Graphical Models

Muchang Bahng Spring 2024

Contents

Graphical Models

Muchang Bahng

Spring 2025

[1 Bayesian Networks (Directed Graphical Models)|

2 Markov Random Field (Undirected Graphical Models)|

3_Hidden Markov Models|

2 EM Algorithm]

4.3 Gaussian Mixture Models|

10

10
11
16
20
23

23

=

Graphical Models Muchang Bahng Spring 2024

The concept of using latent variables to model some process will be used over and over again. We have seen
simple examples of latent linear models, but what about nonlinear ones? It turns out that these can be seen
as a specific instance of graphical models.

When computing high-dimensional distributions, the parameters needed to encode this density scales badly.
We can see that a general Gaussian mixture model in R™ with k clusters requires O(n?k) parameters.
If we wanted to sample from a distribution of portraits, then the dimension n would be the resolution
of the image. For a 1024 x 1024 image, this requires n = 3 - 22° dimensions, and modeling it with a
GMM is hopeless. Fortunately, for complex distributions there is usually some dependencies (e.g. between
neighboring pixels) that we can take advantage of. This is exactly what graphical models do. They factor
complex distributions so that the scaling is much better. While there are graphical models that do not
use latent variables, most interesting applications of graphical models require latent variables, and so we
will focus on that. Additionally, we will introduce the EM algorithm, which will be used repeatedly and is
particularly important in optimizing variational autoencoders in deep learning.

1 Bayesian Networks (Directed Graphical Models)

Note that the whole purpose of directed graphical models is to model some sort of causal relationship between
two random variables. Note that while this is successful in practice, there is really no way to know for sure
about any causality.

Definition 1.1 (Bayesian Network)

A Bayesian network, also known as a directed probability model, is a directed acyclic graph
of M nodes representing a joint probability distribution of M scalar random variables. An edge
pointing A — B means that the B is conditionally dependent on A, and that there is a very clear
casual relationship coming from A to B. The parents of a node z; is denoted pa;, and the entire
joint distribution can be broken up as such:

M

p(x) = [T p(@mn | 2pa,,) (1)

m=1

which is unique due to it being a DAG. Not only is a Bayesian network easy to parameterize. We
can also sample from the joint distribution by sequentially sampling starting from the parents to the
final children, and discarding the ones (marginalizing) that we don’t wish to sample. This is known
as ancestral sampling.

Root Node

Child Node

Figure 1

This following example cleared up any confusion when I learned Bayesian networks for the first time.

2/ 24]

Graphical Models Muchang Bahng Spring 2024

Example 1.1 (Relay Race)

Consider a 4 x 100m relay race where the final race time depends on multiple factors. We can model
this as a Bayesian network where the total race time 7' depends on:

e Individual runner capabilities (Ry, Ra, R3, R4)

e Handoff success between runners (H;, Hs, H3)

e Individual leg performances (P;, P, Ps, Py)
The joint probability distribution factorizes as:

p<T7R17R2aR37R4aH17H27H3aP17P27P37P4) =
4 3 4

p(T|Py, Py, Py, Py) [[p(R:) [[p(H:| R, Rigr) [[(2| Ri, Hi o)
i=1 i=1 i=1

where H(is undefined for P;, and each runner’s performance depends on their capability and the
success of the previous handoff (except for the first runner). This network captures both the individual
contributions and the critical dependencies between runners during baton exchanges.

H,; Hy H;

NN N

Pl P2 P3 P4

Figure 2: Bayesian Network for a 4x100m Relay Race. The graphical representation is much more compact
and intuitive than simply writing out all the products.

Bayesian modelling with hierarchical priors.
Example 1.2 (Multinomial)

We first provide some motivation from a computational complexity perspective. Given a joint distri-
bution of 2 random variables X1, X5, say which are multinomial with K classes, their joint distribution
p(X1,Xz) is captured by K2 —1 parameters. For a general M random variables, then we have to keep a
total of K™ —1 parameters, and this increases exponentially. By building a directed graph with say r
maximum number of variables appearing on either side of the conditioning bar in a single probability
distribution, then the computational complexity scales as O(K"), which may save a lot of time if
r << M.

Extending upon this example, we can see that we want to balance two things:

1. Fully conncted graphs have completely general distributions and have O(K™ —1) number of parameters
(too complex).

2. If there are no links, the joint distribution fully factorizes into the product of its marginals and has
M (K — 1) parameters (too simple) .

Graphs that have an intermediate level of connectivity allow for more general distributions compared to the

3/ 4

Graphical Models Muchang Bahng Spring 2024

fully factorized one, while requiring fewer parameters than the general joint distribution. One model that
balances this out is the hidden markov model.

Example 1.3 (Chain Graph)

Consider an M-node Markov chain. The marginal distribution p(x;) requires K — 1 parameters, and
the remaining conditional distributions p(x; | x;—1) requires K (K — 1) parameters. Therefore, the
total number of parameters is

K—-1+(M-1)(K-1)K € O(MK?) (2)
which scales relatively well, and we have

M

p({xm}) = p(x1) T] p(xm | xm-1) 3)

m=2

TBD
We can turn this same graph into a Bayesian model by introducing priors for the paramters. Therefore,
each node requires an additional parent representing the distribution over parameters (e.g. prior can

be Dirichlet)
M

P({%m, pim}) = p(x1 | p)p(pa) T pfm | Xm—1, tian)D(11m) (4)

m=2

with p(p,) = Dir(pm, | am) for some predetermined fixed hyperparameter .

Figure 3

We could also choose to share a common prior over the parameters, trading flexibility for computa-
tional feasibility.

Figure 4

Another way to make more compact representations is through parameterized models. For example, if we
have to compute p(y = 1| x1,...,%ys), this in general has O(K™) parameters. However, we can obtain a
more parsimonious form by using a logistic function acting on a linear combination of the parent variables

M

p(yzl|X1,...,Xm):a(wo+2wixi> = o(w'x) (5)

i=1

We can look at an example how this is applied to sampling from high-dimensional Gaussian with linear
Gaussian models.

4/

Graphical Models Muchang Bahng Spring 2024

Example 1.4 (Multivariate Gaussian)

Consider an arbitrary acyclic graph over D random variables, in which eachnode represents a single
continuous Gaussian distribution with its mean given by a linear function of its parents.

p(o: | pag) = N (x

wijij + bj, ’Ui>

Given a multivariate Gaussian, let us try to decompose it into a directed graph. The log of the joint
distribution takes form

D D 2
1
Inp(x) = Zlnp(xi | pa,;) = — Z %, (xl - Z Q9] — bi> + const
p=1l =1 .
To compute the mean, we can see that by construction, every z; is dependent on its ancestors, so
1By = Z wiT; + by + /vi€;, € ~ N(0,1)

JEpa;

so by linearity of expectation, we have
Elz:] =) wyElz;] +b;
jEPai

So again, we can start at the top of the graph and compute the expectation. To compute covariance,
we can obtain the 7, jth element of X with a recurrence relation:

Zij = E[(zi — Elzi])(z; — Elz;])]

. [(xl_ CEl) (kgaj wjk(zx, — Elzg]) + \@ej)]
= Z wjkNik + 1i;v;

kepa;

If there were no links in the graphs, then the w;;’s are 0, and so E[x] = [b1,...,bp], making the
covariance diagonal.If the graph is fully connected, then the total number of parameters is D +
D(D — 1)/2, which corresponds to a general symmetric covariance matrix.

Example 1.5 (Bilinear Gaussian Model)

Consider the following model

u~ N(0,1)
v~ N(0,1)
r ~ N(uv,1)

where the mean of r is a product of 2 Gaussians. This is also a parameterized model.

5/ 24]

Graphical Models Muchang Bahng Spring 2024

QARG
CIBIEI

Figure 5

Definition 1.2 (Conditional Independence in Directed Graphs)
We say that a is independent of b given c if
pla|b,c)=pla]|c)

or equivalently,
pla,b|c)=pla|bc)p(b|c)=pla|c)pb]c)

Conveniently, we can directly read conditional independence properties of the joint distribution from
the graph without any analytical measurements.

Example 1.6 (Conditional Independence on Dataset)

We can demonstrate conditional independence with iid data. Consider the problem of density estima-
tion of some dataset D = {x;} with some parameterized distribution of u. Originally, the observations
are not independent since they depend on p.

p(D) = / p(D | 1) p(ps) ds (6)

Figure 6

If we condition on p and considered the joint over the observed variables, the variables are indepen-

dent.
N

p(D |) =[] p(wn | 1) (7)

Figure 7

The example above identifies a node (the parent ;1) where, if observed, causes the rest of the nodes to become
independent. We can extend on this idea by taking an arbitrary z; and finding a set of nodes such that if

6/ [24]

Graphical Models Muchang Bahng Spring 2024

they are observed, then x; is indepedent from every other node.
Definition 1.3 (Markov Blanket in Directed Graphs)

The Markov blanket of a node is the minimal set of nodes that must be observed to make this node
independent of all other nodes. It turns out that the parents, children, and coparents are all in the
Markov blanket.

Figure 8
Note that () [T ol |)
p\T1,---,TMm 1 P\Tk | Pag
P(xs | Tj25) = = 8
el 292) = T oton,.aan) &~ TTL, oo | pag) do ®

One final interpretation is that we can view directed graphs as distribution filters. We take the joint
probability distribution, will starts off as fully connected, and the directed graphs “filters" away the edges
that are not needed. Therefore, the joint probability distribution p(x) is only allows through the filter if and
only if it satisfies the factorization property.

2 Markov Random Field (Undirected Graphical Models)

As the name implies, undirected models use undirected graphs, which are used to model relationships that go
both ways rather than just one. Unlike directed graphs, which are useful for expressing casual relationships
between random variables, undirected graphs are useful for expressing soft constraints between random
variables.

Figure 9: An MRF can be represented with this graph.

Definition 2.1 (Conditional Independence in Undirected Graphs)

Fortunately, conditional independence is easier compared to directed models. We can say A is con-
ditionally independent to B given C if C' blocks all paths between any node in A and any node in
B.

7/ Bl

Graphical Models Muchang Bahng Spring 2024

Figure 10: A is conditionally independent given C, denoted A 1L B|C.

Definition 2.2 (Markov Blanket in Undirected Graphs)

The Markov blanket of a node, which is the minimal set of nodes that must be observered to make
this node independent of the rest of the nodes, is simply the nodes that are directly connected to that
node.

Figure 11: Once the neighbors of a node are realized, the node is independent of the rest of the nodes.

Therefore, the conditional distribution of z; conditioned on all the variables in the graph is dependent
only on the variables in the Markov blanket.

Now, let us talk about how we can actually define a probability distribution with this graph.
Definition 2.3 (Clique)

In an undirected graph, a clique is a set of nodes such that there exists a link between all pairs of
nodes in that subset. A maximal clique is a clique such that it is not possible to include any other
nodes in the set without it ceasing it to be a clique.

Given a joint random variable x represented by an undirected graph, the joint distribution is given by the
product of non-negative potential functions over the maximal cliques

p(x) = 2 [T detac) ©)
C

where

7 = /p(x) dx (10)
is the normalizing constant, called the partition function. That is, each z¢ is a maximal clique and ¢¢ is
the nonnegative potential function of that clique.

This assignment looks pretty arbitrary. How do we know that any arbitrary joint distribution of x, which
has a undirected graphical representation, can be represented as the product of a bunch of functions over

8/ 4

Graphical Models Muchang Bahng Spring 2024

the maximum cliques? Fortunately, there is a mathematical result that proves this.
Theorem 2.1 (Hammersley-Clifford)

The joint probability distribution of any undirected graph can be written as the product of potential
functions on the maximal cliques of the graph. Furthermore, for any factorization of these potential
functions, there exists an undirected graph for which is the joint.

Example 2.1 ()

For example, the joint distribution of the graph below

Figure 12

factorizes into 1
p(A,B,C,D) = EQS(A’O) ¢(C7B) d)(B’D) ¢(A’D) (11)

Note that each potential function ¢ is a mapping from the joint configuration of random variables in a clique to
non-negative real numbers. The choice of potential functions is not restricted to having specific probabilistic
interpretations, but since they must be nonnegative, we can just represent them as an exponential. The
negative sign is not needed, but is a remnant of physics notation.

b0 = 7 [[octre) = yew| -3 Blec)} = yew (B0} (12)

Boltzmann
distribution

Any distribution that can be represented as the form above is called a Boltzmann distribution. So
far, all we stated is that the joint probability distribution can be expressed as the product of a bunch of
potential functions, but besides the fact that it is nonnegative, there is no probabilistic interpretation of
these potentials (or equivalently, the energy functions). While this does give us greater flexibility in choosing
potential functions, we must be careful in choosing them (e.g. choosing something like 22 may cause the
integral to diverge, making the joint not well-defined).

Clearly, these potential functions over the cliques should express which configuration of the local variables are
preferred to others. It should assign higher values to configurations that are deemed (either by assumption
or through training data) to be more probable. That is, each potential is like an “expert" that provides some
opinion (the value) on a configuration, and the product of the values of all the potential represents the total
opinion of all the experts. Therefore, global configurations with relatively high probabilities are those that
find a good balance in satisfying the (possibly conflicting) influences of the clique potentials.

Example 2.2 (Transmission of Colds)

Say that you want to model a distribution over three binary variables: whether you or not you, your
coworker, and your roommate is sick (0 represents sick and 1 represents healthy). Then, you can
make simplifying assumptions that your roommate and your coworker do not know each other, so it
is very unlikely that one of thme will give the other an infection such as a cold directly. Therefore,

9/ 24]

Graphical Models Muchang Bahng Spring 2024

we can model the indirect transmission of a cold from your coworker to your roommate by modeling
the transmission of the cold from your coworker to you and then you to your roommate. Therefore,

we have a model of form

One max clique contains h, and h.. The factor for this clique can be defined by a table and might
have values resembling these.

hy=0] hy =1
0] 2 1
1] 1 10

he
he

Table 1: States and Values of hy and h.

This table completely describes the potential function of this clique. Both of you are usually healthy,
so the state (1,1) gets the maximum value of 1. If one of you are sick, then it is likely that the other
is sick as well, so we have a value of 2 for (0,0). Finally, it is most unlikely that one of you is sick
and the other healthy, which has a value of 1.

3 Hidden Markov Models
4 Nonlinear Latent Variable Models

Now we will consider ourselves with nonlinear latent variables models, which still defines a simple latent
random variable Z with prior p(z), but now a family of nonlinear functions { fy(z)} that defines the generative
component fo(z | z). In factor models, we have taken linear transformations of random variables and
therefore the likelihood had been easy to calculate, differentiate, and therefore optimize.

In the general nonlinear case, we usually deal with fy not as a transformation of Z to X, but really fy(z)
becomes the parameters of X | Z = z. This allows to define the implicitly parameterized family of distribu-
tions {py}. Given that the true distribution of the data is p*(x), we would like to find a distribution pg(z)
that is a good approximation.

P () = po(x) (13)

To calculate the likelihood pg (), we must compute the marginal

polz) = / po(,) dz = / po(z | 2)p(z) dz (14)

which is known to be computationally intractable due to the integral. At first, it seems like all hope is lost,
but statisticians have a few tricks up their sleeves.

1. The first trick is to notice that by Bayes rule, we can compute the likelihood not as an integral, but as
po(z | 2) p(2)
po(z) = ———F~<— (15)
po(z | x)
So it suffices to find a good approximation of pg(z |), which is a probabilistic discriminative model for

the latent variable (i.e. we are trying to compute the distribution of z given x as if we were predicting
it). We can do MCMC since py(z |) « pg(x | z) p(z), but often this can be slow to fit.

2. The next trick is called the variational lower bound, which is a lower bound on the log likelihood,
and therefore by optimizing it we can hope to optimize the log-likelihood as well. This works well in
practice.

3. The next trick is by optimizing the Fisher score, which is the gradient of the log likelihood with respect
to the covariates (not the parameters!).

10/ 24

Graphical Models Muchang Bahng Spring 2024

4.1 Variational Lower Bounds

We focus on this problem and define a family of distributions {g4(z |)} and use it to approximate py(z | x).
Therefore, searching for a good ¢ and therefore a good gy is basically the problem of variational Bayesian
inference. Essentially we are trying to construct an encoder and a decoder.

Prior distribution: pe(z) |

Z-space

X
Encoder: q,(z[x) Decoder: pe(x|z)
A

X-space

Dataset: D

Figure 13: If g4 = pg, then the diagram commutes, i.e. p(z)pg(z | z) = p(z)ps(z |) = po(z, 2).

As we have stated before (and in pretty much all density estimation problems), our job is to maximize the
log likelihood of the training set:

3 logp(s) (16
In order to do this for this problem, we need a little fact from information theory.
Theorem 4.1 (Log Likelihood vs Conditional Entropy)
The KL divergence can be decomposed to
KL(qs(z |) || po(2 | 2)) = Eg, (s [log gs(2 | 2)] +log po () — Eg, (21w llog pe(w, 2)] (17)

and hence

Proof.

Starting with the definition of KL divergence:

q(| x)}
KL(gp(z | x z|lx) =E;, (22 |log ———= 18
(g4(z | 2) || po(z | z)) q¢<>[& o(z | 2) (18)
=Eg, 210 [log 44 (2 | 7)] — Eq, (z1) [log pe(z | 7)) (19)
By Bayes’ rule, we know that
p@(xaz)
z|lx) = 20
polz | z) = B2 (20)

11/ 4

Graphical Models Muchang Bahng Spring 2024

Substituting this into our equation gives

KL(a6(: | 0) |20 |)) = Eayeo 080605 | 2)] = e [log 20| (21)
= Eq¢(z\x)[log Q¢(Z ‘ 1')] -]Eq¢(z|a:) [Ingﬁ(xa Z)] + Eq¢(z|x) UOgPQ(z)] (22)

Since log py(x) is constant with respect to z, we can take it out of the expectation.
Eq,(2lz) [log gg(2 |)] — By, (z12)[log pe(x, 2)] 4 log pe () (23)

Therefore maximizing the log-likelihood is equivalent to minimizing the KL-divergence.

logpo(z) = KL(gs(2 |) || po(2 |) + Eqg, (1) log po (2, 2)] — Eg, (21 [log g4 (2 | @)] (24)

But again the KL divergence part is intractable due to py(z |) being intractable. Using the fact that the
KL divergence is always greater than or equal to 0, we can drop the term and set a lower bound on the log
likelihoods. This lower bound is called the variational lower bound.

N
Zlogpe) > Z]E%(zw) [log pa(z?), 2)] Z]E 2atnlog gg (2 | #))] (25)

1=1

Definition 4.1 (Variational Lower Bound)

The variational lower bound of the dataset D is defined

N N
ELBO(ZEq¢,(z\1())[logpg((’L) Z - ZE%,(Z\J;“))[Iqu(ﬁ(Z | 1,(2))] (26)

i=1 i=1

which can be decomposed into the sums of the variational lower bounds of the individual data points.

ELBO(D, ZELBO @) ¢,0) (27)

where ‘
ELBO(.’E(l b,) q¢(z\x())[IOgPO(())] - Eq¢(z|x(i))[log q¢(Z ‘ 1,(1))] (28)
Note that we can alternatively define ELBO using Jensen’s inequality.

Definition 4.2 (Evidence Lower Bound)

To lower bound it, we can use Jensen’s inequality[?] with the concave function f(z) = log(z) over
domain R* and the following holds true for all § and more importantly, for any arbitrary density
function q(z). Therefore, we have

£(0) = log po(x) (29)
= log/pg(x,z) dz (30)
=lo z po(2,2) z
=tog [ay()) (31)

pg(.fﬂ,Z)
2 fote i (257) £
= ELBO(z, g¢) (33)

12/ 4

Graphical Models Muchang Bahng Spring 2024

The lower bound is called the evidence lower bound (ELBO), and the ELBO of the whole dataset
is

N
ELBO(D, ¢,0) = Z ELBO(z, ¢, 6) (34)

i=1

%Given convex function f: R — R, and random variable X, E[f(z)] > f(E[X]).

Note that this lower bound is with respect to any distribution g4, and it is because of this flexibility that
we choose g4 in the first place. Therefore, we can vary ¢ in hopes that the lower bound is maximized, and
optimize with respect to this, hence the name variational. For more interpretability, look at the corollary.

Corollary 4.1 (Decomposition of ELBO)

The following decomposition of ELBO shows that maximizing the ELBO simultaneously attempts
to keep g4 close to p and concentrate g4(z |) on those z that maximizes Inpy(z | z). That is, the
approximate posterior g, balances between staying close to the prior p(z) and moving towards the
maximum likelihood argmax, Inpy(x | 2).

ELBO(2"), 6,6) = Eq, ;o) [log po(2"? | 2)] = KL(gy(z | 29) || p(2)) (35)
likelihood term closeness of encoding to p(z)
(reconstruction part) (typically Gaussian)

Note the first expression is the likelihood term, which measures the reconstruction quality of the
decoder pp(x?) | z) averaged over encodings sampled from g, (2 | ("). The second term is the KL
divergence between the encoder distribution qg(2 | (¥) and the prior p(z), which acts as a regularizer
by ensuring the encoded distributions remain close to the chosen prior, typically a standard normal
distribution.

Proof.

Starting with the ELBO for a single data point:

ELBO(z", ¢,0) = Ey, (|z0) [log po(z?, 2)] —Eq,(ze®) 108 g5 (2 |)

Using the chain rule of probability for the joint distribution:

po(z?,2) = po(2? | 2)p(2)

Substituting this into our ELBO:

ELBO(z"), ¢,0) = Eq, (;(5)[log po (z?) | 2) +log p(2)] — By, (100 [l0g g4 (2 | 2@)]

) |
= Eq, (1o 10g po (2 | 2)] + By, (o) log p(2)] — Ey, 21z log g (2 |)]
| = (a0 (zJo@) 108 ¢o (2 | @) — Eq¢(z|x<i))[10gp(z)])
= Ey, 1o [logpo(z? | 2)] = KL(g4(z | 29) || p(2))

reconstruction term KL divergence term

(@ | 2)
()
Eq, (z12®) [log pa(z® | 2)
()

Therefore, maximizing the ELBO will simultaneously allow us to obtain an accurate generative model py(z |
z) =~ p*(z | z) and an accurate discriminative model g4(z |) = ps(z |). The next step is to actually
maximize the ELBO with respect to both 8 and ¢. To do this we need to compute the derivatives of ELBO
w.r.t. to ¢ and 6.

max ELBO(D, ¢, 6) (36)

13/ 24

Graphical Models Muchang Bahng Spring 2024

It turns out that this itself is a nonconvex optimization problem, and to make it doable we iterate between
updating ¢ and 6. Remember that the ELBO is really an expectation, i.e. an integral, and to get a good
estimate of its derivative we must try to change it from the derivative of an expectation to the expectation
of a derivative. The gradient with respect to 6 is very easy since from measure theory, we are deriving and
integrating over different variables.

Lemma 4.1 (Gradient of ELBO w.r.t. 0)
For 6, its unbiased gradient is

Vo ELBO(, 0, ¢) = Ey, (21a) [Vo log pa(|)] (37)

and therefore we can approximate the gradient by sampling L points p™, ..., p(X) from p(z) and
computing the gradient of the log (since we know the closed form of the conditional distribution
given z), and finally averaging them.

L
Vo ELBO(z, 6, ¢) ~ Z Vo log pe(x | z) (38)

which is guaranteed to converge by the law of large numbers, and furthermore, we can do this for any
batch size L.

Proof.

Note that the KL divergence does not depend on 6 and neither does the prior, so they can be removed

Vo ELBO(x, 0, ¢) = V@{Eq¢(z|w [log po(x, 2) (2| [l0g g (2 |)]}

= Vo{Eq,([2) [log po(, 2)

=Eq,(2v) [Vg{logpg(x,z)
=Eq, (2/a) [Vo{logpe(z | z

= Eq, (:/2) [Vo log po(z

}

(
(
(
logp(2)}] (
(

=~
—_
T O = D =

I =
]
]
) -
]

z

However, taking the gradient w.r.t. ¢ is more complicated since we cannot put the gradient in the expectation,
i.e. swap the derivative and integral (since we are deriving and integrating w.r.t. ¢). Fortunately, we have a
well-known mathematical identity often used in policy gradient algorithms in reinforcement learning. [Wil92]

Lemma 4.2 (Log-Derivative Trick)

The following identity holds.

V¢qus (=) [f()] = qus(z)[f(z)vdﬁ IOg Q¢(Z)] (44)

Proof.

First, let’s write out the left-hand side using the definition of expectation:

VgEq,(2)[f(2)] = Vg / f(2)qg(z

Under suitable regularity conditions, we can exchange the gradient and integral operators:

= / F(2)Voa5(2)dz

14/ 4

Graphical Models Muchang Bahng Spring 2024

Now, we multiply and divide by g4(#) inside the integral:

V¢q¢()z
= [1)as) "

Va4 (2)

o) by the chain rule:

Recognize that V,log gy(z) =

— [£:)as(2)V s Yog as(2)dz
Finally, we can rewrite this back as an expectation:

= E,,»)[f(2) V4 log g5 (2)]

2

Example 4.1 (Gradient of Expection of f(z) = z* w.r.t. Gaussian)

Assume we have a normal distribution ¢ that is parameterized by ¢, specifically g4(z) = N(¢,1). We
want to solve the below problem
m(gn E,[2?] (45)

This is of course a rather silly problem and the optimal ¢ = 0 is obvious. One way to calculate
V4E[z?] is using the log-derivative trick as follows

VB2 = V, / 4o (2)a?da (46)
— [22 T %(fﬂ) -

- [@Yoo 2 (47)

/)il (48)

E, [V g log gy (2] (49)

For our example where g4(z) = N(¢,1), this method gives

VE[e?] = Eq[a®(z — ¢)] (50)

Using this on the gradient of ELBO w.r.t. ¢ gives the following form as the expectation of the gradient.
Lemma 4.3 ()

We can use the score function estimator.

Vs ELBO(z, 0, ¢) = V4Eq, (| [log po (@, 2) — log g4 (2]2)] (51)
=Eqy, (21z) [V { 108 g4 (z|z)(log po(z, z) — log g4 (z]x)) }] (52)

Proof.

However, REINFORCE is known to have high variance, and so we need large batch sizes L for good conver-
gence. Many methods such as [GBBO01, [PBJ12| were developed to reduce this. Later it was shown in [KW22]
that the reparamaterization trick beat everything else, allowing us to efficiently train neural-net-based non-
linear latent variable models, e.g. the variational autoencoder. We will focus on the reparameterization trick
in my deep learning notes and omit it here. Now that we have approximate closed form solutions for the

15/ 24

Graphical Models Muchang Bahng Spring 2024

gradients, we can optimize the two using coordinate ascent. Note that we have shown this for a single sample
x, and ideally we would do this for a minibatch of samples z(*).

Algorithm 4.1 (Coordinate Ascent Variational Inference)

A common approach to maximize the ELBO is coordinate ascent, where we alternatively optimize
with respect to ¢ and 6:

Algorithm 1 Coordinate Ascent Variational Inference (CAVI) with Reparameterization

Require: Initial parameters 0%, ¢l° batch size B, number of samples L
1: while not converged do

2: // E-step: optimize variational parameters
3: Sample minibatch {zM), ..., 2B} from dataset D
4: Sample noise {¢™), ..., e(F)} ~ p(e) for reparameterization
5: Transform noise to latent variables: z() = gl (e z)forl=1,...,L
6: // Approximate gradient using Monte Carlo samples
. B L 3 i
T Gp 4 B 2ic1 2uea Ve logpa (@ | 20) — Vi log gy (2 | 2) + Vi log p(21))]
8: Pl ol 4y, >Update with learning rate 7,
9: // M-step: optimize model parameters
. B L i
10: go < ﬁ Zi:1 21:1 Vo log pgie (13() | Z(l))

11: Ol 0 4 oG >Update with learning rate 7y
12: end while

Once we are done, we have our optimized encoder and decoders py and g4.

4.2 EM Algorithm

Let’s consider a slightly simpler sub-problem where we have covariates (¥ ~ X coming from distribution
p(x). We can again add latent random variables Z but rather than being fixed, the prior py(z) is also
parameterized by 6. Therefore, we would like to find

argmax pg(z) = argmax/pg(a: | 2) po(z) dz (53)
0 0

Even though this integral is not tractable, we will assume that pg(z | x) can be computed for a given
0. Let’s try to redo our algorithm again with computable posterior assumptions. We have a training set
D = {2}, € R? which we assume are generated by some latent distributions pg(z) followed by the
generative component pg(x | z). Then, we bound the likelihood of each sample () by an ELBO that varies
for all distributions ¢(*) (we write ¢ rather than g, since the ¢ will be irrelevant here).

logpa(z(i)) 2 ELBO(z(i), q(i)ye) =]Eq<v1)(z|a;(i>)Uogpe(fﬂ(i)» z)] = Eqm(z\m(i))[log q(i)(z \ w(i))] (54)

Summing this all up gives the ELBO of our dataset, which is a lower bound for all collections of distributions

q(l), . 7q(”).
N .
> logpy(x™)) > ELBO(D, ¢!V, ..., 4™, 0) (55)
i=1
N . N . .
= ZEq(i)(z‘x(i))[10gp0<.’1;(l)7 z)] — ZEQ<¢>(Z|mu))[log ¢V (z | 2] (56)
i=1 i=1

We maximized the ELBO w.r.t. ¢ and 6 by using CAVI, but by invoking our assumption that the posterior
po(z |) can be computed, we can immediately find a maximum.

16/ 24

Graphical Models Muchang Bahng Spring 2024

Theorem 4.2 (Posterior Maximizes ELBO)

When we set ¢(i)(z |) = p(z | (), equality is achieved.

N
> logpy(«™) = ELBO(D, ¢V, ..., ™, 0) (57)
=1
N . N . .
= Z Eq(i)(z\w(i)) [10gp9 (x(z)7 Z)] - Z IE:q(i)(z|w(i)) [log q(l) (Z | x(z))] (58)
i=1 i=1

Proof.

Let’s start by examining the gap between log pg(x(i)) and the ELBO. From our previous derivations,
this gap is the KL divergence:

log pp (")) — ELBO(z™, ¢, 0) = KL(¢"” (2]2™)||ps(2]2")) (59)
= E @ [log q(i)(z|x(i)) = logpg(z|x(i))] (60)

When we set ¢V (2]z()) = pg(2z|z™):

K L(ps (22 |lpo (2]2)) = Ey, [log ps (2]2”)) —log pe(z]z®)] (61)
Epy [0] =0 (62)

Therefore, when summing over all samples:

g=il

N N
> logpe(z™) = ELBO(D, ¢, ... ,q™,0) = Y KL(¢" (zle?)po(zlP)) =0 (63)
=1

Therefore, our CAVI algorithm has been decomposed into the following.

1. E-step. Maximizing ELBO over the variational parameters g, is really just setting all the ¢ to the
posteriors. Note that this is with respect to a fixed 6 only.

2. M-step. Maximizing ELBO over the model parameters 6 with fixed ¢ is the same by taking the gradient
w.r.t. # which is easy.

This results in the following algorithm.
Algorithm 4.2 (EM Algorithm)

The EM algorithm is described as such:
1. Initialize 6.
2. E-Step. Since log pg(x) is bounded below for all ¢, ..., ¢(™) as

N N
> logps(z™) > > ELBO(z, ¢, 0) (64)
1=1 =1

setting ¢V (z|z(®) = py(z|z@) for all i = 1,..., N achieves equality. Note that this equality
only holds for the current fixed value of 6.

17/

Graphical Models Muchang Bahng Spring 2024

3. M-Step. We maximize with respect to 6 whilst fixing q(i)E

N
6 = argmax Z ELBO(z®, ¢, 6) (65)
i=1
N . N . .
= arginax > By loinlogpe(@®, 2)] = Y By (51000 log ¢ (2]2?)] (66)
i=1 i=1

4. Repeat steps 2 and 3 until convergence. Step 2 brings improvements because changing 6 creates
a new sum of ELBO functions as a new lower bound.

“For specific models like GMM as we will see later, this maximization has closed-form solutions, e.g. ¢ = average
of responsibilities ux =: weighted average of points, ¥ = weighted covariance. For other distributions, this maximum
must be found analytically or numerically.

The EM algorithm is a specific instance of ELBO optimization! The additional assumption that EM has is
that we can calculate the posterior densities.

Corollary 4.2 (Connection to ELBO)

The EM algorithm can be viewed as coordinate ascent on the ELBO where:
o E-step: Sets ¢(z) = pgi (z|x), maximizing ELBO over q
o M-step: Maximizes ELBO over 6 with fixed q

Note that there is a duality between the true parameters § and the latent variables z. If 6 is known, then
the values of z can be found by maximizing the log-likelihood over all possible values of z. Conversely, if we
know the value of the latent variables z, then we can find an estimate of the parameters by grouping the
data points into each value of z and optimizing py(z | 2), e.g. by averaging the values. This suggests an
iterative algorithm in the case where both 6 and z are unknown. We assume that we know 6 and optimize
z, then optimize 6, and so on, similar to k-means clustering.

We can formulate the algorithm alternatively yet equivalently.
Algorithm 4.3 (EM Algorithm)

The Expectation-Maximization algorithm optimizes the likelihood above with the following
steps.

1. First initialize 6 = 0% in some WayE|

2. E-Step. Define

Q0 | OM) =Ep, (2] [logpo(z, 2)] = /pem(z | z)log pe(x, 2) dz (67)

as the expected value of the log-likelihood with respect to the current conditional distribution
of z, given z and 6.
3. M-Step. Find the parameters that maximize this quantity.

0+ = argmax Q(0 | 011 (68)
o

®Note that within this 6 are the parameterizations of the initial multinomial density pz, which is our initial “guess”
of the distribution of Z.

18/ 24

Graphical Models Muchang Bahng Spring 2024

Theorem 4.3 (EM Monotonicity)

The EM algorithm monotonically increases the observed data log-likelihood:

log poir+11 (2] > log pgin (z) (69)
Therefore, though there is no guarantee that this will hit the global maximum, it will hit a local
maximum.
Proof.

Let’s consider the difference in log-likelihoods between iterations:

log pgte+11 () — log o (@) = {Q(Q[t+l]|9[t]) _ H(H[t+1]|9[t]):| (70)

_ [Q(g[t] 101y — H(plt |9[t1)} (71)

where H(0|0") = E_;, g1 [log pg(z|x)]. By the M-step, we know Q(81"+!|ol)) > Q(61|6[)). Also, by
Jensen’s inequality:
H(O" 0y < FH (91911 (72)

Therefore, the difference is non-negative.

For some intuition, we can visualize [as a function of §. For the sake of visuals, we will assume that § € R
and [: R — R. On the contrary to what a visual is supposed to do, we want to point out that we cannot
just visualize [as a curve in R x R. This can be misleading since then it implies that the optimal 6 value is
easy to find, as shown in the left. Rather, we have no clue what the whole curve of [looks like, but we can
get little snippets (right).

® A Wrw-a Visw of £ L Better Visual of £
; 7777727772727
“/\/\ Hoed to isuoline whele £
é)eore;m/ 0, By PIGER o7 07 o
Figure 14

Rather, all we can do is hope to take whatever easier-to-visualize, lower-bound functions and maximize them
as much as we can in hopes of converging onto [. Let us walk through the first two iterations of the EM
algorithm. We first initialize 6 to, say 6p. This immediately induces the lower-bound ELBO-sum function
> ELBO(2; p¥,6), which takes in multinomial density functions p} = pi,ps,... and outputs different
functions of @ that are valid lower bounds. Two of these possible lower-bound functions are shown (in green)
for when we input some arbitrary density pi, p2. However, there exists a density p(Zl) that produces not only
the maximum possible lower-bound (called max ELBO, shown in red) but is equal to [(#) for that density

input pg). We maximize this function with respect to 6 to get 6, as our next assignment of 6.

19/ 4

Graphical Models Muchang Bahng Spring 2024

1 M4
reassigned by tali
urg max afb?ha)r E?BD

E- Shﬁ
g,mrfw’ 1ev’ m/uccs ontire blue

wAoce: ZELEO(‘x“’ F‘ 0)
FwJ Thox Ellg

[

7}1
N

<ZEL30(K11)F:
4

P W
}:EL@O(?&“);MG*Z\ *f1,6)
1
S _’_/—\/

z ZEwo(;cﬁ’;f;‘=,>g‘,e):ug)
f ZP Lo (x f’ =, ,6)

Figure 15

The next step is identical. Now that we have a new value of § = 61, this induces the lower-bound ELBO-sum
function _, ELBO(z®; p3,0) that also takes in multinomial densities pj’ and outputs different functions
of 6 that are valid lower-bounds. Two possible lower bounds are shown (in green), but the maximum lower-

bound (in blue) is produced when we input density pZ Since this max ELBO function is equal to # for this

fixed density input p(Z), we maximize this function with respect to 6 to get 0 as our next assignment of 6.

M-S'f:t (3 -S'f:t
_Q} rm«i’nul bz tali 0, reassi ned induces entive red

>

’M, max of max GLEO

sovface ZELBO(‘);“); F“,_"’ o)
Find mex ELRO,

(). gkis (D v
'rrlg,)((iZEuZO(x pe PZ"’)

—

Figure 16

4.3 Gaussian Mixture Models

Given a training set x(i)?zl (without the y-labels and so in the unsupervised setting), there are some cases
where it may seem like we can fit multiple Gaussian distributions in the input space X. For example, the
points below seem like they can be fitted well with 3 Gaussians.

20/ 24

Graphical Models Muchang Bahng Spring 2024

X|Z=1~N(u, %)
X|Z =2~ N(p2,%2)
X|Z =3~ N(us, X3)

~

Figure 17: Example of data that can be fitted with 3 Gaussians

Therefore, we can construct a best-fit model as a composition of a multinomial distribution (to decide which
one of the Gaussians z should follow) followed by a Gaussian.

Definition 4.3 (Gaussian Mixture Model)

The Gaussian mixture model (GMM) assumes that the covariates z ~ X € R? are generated by
the followingﬂ The parameters are § = {\, pu1,..., ug, X1, - ., Ek}ﬂ
1. A latent variable z ~ Multinomial(\), where A = (A1,..., Ax) with PMF defined

po(z) = Az (73)

2. The generative random variable X | Z = z ~ N (u;, 2;) where p, € R4 Y, € R¥™4 and PDF
defined

(e |) = s o (30—) 5@ -) (74

“Therefore, our model says that each 2() was generated by randomly choosing z(*) from 1,...,k according to some
multinomial, and then the 2(?) was drawn from one of the k Gaussians depending on z(%).
bNote that A really has k — 1 free parameters and X;’s should be symmetric and positive-definite.

We can write down the log-likelihood of the given data x(9)’s as a function of all the parameters above as
n) n k .) .
S logp(a®) = 3 log (Zm(a:(“ | z“)),pe(z@)) (75)
i=1 i=1 z=1

Example 4.2 (Dual Nature of Latents and Parameters)

Note that since we only know that the final value of the ith sample is (¥ and not anything at
all about which value z(?) the ith sample had, there is an extra unknown in this model. If we did
know the values of the hidden variables z(*) (i.e. if we knew which of the k Gaussians each z(*) was
generated from), then our log likelihood function would be much more simple since now, our givens
will be both 2 and (9. Therefore, we don’t have to condition on the z(*) and can directly calculate
the log of the probability of us having sample values (z(1), z(D), (22, 22, (2™ z(™),

21/ 4

Graphical Models Muchang Bahng Spring 2024

> logp(a™) = "logp(a®,21) = “logp(x? | 2V) p(z1") (76)
p=1l =1l p=1

This model, with known z(?)’s, is basically the GDA model, which is easy to calculate. That is, the
maximum values of ¢, u, > are

1 n
¢j = ﬁ Zl]].Z(i):j

o 2?21]lz(i):jx(i)

b T Lo,

.= 1 zn:]l w (@D —), (® —u‘)T
J Zn]]_ z J)? J

i=1-+zW0=;5 ;5

But since we do not know the values of z(), we first try to “guess” the values of the z(¥’s and then update
the parameters of our model assuming our guesses are correct.

Algorithm 4.4 (EM Algorithm on GMMs)

The EM Algorithm applied to GMMs has the following steps:
1. Randomly initialize % = {\, u1, ..., pg, S1, - .o, X}
2. (E Step) Calculate the posterior density p(z | =) by applying Bayes rule to each sample keeping
the parameter A" fixed.

o (29 | 2) pgra(2) _ poia (2 | 2) pyin (2)
p(x) >, P (29 | 2) para (2)

We should have n different multinomial distribution parameters, each representing our best
guess of what multinomial density p(z | (9) each () had followed in order to be at the given
points. Let’s label the updated parameters of the multinomial distribution of the ith sample to
be A1) at the tth iteration.

3. (M Step) We update 6 as such.

pota (2 |) = (77)

1 < ,
Al = - Z Al (78)
1=1
n G
[t+1] _ e 4 zt (79)
Hi S NG
ey _ 1 @ () _) T
EAS S ulG DA @ =] (@ — (80)
= i=1

4. Repeat steps 2 and 3 until convergence.

This might converge faster using K-means initialization.

Let us elaborate further on the intuition of this step. In the normal GDA with given values of z(9), we
have A = %2?21 1{z(f) =j}= %(Number of Samples in jth Gaussian), which is a sum of "hard" guesses,
meaning that each (¥ is undoubtedly in cluster j or not, and so to find out our best guess for the true
vector A, all we have to do is find out the proportion of all examples in each of the k groups and we’re done
(without needing to iterate). However, in our EM model, we do not know the 2(1’s, and so the best we can

do is give the probability)\gi) that (V) is in cluster j. So for each point z(*), the model has changed from it

22/ 4]

Graphical Models Muchang Bahng Spring 2024

i)

being undoubtedly in group z(¥) = j to it having a probability of being in)\§. forj=1,...,k.
A& = (.15, .8, .05)
(2 = 5 ’
o)\— % A (.9, .05, .05) e
° * *\6)
o)\— % (3). AP = (2.6, .2)
° . ° — % AP = (7, .1, .2) .
o O = (.1, .05, .85)
A = (.8,.03, .17)
(a) Hard label assignments. (b) Soft probability assignments.

Figure 18: The superscript [t] is omitted for clarity.

When we update the A in the M-step, we can interpret the vectors A(#) as tuples where)\gi) describes the

expected "portion" of each sample z(¥) to be in group j. So, we are adding up all the "portions" of the
points that are expected to be in cluster j to get A =Y | A,

I8
®, | g & § 0] /m fw) ,6“’ (6)

A‘merﬁ () X/“" b 15 ﬁg +'7“'74‘é*-2*'f=}6!"2-!;'6‘13
M;ggm : % 03£.054. 1.8+, 64.05= Fy=),62 blues
1N\)

\ N

\ \. . My i P

\ \ X &

, g0,
\‘:0\ < / ’(‘6)

Figure 19

Now, given the jth Gaussian cluster, we would like to compute its mean p;. Since each z() has probability
)\;z) of being in cluster j, we can weigh each of the n points by)\gz) (which determines how "relevant" z(*) is
to cluster j) and average these (already weighted) points to get our "best-guess" of the mean p;. Given the

MLE of the means, we can straightforwardly compute the MLE of the covariance matrices.

In summary, this entire algorithm results from modifying the “hard” data of each point 2(*) being undoubtedly
in one cluster to a model containing points z(¥) that have been "smeared" around different clusters, with a
probability A(*) being in cluster j.

4.4 Nonlinear ICA
Bibliography

[GBBO01] Evan Greensmith, Peter Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. In T. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems, volume 14. MIT Press, 2001.

[KW22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

23/ 24

Graphical Models Muchang Bahng Spring 2024

[PBJ12] John Paisley, David Blei, and Michael Jordan. Variational bayesian inference with stochastic
search, 2012.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229-256, 1992.

24/ 4]

	Bayesian Networks (Directed Graphical Models)
	Markov Random Field (Undirected Graphical Models)
	Hidden Markov Models
	Nonlinear Latent Variable Models
	Variational Lower Bounds
	EM Algorithm
	Gaussian Mixture Models
	Nonlinear ICA

	Bibliography

