← 0
4: while not converged do
5: θ ← θ − η∇L(θ)
6: if L(θ) < best_loss then
7: best_loss← L(θ)
8: bad_epochs← 0
9: else

10: bad_epochs← bad_epochs + 1
11: end if
12: if bad_epochs ≥ p then
13: η ← η · γ
14: bad_epochs← 0
15: end if
16: end while
17: return θ, η
18: end procedure

1.4 Momentum and Nesterov

Algorithm 1.5 (Stochastic Gradient Descent with Momentum)

This modifies vanilla SGD by keeping a running velocity term that accumulates past gradients, which
smooths updates and helps escape sharp local minima.

Require: Learning rate η, momentum 0 ≤ µ < 1, initial parameters θ0, loss L
1: procedure SGDMomentum(η, µ, θ)
2: v ← 0 ▷Initialize velocity
3: while not converged do
4: v ← µv +∇L(θ) ▷Decay prev. velocity and add in gradient (acceleration)
5: θ ← θ − ηv
6: end while
7: return θ
8: end procedure

Algorithm 1.6 (Stochastic Gradient Descent with Nesterov Momentum)

Nesterov momentum modifies standard momentum by computing the gradient at the lookahead po-
sition θ − ηµv, leading to faster convergence in practice.

8/ 26

Optimization Muchang Bahng Spring 2025

Require: Learning rate η, momentum 0 ≤ µ < 1, initial parameters θ0, loss L
1: procedure SGDNesterov(η, µ, θ)
2: v ← 0 ▷Initialize velocity
3: while not converged do
4: g ← ∇L(θ − ηµv) ▷Lookahead gradient
5: v ← µv + g
6: θ ← θ − ηv
7: end while
8: return θ
9: end procedure

1.5 Block Coordinate Descent

Algorithm 1.7 (Block Gradient Descent)

Block Gradient Descent partitions the parameter vector θ into m disjoint blocks. At each iteration,
it selects one block (cyclically or randomly) and updates only that block’s parameters using the
gradient, while keeping the other blocks fixed.

Require: Learning rate η, number of blocks m, partition θ = (θ(1), . . . , θ(m)), loss L
1: procedure BlockGradientDescent(η, {θ(j)}mj=1)
2: t← 0
3: while not converged do
4: j ← SelectBlock(t,m) ▷e.g., cyclic: j = (t mod m) + 1
5: θ(j) ← θ(j) − η∇θ(j)L(θ(1), . . . , θ(m))
6: t← t+ 1
7: end while
8: return θ
9: end procedure

9/ 26

Optimization Muchang Bahng Spring 2025

2 Subgradient Methods

Definition 2.1 (Convex Function)

A function f : U ⊂ Rn → R defined on a convex set U is convex if and only if for any x,y ∈ U

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) (19)

Now if f is differentiable, then convexity is equivalent to

f(x) ≥ f(y) +∇f(y)T · (x− y) (20)

for all x, y ∈ U . That is, its local linear approximation always underestimates f .

It is well known that the mean square error of a linear map is convex. However, when we impose the
L1 penalty, the loss function is now not differentiable at 0. Therefore, we must introduce the notion of a
subgradient.

Definition 2.2 (Subgradient)

The subgradient of a convex function f : U ⊂ Rn → R is any linear map A(x) : Rn → R such that

f(y) ≥ f(x) +A(x)(y − x) (21)

for any y ∈ U . The set of all subgradients at x is called the subdifferential defined

∂f(x) = {A ∈ Rn | A is a subgradient of f at x} (22)

The subgradient also acts as a linear approximation of f , but now at nondifferentiable points of convex
functions, we have a set of linear approximations. It is clear that the subgradient at a differentiable point is
uniquely the gradient (∂f(x) = {∇f(x)), but for places like the absolute value, we can have infinite linear
approximations.

Given the subdifferential, thus the optimality condition for any convex f (differentiable or not) is

f(x∗) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x∗) (23)

known as the subgradient optimality condition, which clearly implies

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗) (24)

10/ 26

Optimization Muchang Bahng Spring 2025

Example 2.1 ()

The subdifferential of the absolute value function f(x) = |x| at any given x is

∂f(x) =


1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

(25)

2.1 Proximal Gradient Descent

Definition 2.3 (Proximal Operator)

Given a lower semicontinuous convex function f mapping from Hilbert space X to [−∞,+∞], its
proximal operator associated with a point u is defined

proxf,τ (u) = argmin
x

(
f(x) +

1

2τ
||x− u||2

)
(26)

where τ > 0 is a parameter that scales the quadratic term. This is basically the point that minimizes
the sum of f(x) and the square of the Euclidean distance between x and u, scaled by 1/2τ .

Now given the loss function L(θ) = Lobj(θ) + Lreg(θ), we want to compute the proximal operator on the
regularization loss and update that with the gradient of the smooth objective loss.

θ(k+1) = proxLreg,τ

[
θ(k) − τ∇Lobj(θ

(k))
]

(27)

Let’s compute the proximal operator of the L1 loss h(θ) = λ||θ||1. We can parameterize this loss by the λ,
so we will use the notation proxλ,τ rather than proxh,τ .

proxλ,τ (u) = argmin
θ

(
λ||θ||1 +

1

2τ
||θ − u||22

)
= argmin

θ

(n∑
i=1

λ|θi|+
1

2τ
(θi − ui)

2

)
These are separable functions that can be decoupled and optimized component-wise. So, we really just want
to find

θ∗i = argmin
θi

(
λ|θi|+

1

2τ
(θi − ui)

2

)
(28)

The sum of convex functions is convex, and so we should differentiate it and find where the gradient is 0 to
optimize it.

1. When θi > 0, then we minimize λθi +
1
2τ (θi − ui)

2, so taking the gradient and setting to 0 gives

θi = ui − λτ (29)

subject to the constraint that θi > 0, or equivalently, that ui > λτ .

2. When θi < 0, then we minimize −λθi + 1
2τ (θi − ui)

2, so taking the gradient and setting to 0 gives

θi = ui + λτ (30)

subject to the constraint that θi < 0, or equivalently, that ui < −λτ .

11/ 26

Optimization Muchang Bahng Spring 2025

3. When θi = 0, then we minimize λ|θi| + 1
2τ (θi − ui)

2, which doesn’t have derivative at θi = 0. So, we
can compute the subdifferential of it to get

0 ∈ ∂

(
λ|θi|+

1

2τ
(θi − ui)

2

)
= λ∂(|θi|) +

1

τ
(θi − ui)

Now at θi = 0, the subdifferential can be any value in [−1, 1], and the above reduces to

0 ∈ λ[−1, 1]− 1

τ
ui (31)

this is equivalent to saying that ui/τ is contained in the interval [−λ, λ], meaning that ui ∈ [−λτ, λτ].

Ultimately we get that

proxλ,τ (u) =


u− λτ if u > λτ

0 if |u| ≤ λτ

u+ λτ if u < −λτ
(32)

which can be simplified to
proxλ,τ (u) = sign(u)max{|u| − λτ, 0) (33)

12/ 26

Optimization Muchang Bahng Spring 2025

3 Adaptive Gradient Methods

3.1 Adagrad

3.2 RMSProp and Adadelta

3.3 Adam
Adam and AdamW

13/ 26

Optimization Muchang Bahng Spring 2025

4 Second-Order Optimizers

4.1 Newton’s Method
Newton’s method is an iterative algorithm for finding the roots of a differentiable function F . An immediate
consequence is that given a convex C2 function f , we can apply Newton’s method to its derivative f ′ to get
the critical points of f (minima, maxima, or saddle points), which is relevant in optimizing f . Given a C1

function f : D ⊂ Rn −→ R and a point xk ∈ D, we can compute its linear approximation as

f(xk + h) ≈ f(xk) +Dfxk
h = f(xk) +∇f(xk) · h (34)

where Dfxk
is the total derivative of f at xk and h is a small n-vector. Discretizing this gives us our gradient

descent algorithm as
xk+1 ← xk − α f ′(xk) (35)

This linear function is unbounded, so we must tune the step size α accordingly. If α is too small, then
convergence is slow, and if α is too big, we may overshoot the minimum. Netwon’s method automatically
tunes this α using the curvature information, i.e. the second derivative. If we take a second degree Taylor
approximation

f(xk + h) ≈ f(xk) +Dfxk
h+ hT Hfxk

h (36)

then we are guaranteed that this quadratic approximation of f has a minimum (existence and uniqueness
can be proved), and we can calculate it to find our "approximate" minimum of f . We simply take the total
derivative of this polynomial w.r.t. h and set it equal to the n-dimensional covector 0. This is equivalent to
setting the gradient as 0, so

0 = ∇h

[
f(xk) +Dfxk

h+ hT Hfxk
h
]
(h)

= ∇h[Dfxk
h](h) +∇h[h

T Hfxk
h](h)

= ∇xf(xk) +Hfxk
h

=⇒ h = −[Hfxk
]−1∇xf(xk)

which results in the iterative update

xk+1 ← xk − [Hfxk
]−1∇xf(xk) (37)

Note that we require f to be convex, so that Hf is positive definite. Since f is C2, this implies Hf is also
symmetric, implying invertibility by the spectral theorem. Note that Newton’s method is very expensive,
since we require the computation of the gradient, the Hessian, and the inverse of the Hessian, making the
computational complexity of this algorithm to be O(n3). We can also add a smaller stepsize h to control
stability.

Algorithm 1 Newton’s Method

Require: Initial x0, Stepsize h (optional)
for t = 0 to T until convergence do

g(xt)← ∇f(xt)
H(xt)← Hfxt

H−1(xt)← [H(xt)]
−1

xt+1 ← xt − hH−1(xt) g(xt)
end for

4.2 Gauss Newton Method

14/ 26

Optimization Muchang Bahng Spring 2025

5 Quasi-Newton Methods

5.1 Secant Method

Algorithm 5.1 (Secant Method)

The Secant Method approximates Newton’s method by estimating the derivative using two most
recent iterates instead of requiring f ′(x).

Require: Function f(x), initial guesses x0, x1, tolerance ϵ, maximum iterations Nmax

1: procedure Secant(f, x0, x1, ϵ,Nmax)
2: k ← 0
3: while k < Nmax do
4: if |f(x1)| < ϵ then
5: return x1

6: end if
7: xnew ← x1 − f(x1)

x1 − x0

f(x1)− f(x0)
8: x0 ← x1

9: x1 ← xnew

10: k ← k + 1
11: end while
12: return Failure
13: end procedure

5.2 Davidon-Fletcher-Powell (DFP)

Algorithm 5.2 (DFP Quasi-Newton Method)

The DFP method is a quasi-Newton optimization algorithm that maintains an approximation Hk of
the inverse Hessian to update parameters efficiently.

Require: Objective f(θ), gradient ∇f , initial guess θ0, tolerance ϵ
1: procedure DFP(f,∇f, θ0)
2: H ← I ▷Initialize inverse Hessian approximation
3: while not converged do
4: g ← ∇f(θ)
5: d← −Hg
6: α← LineSearch(f, θ, d)
7: θnew ← θ + αd
8: s← θnew − θ
9: y ← ∇f(θnew)− g

10: H ← H + ssT

sT y
− HyyTH

yTHy
11: θ ← θnew
12: end while
13: return θ
14: end procedure

15/ 26

Optimization Muchang Bahng Spring 2025

5.3 Broyden’s Method

Algorithm 5.3 (Broyden’s Method)

Broyden’s method is a quasi-Newton method that updates an approximation Bk to the Jacobian
matrix without computing derivatives directly.

Require: Function F (θ), initial guess θ0, tolerance ϵ
1: procedure Broyden(F, θ0)
2: B ← I ▷Initial Jacobian approximation
3: while not converged do
4: ∆θ ← −B−1F (θ)
5: θnew ← θ +∆θ
6: ∆F ← F (θnew)− F (θ)

7: B ← B + (∆F−B∆θ)∆θT

∆θT∆θ
8: θ ← θnew
9: end while

10: return θ
11: end procedure

5.4 Symmetric Rank-1 Update (SR1)

Algorithm 5.4 (Symmetric Rank-1 Update)

The SR1 update is another quasi-Newton method that maintains an approximation Hk of the inverse
Hessian, using a symmetric rank-1 correction.

Require: Objective f(θ), gradient ∇f , initial guess θ0, tolerance ϵ
1: procedure SR1(f,∇f, θ0)
2: H ← I
3: while not converged do
4: g ← ∇f(θ)
5: d← −Hg
6: α← LineSearch(f, θ, d)
7: θnew ← θ + αd
8: s← θnew − θ
9: y ← ∇f(θnew)− g

10: if (s−Hy)T y ̸= 0 then

11: H ← H +
(s−Hy)(s−Hy)T

(s−Hy)T y
12: end if
13: θ ← θnew
14: end while
15: return θ
16: end procedure

5.5 BFGS
Netwon’s method is extremely effective for finding the minimum of a convex function, but there are two
disadvantages. First, it is sensitive to initial conditions, and second, it is extremely expensive, with a com-
putational complexity of O(n3) from having to invert the Hessian. An alternative family of optimizers, called

16/ 26

Optimization Muchang Bahng Spring 2025

quasi-Newton methods, try to approximate the Hessian (or Jacobian) with Ĥf , reducing the computational
cost without too much loss in convergence rates, and simply use this approximation in the Newton’s update:

xk+1 ← xk − [Ĥfxk
]−1∇xf(xk)

The method of the Hessian approximation varies by algorithm, but the most popular is BFGS.

So how do we approximate the Hessian with only the gradient information? With secants. Starting off with
f : R −→ R, let us assume that we have two points (xk, f(xk)) and (xk+1, f(xk+1)). We can approximate
our derivative (gradient in dimension 1) at xk+1 using finite differences:

f ′(xk+1)(xk+1 − xk) ≈ f(xk+1)− f(xk)

and doing the same for f ′ gives us the second derivative approximation:

f ′′(xk+1)(xk+1 − xk) ≈ f ′(xk+1)− f ′(xk)

which gives us the update:
xk+1 ← xk −

xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk)

This method of approximating Netwon’s method in one dimension by replacing the second derivative with its
finite difference approximation is called the secant method. In multiple dimensions, given two points xk,xk+1

with their respective gradients ∇f(xk),∇f(xk+1), we can approximate the Hessian Ĥfxk+1
≈ D(∇f)xk+1

(which is the total derivative of the gradient) at xk+1 with the equation

Ĥfxk+1
(xk+1 − xk) = ∇xf(xk+1)−∇xf(xk)

This is solving the equation of form Ax = y for some linear map A. Since Ĥfxk+1
is a symmetric n × n

matrix with n(n + 1)/2 components, there are n(n + 1)/2 unknowns with only n equations, making this
an underdetermined system. Quasi-Newton methods have to impose additional constraints, with the BFGS
choosing the one where we want Ĥfxk+1

to be as close as to Ĥfxk
at each update k + 1. Luckily, we can

formalize this notion as minimizing the distance between fxk+1
and Ĥfxk

. Therefore, we wish to find

arg min
Ĥfxk+1

||Ĥfxk+1
− Ĥfxk

||F ,

where || · ||F is the Frobenius matrix norm, subject to the restrictions that Ĥfxk+1
be positive definite and

symmetric and that Ĥfxk+1
(xk+1 − xk) = ∇xf(xk+1) − ∇xf(xk) is satisfied. Since we have to invert it

eventually, we can actually just create an optimization problem that directly computes the inverse. So, we
wish to find

arg min
(Ĥfxk+1

)−1

||(Ĥfxk+1
)−1 − (Ĥfxk

)−1||F

subject to the restrictions that

1. (Ĥfxk+1
)−1 be positive definite and symmetric. It turns out that the positive definiteness restriction

also restricts it to be symmetric.

2. xk+1 − xk = (Ĥfxk+1
)−1[∇xf(xk+1)−∇xf(xk)]

After some complicated mathematical derivation, which we will not go over here, the problem ends up
being equivalent to updating our approximate Hessian at each iteration by adding two symmetric, rank-one
matrices U and V scaled by some constant, which can each be computed as an outer product of vectors with
itself.

Ĥfxk+1
= Ĥfxk

+ aU + bV = Ĥfxk
+ auuT + bvvT

where u and v are linearly independent. This addition of a rank-2 sum of matrices aU + bV , known as a
rank-2 update, guarantees the "closeness" of Ĥfxk+1

to Ĥfxk
at each iteration. With this form, we now

17/ 26

Optimization Muchang Bahng Spring 2025

impose the quasi-Newton condition. Substituting ∆xk = xk+1 − xk and yk = ∇xf(xk+1) − ∇xf(xk), we
have

Ĥfxk+1
∆xk = Ĥfxk+1

∆xk + auuT∆xk + bvvT∆xk = yk

A natural choice of vectors turn out to be u = yk and v = Ĥfxk
∆xk, and substituting this and solving gives

us the optimal values

a =
1

yT
k ∆xk

, b = − 1

∆xT
k Ĥfxk

∆xk

and substituting these values back to the Hessian approximation update gives us the BFGS update:

Ĥfxk+1
= Ĥfxk

+
yky

T
k

yT
k ∆xk

− Ĥfxk
∆xk∆xT

k Ĥfxk

∆xT
k Ĥfxk

∆xk

We still need to invert this, and using the Woodbury formula

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

which tells us how to invert the sum of an intertible matrix A and a rank-k correction, we can derive the
iterative update of the inverse Hessian as

(Ĥfxk+1
)−1 =

(
I − ∆xky

T

yT
k ∆xk

)
(Ĥfxk

)−1

(
I − yk∆xT

k

yT
k ∆xk

)
+

∆xk∆xT
k

yT
k ∆xk

Remember that this is the iterative step that we want to actually compute, rather than the ones computing
the regular Hessian. The whole point of using the Woodbury formula to derive an inverse update step was
to do away with the tedious O(n3) computations of inverting an n × n matrix. This rank-2 update also
preserves positive-definiteness.

Finally, we can choose the initial inverse Hessian approximation (Ĥfxk+1
)−1 to be the identity I or the

true inverse Hessian (Hfxk+1
)−1 (computed just once), which would lead to more efficient convergence. The

pseudocode for BFGS is a bit too long and confusing to include here, but most of the time, we won’t be
implementing BFGS by hand; efficient and established BFGS optimizers are already in numerous packages.
Like most optimizers, BFGS is not guaranteed to converge to the true global minimum.

Algorithm 5.5 (BFGS)

The BFGS algorithm maintains an approximation Bk to the inverse Hessian, updating it using gra-
dient differences and parameter steps. This avoids explicitly computing or inverting the Hessian at
each iteration.

18/ 26

Optimization Muchang Bahng Spring 2025

Require: Objective f(θ), gradient ∇f , initial guess θ0, tolerance ϵ, maximum iterations Nmax

1: procedure BFGS(f,∇f, θ0)
2: B ← I ▷Initialize inverse Hessian approximation
3: θ ← θ0
4: k ← 0
5: while k < Nmax and ||∇f(θ)|| > ϵ do
6: g ← ∇f(θ)
7: d← −Bg
8: α← LineSearch(f, θ, d) ▷Enforce Wolfe conditions
9: θnew ← θ + αd

10: s← θnew − θ
11: y ← ∇f(θnew)− g
12: if yT s ≤ 0 then
13: break ▷Curvature condition violated
14: end if
15: B ←

(
I − syT

yT s

)
B
(
I − ysT

yT s

)
+ ssT

yT s

16: θ ← θnew
17: k ← k + 1
18: end while
19: return θ
20: end procedure

Algorithm 5.6 (Limited-memory BFGS)

L-BFGS avoids storing the full inverse Hessian by keeping only the last m update pairs (si, yi). At
each step, the search direction is computed using a two-loop recursion. This reduces storage from
O(n2) to O(mn) and is widely used in large-scale optimization.

19/ 26

Optimization Muchang Bahng Spring 2025

Require: Objective f(θ), gradient ∇f , initial θ0, history size m, tolerance ϵ, maximum iterations
Nmax

1: procedure L-BFGS(f,∇f, θ0,m)
2: Initialize θ ← θ0
3: Initialize empty history lists S, Y
4: k ← 0
5: while k < Nmax and ||∇f(θ)|| > ϵ do
6: g ← ∇f(θ)
7: q ← g
8: Initialize empty list α ▷First loop: backward pass
9: for i = |S| down to 1 do

10: ρi ← 1/(yTi si)
11: αi ← ρi s

T
i q

12: q ← q − αiyi
13: end for
14: Choose scalar H0 (e.g., H0 =

sTk−1yk−1

yT
k−1yk−1

I if available, else I)
15: r ← H0q ▷Second loop: forward pass
16: for i = 1 to |S| do
17: β ← ρi y

T
i r

18: r ← r + si(αi − β)
19: end for
20: d← −r ▷Search direction
21: α← LineSearch(f, θ, d)
22: θnew ← θ + αd
23: s← θnew − θ
24: y ← ∇f(θnew)− g
25: if yT s > 0 then ▷Curvature condition
26: Append s, y to S, Y
27: if |S| > m then
28: Remove oldest pair
29: end if
30: end if
31: θ ← θnew
32: k ← k + 1
33: end while
34: return θ
35: end procedure

20/ 26

Optimization Muchang Bahng Spring 2025

6 Gradient Free Methods

6.1 Simulated Annealing
Unlike the previous optimizers, simulated annealing is useful in finding global optima in the presence of
multimodal functions within a usually very large discrete space S. Given some function f defined on S, we
would like to find its global maximum. Rather than picking the "best move" using gradient information
(like SGD), we propose a random move. Let us start at a state θk and propose a random Pk+1. We denote
∆f = f(Pk+1)− f(θk).

1. If the selected move improves the solution (i.e. ∆f ≥ 0, then it is always accepted and we set
θk+1 ← Pk+1.

2. Otherwise, when ∆f < 0 it makes the move with the following acceptance probability

p(θk+1 ← Pk+1 | ∆f < 0) = e∆f/T (t)

We can see that if ∆f is very negative (the move is very bad), then this probability of acceptance decreases
as well. Furthermore, T (t) represents some sort of "temperature" that we anneal as a function of time, called
the annealing schedule. T starts off at a high value, increasing the rate at which bad moves are accepted,
which promotes exploration of S and allows the algorithm to travel to suboptimal areas. As T decreases,
the vast majority of steps move uphill, promoting exploitation, which means that once the algorithm is in
the right search space, there is no need to search other sections of the search space.

Algorithm 2 Simulated Annealing

Require: Initial θ0, Transition kernel π(θk+1 | θk), Annealing schedule T (t)
for t = 0 to T until convergence do

Pt+1 ∼ π(· | θt)
if f(Pt+1)− f(θt) ≥ 0 then

θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < exp[(f(Pt+1)− f(θt))/T (t)] then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if

end for

This algorithm is very easy to implement and provides optimal solutions to a wide range of problems (e.g.
TSP and nonlinear optimization), but it can take a long time to run if the annealing schedule is very long.
We can stop either if T reaches a certain threshold or if we have determined convergence.

6.2 Nelder-Mead
Uses simplex.

21/ 26

Optimization Muchang Bahng Spring 2025

7 Lagrangian Optimizers for Constraints

7.1 Lagrange Multipliers
For equality.

7.2 KKT Conditions
For inequality.

7.3 ADMM

22/ 26

Optimization Muchang Bahng Spring 2025

8 Non-Lagrangian Optimizers for Constraints

8.1 Penalty

8.2 Projection

23/ 26

Optimization Muchang Bahng Spring 2025

8.3 Saddle Point Problem in Nonconvex Optimization
[PDGB14]

24/ 26

Optimization Muchang Bahng Spring 2025

9 Sparsity-Inducing Optimizers

9.1 Clipping
We can do SGD with clipping.

25/ 26

Optimization Muchang Bahng Spring 2025

References
[PDGB14] Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio. On the saddle point

problem for non-convex optimization, 2014.

26/ 26

	Gradient Methods
	Newton-Raphson Method for Root Finding
	Stochastic Gradient Descent
	Learning Rates and Schedulers
	Momentum and Nesterov
	Block Coordinate Descent

	Subgradient Methods
	Proximal Gradient Descent

	Adaptive Gradient Methods
	Adagrad
	RMSProp and Adadelta
	Adam

	Second-Order Optimizers
	Newton's Method
	Gauss Newton Method

	Quasi-Newton Methods
	Secant Method
	Davidon-Fletcher-Powell (DFP)
	Broyden's Method
	Symmetric Rank-1 Update (SR1)
	BFGS

	Gradient Free Methods
	Simulated Annealing
	Nelder-Mead

	Lagrangian Optimizers for Constraints
	Lagrange Multipliers
	KKT Conditions
	ADMM

	Non-Lagrangian Optimizers for Constraints
	Penalty
	Projection
	Saddle Point Problem in Nonconvex Optimization

	Sparsity-Inducing Optimizers
	Clipping

	References

