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Let’s first talk about why we need analysis in general in the first place. Algebra allows us to define certain
algebraic structures, which are essentially sets with operations. These operations are defined to have a finite
number of arguments. For example, let’s take a look at the negation z — —x and the addition =,y — = +y
operations in a group G. We can compose these operations up to any finite length n, removing the parentheses
due to associativity, but note that the “sum” below is not a single operation. It is a composition of n — 1
operations.

1+ ax+...+x, €G (1)

—(=(..(-2)eqC (2)
This is still well defined due to closure, but what if we wanted to do this an infinite number of times?

(=) =7 (4)

For someone who has learned about sequences and series in high school, this may not be a big jump in
logic, but it is. The objects above are not even well-defined and trying to define them with algebraic tools
is manifested in the famous Zeno’s paradox. So we simply need to add more tools in order to define these
new mathematical objects, which we call series. To define series, we need to first define sequences. Can we
do this with algebra? YesEI since we can simply model it as a function.

Definition 0.1 (Sequence)

A sequence is a function f: N — X. We usually denote a sequence by writing out the first few terms
of the sequence, followed by an ellipsis.

ar = f(1),a2 = f(2),... (5)

or as an indexed set over the naturals {a; };en-

Therefore, we can consider series as a sequence of finite sums, each element which is well-defined.
T1,T1 +I’2,I1 +l‘2+l’3,... (6)

For any n € N, we can get the value of a,, = >_"_; a;, but can we say something about the limiting behavior
of a,? That is, maybe we can just slap a value x onto this series such that it doesn’t “break” any of the
rules we have in the finite sense. Unfortunately, it is not possible to define such values for all series, but
it is possible for some of them, which we call convergent series. To rigorously determine which ones are
convergent and which ones are not, we need the tools of topology. Defining the concept of sequences that
model infinitely composed operations is what allows us to define differentiation and integration.

Great, we’ve motivated the need for analysis, but before jumping straight into real analysis, let’s talk about
what analysis in general works with. It studies functions of the form f : X — Y, and minimally both
X,Y must be Banach spaces, i.e. complete normed vector spaces over some field F. Almost all flavors of
analysis, including real (R), complex (C), multivariate (R™), p-adic, and functional (infinite-dimensional
Banach spaces) analysis require at least a Banach space structure. Why are Banach spaces so great? Well if
we were to define convergence in X or Y, then it only makes sense to talk about convergence with respect to a
topology. So X,Y must at least be topological spaces. It would also be bad if we were to take a sequence in X
and find out that it converges to some element outside of X. Therefore, we want a notion of completeness in
the sense that all sequences that “get closer,” i.e. Cauchy sequences, actually converge in X. Unfortunately,
while convergence of sequences is preserved under homeomorphisms (and is thus a topological property),
convergence of Cauchy sequences is notE| Furthermore, the notion of uniform convergence is a metric space

1n fact, we don’t even need algebra, just set theory.
2Consider the sequence an, = 1/(n+ 1) in (0,1) and the map f(z) = 1/z to the set (1,+0c0). an is Cauchy but f(an) is not.
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property, not a topological one. Therefore, the concept of distances is crucial to the construction of analysis.
As for the norm, I'm still not sure why we need thisﬂ

But in college courses such as real and complex analysis, why do we say we work over the fields R and C
rather than the Banach spaces R and C? This is because of the following theorem.

Theorem 0.1 ()

Every field F is a 1-dimensional vector space over itself.

Therefore, when we talk about the field R, we are really treating it as a vector space R over the field RE]
Every other structure beyond this is a “bonus” property that gives us extra tools to prove stronger properties.
The most notable is the total ordering on R, which allows us to define upper/lower bounds and other real-
analysis specific theorems like the intermediate value theorem or the mean value theorem. Other structures
include the inner product or the measure.

Now that we’ve taken in the big picture, for each type of analysis, we should construct the underlying relevant
Banach space. At the very least, we can with the tools of set theory and algebra define the rationals Q as
an ordered field over the quotient space Z x Z/ ~. Furthermore, Q itself is a normed vector space (over (@)E]
and the only thing we need now is completeness.

1. If the norm on Q is defined as the normal absolute value (Euclidean norm), completing it gives R as
an ordered field which also has a compatible order as that of Q. We study functions mapping to and
from R with single-variable real analysis.

2. If we take the p-adic norm, then completing it with respect to this gives the p-adic numbers, which
also forms a field but loses the ordering. We deal with functions over the p-adics with p-adic analysis.

3. We can construct C by taking R? and endowing it with a bit more structure. We get complex analysis.

4. We can construct R™ and C™" by easily defining its vector space structure and then endowing it with
a norm, and showing that it is complete with respect to the norm-induced metric. This is known as
multivariate analysis.

5. With all these defined, we can define Banach function spaces like LP and perform analysis on operators
f:LP — L4. This is functional analysis.

3Aspinwall and Ng told me this, but I’'m not sure why. The Frechet derivative seems like it can be purely defined with a
metric.

4Thanks to Prof. Lenny Ng for clarifying this.

5Note that while we define the norm and metric to usually map to RT, R isn’t even defined yet and so to avoid circular
definitions, we define the norm on the rationals to have codomain Q.
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1 The Real Numbers

By constructing Q and its topology in my algebra and topology notes, we can talk about convergence. The
first question to ask (if you were the first person inventing the reals) is “how do I know that there exists
some other numbers at all?” The first clue is trying to find the side length of a square with area 2. As we
see, this number is not rational.

Theorem 1.1 (v/2 is Not Rational)

There exists no z € Q s.t. =2 = 2.

Proof. Assume such a number x = p/q exists, where ged(p, ¢) = 1. Then, by the field axioms of Q, we

can deduce that )
p

This implies that 2 | p, so we have p = 2pg, and we can write 2¢> = 4p3. Dividing both sides by 2, we
get g2 = 2pZ, which implies that 2 | ¢. This contradicts the fact that p and ¢ are coprime.

We can “imagine” that a square with area 2 certainly exists, but the fact that its side length is undefined is
certainly unsettling. I don’t know about you, but I would try to “invent” /2. We can do this in 4 distinct
ways, though some may be more similar than others.

1. Dedekind Completeness. 1 would try and generate new elements by taking a specific cut—a partition
into two sets such that elements of one set is always greater than that of the other—and seeing which
elements lie right in between these cuts. We will often see that we can always find a cut for every
rational, but there are additional cuts for each irrational number. This is the idea behind Dedekind
completeness.

2. Cauchy Completeness. 1 write out the decimal expansion one by one, which gives our first exposure to

sequences.
1,1.4,1.41,1.414, ... (8)

It is clear that on Q, this sequence does not converge. Our intuition tells that that if the terms get closer
and closer to each other, they must be getting closer and closer to something, though that something
is not in Q. This motivates the definition for Cauchy completeness.

3. Nested Interval Completeness. 1 would write out maybe some nested intervals so that v/2 must lie
within each interval.
[1,2] D [1.4,1.5] D [1.41,1.42] O ... 9)

This motivates the definition of nested-interval completeness.

4. Least Upper Bound Completeness. 1 would define the set of all rationals such that 22 < 2, and try
to define v/2 as the max or supremum of this set. We will quickly find that neither the max nor the
supremum exists in Q, and this motivates the definition for least upper bound completeness.

All four of these methods points at the same intuition that there should not be any “gaps” or “missing points”
in the set that we will construct to be R, which is the general notion of completeness. This contrasts with
the rational numbers, whose corresponding number line has a "gap" at each irrational value. Even though
constructing the reals with one method is sufficient, knowing the different flavors in which completeness
manifests is very useful. It allows us to view properties of R through different lens.

The main division between these four properties is that the first two are methods to directly construct the
reals from Q, while the latter two are more aziomatic properties that we use to verify completeness for a
given set. In the next two sections, we will take the rationals and add on extra elements using Dedekind cuts
and Cauchy sequences. However, it isn’t as conventional (though possible) to construct them as the single
point contained in a sequence of nested intervals nor as a supremum of all upper-bounded sets. In fact, an
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alternative way to construct the reals is to define it axiomatically—as a totally ordered field with either the
LUB property or the nested interval propertyﬁ

Therefore, in the following sections, we will
1. first define the relevant notion of completeness,
2. show that the rationals are not complete
3. and then construct the completed version of the rationals as a version of the reals.
Once we have done this for all three versions, we will unify them by proving they are all equivalent.

There is a second essential property of the reals that is not talked about as often is the Archimidean principle.

Definition 1.1 (Archimidean Principle)

An ordered ring (X, +, -, <) that embeds the naturals I\ﬂ is said to obey the Archimedean principle
if given any z,y € X s.t. x,y > 0, there exists an n € N s.t. ¢(n) - > y. Usually, we don’t care about
the canonical injection and write nx > y.

%as in, there exists an ordered ring homomorphism ¢ : N — X

Lemma 1.1 (Rationals are Archimidean)

Q satisfies the Archimidean principle.

Proof. Take any © = p1/q1,y = p2/q2 € Q. Then, take n = q1p2, and we get

p1 P2 1
nr =qip2— =pip2 > — =Y < p1 > — (10)
q1 q2 q2

which must be true since p; > 1 > q%.

Usually, we just construct R right out of Q, and it turns out that the Archimidean principle just trivially
follows. However, if we construct R axiomatically (without the rationals), it needs to be stated. In this
axiomatic formulation, we will find that certain types of completeness—like Dedekind completeness—actually
implies the Archimidean principle, while others—Ilike Cauchy and nested-intervals completeness—does not.
Therefore, in a sense, Dedekind completeness is the “strongest” form of completeness.

1.1 Dedekind Completeness

This is an explicit construction from the rationals.

Definition 1.2 (Dedekind Cut)

A Dedekind cut is a partition of the rationals Q = A U A’ satisfying the three properties[%]
1. A#0and A # Q[
2. x<yforallz e A,ye A'.
3. The maximum element of A does not exist in Q.

The minimum of A’ may exist in @, and if it does, the cut is said to be generated by min A’.

%This can really be defined for any totally ordered set.
bBy relaxing this property, we can actually complete Q to the extended real number line.

61In fact, you also need the Archimidean principle, but we’ll talk about this later.
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Note that in Q, there will be two types of cuts:
1. ones that are generated by rational numbers, such as

A={reQ|z<2/3},A'={ze€Q|xz>2/3} (11)

2. and the ones that are not
A={rzecQ|2*<2},A={zecQ|2®>2} (12)
We can intuitively see that the set of all Dedekind cuts (A, A’) will “extend” the rationals into a bigger set.

We can then define some operations and an order to construct this into an ordered field, and finally it will
have the property that we call “completeness.”

Definition 1.3 (Dedekind Completeness)

A totally ordered algebraic field F is Dedekind-complete if every Dedekind cut of IF is generated by
an element of IF.

Lemma 1.2 (Rationals are Not Dedekind-Complete)

Q is not Dedekind-complete.

Proof. Take a look at the cut
A={rcQ|a? <2}, ={zcQ|2*>>2} (13)
We wish to show that A’ has no minimum. Assume that it does, and call it p. Then, define

pPP—2 2p+2

=p-— = 14
1=r p+2 p+2 (14)
We can see that p > 2 = p?> —2 >0 = ¢ < p. But we also see that
2(p* - 2)
2 2
9 (p+2)2 q (15)

Therefore, we have found a g € A’ that is smaller than p, a contradiction.

These Dedekind cuts are simply subsets of the power set of Q, which always exists due to the
Therefore, we can simply use the axiom of restricted comprehension (?) to create a well-defined set
of Dedekind cuts.

Definition 1.4 (Reals as the Dedekind-Completion of Rationals)

Let Rp be the set of all Dedekind cuts A% of Q.

Rp = {A € 2% (A, A°) is a Dedekind cut} (16)

By doing this we can intuitively think of a real number as being represented by the set of all smaller
rational numbers. Let A, B € Rp two Dedekind cuts. Then, we define the following order and
operations.

1. Order. A<g B <— A C B.

2. Addition. A4+gr B:=={a+qgb|a€ A,be B}.

3. Additive Identity. Og = {x € Q |z < 0}.
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4. Additive Inverse. —B:={a—b]a<0,b€ (Q\ B)}.

5. Multiplication. If A, B > 0, then we define A xg B:={a xgb|a€ A,be B,a,b>0}U0g. If A
or B is negative, then we use the identity A x B = —(A xg —B) = —(—A xg B) = (—A xg —B)
to convert A, B to both positives and apply the previous definition.

6. Multiplicative Identity. 1r = {z € Q| z < 1}.

7. Multiplicative Inverse. If B >0, B™! := {a xgb™! | a € 1g,b € (Q\ B)}. If B is negative, then
we compute B~1 = —((=B)~1!) by first converting to a positive number and then applying the
definition above.

We claim that (R, +g, Xg, <g) is a Dedekind-complete totally ordered field, and the canonical injection
t:Q — R defined
g) = {zr€Q|z<q} (17)

is an ordered field isomorphism.

%For convenience we can uniquely represent (A, A’) with just A since A’ = Q\ A.

Proof.

By the canonical injections N — Z — Q — Rp, we can talk about whether this set has the Archimedean
property. By construction, Archimidean is trivial since Rp contains Q which is Archimidean.

Theorem 1.2 (Dedekind Reals is Archimedean)

Rp satisfies the Archimedean principle.

Proof. Rp contains Q.

Definition 1.5 (Axiomatic Construction of Dedekind-Reals)

R’; is a totally ordered field that is Dedekind completeﬂ

@Just for this section, I will denote R’ as reals constructed axiomatically.

Theorem 1.3 (Axiomatic Dedekind Reals is Archimedean)

R’, satisfies the Archimedean principle.

Proof. Assume that this property doesn’t hold. Then for any fixed z, nx < y for all n € N. Consider
the set
A= []J(-o0,nz), B=R\A (18)
neN

A by definition is nonempty, and B is nonempty since it contains y. Then, we can show that a € A,b €
B = a < b using proof by contradiction. Assume that there exists a’ € A, € B s.t. o/ > V. Since
a’ € A, there exists an’ € Nst. @ € (—oo,n'z) <= a < n'z. But by transitivity of order, this
means b’ < n'z <= b € (—oco,n'z) = b € A.
Going back to the main proof, we see that A is upper bounded by y, and so by the least upper bound
property it has a supremum z = sup A.
1. If z € A, then by the induction principld”] z + x € A, contradicting that z is an upper bound.
2. If z € A, then by the induction princip z—x ¢ A = z—ax € B. Since every element of
B upper bounds A and since x > 0, this means that z — < z is a smaller upper bound of A,
contradicting that z is a least upper bound.
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Therefore, it must be the case that nx > y for some n € N.

%Note that N is defined recursively as 1 € N and if n € N, then n+1 € N.
bThe contrapositive of the recursive definition of N is: if n € N, then n — 1 ¢ N.

1.2 Cauchy Completeness

In many cases we are not working with ordered fields, and so different types of completeness may be more
useful. In actual practice, you tend to use Cauchy completeness which only assumes a metric structure.

Definition 1.6 (Cauchy Sequence)

A sequence (x,), in a metric space (X, d) is a Cauchy sequence if Ve > 0, IN € N s.t.

n,m >N = d(z,,Tm) <€ (19)

To motivate this definition, note that in a general topological space X, we can define convergence of a
sequence x, — x perfectly fine. However, take some subset U C X, and let = be a limit point of U. In
this case, x,, does not converge in U, but it does converge to something outside of U—namely, x € X. This
is similar to Q C R, where = is an irrational point. However, we are trying to construct R, so Cauchy
convergence allows us to speak of convergence without actually referring to what a sequence is converging
to.

Note that it is not sufficient to say that a sequence is Cauchy by claiming that each term becomes arbitrarily
close to the preceding term. That is,
lim d(2p11,2,) =0 (20)

n—roo

Example 1.1 (Adjacent Terms Converging Doesn’t Imply Sequence is Cauchy)

For example, look at the sequence
B 1 _ 1
CVnFl+yn o 2yn

However, it is clear that a,, gets arbitrarily large, meaning that a finite interval can contain at most a
finite number of terms in {a,}.

(21)

an:\/ﬁ = Qp4+1 — an

It is often more convenient to think of the limit of the diameter of rest of the sequence. That is, a sequence
is Cauchy if
lim diam{z,}m>n =0 (22)
n—oo

It is trivial that convergence implies Cauchy convergence, but the other direction is not true. Therefore, we
would like to work in a space where these two are equivalent, and this is called completeness. Therefore, we
can construct the reals as equivalence classes over Cauchy sequences. Rather than using the order, we take
advantage of the metric.

Definition 1.7 (Cauchy Completeness)

A metric space (X, d) is Cauchy complete if every Cauchy sequence in that space converges to an
element in X.

Q is not Cauchy-complete. Let a, be the largest number 2 up to the nth decimal expansion such that 2
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does not exceed 2. The first few terms are
1.4,1.41,1.414, ... (23)

In this case, we can see that this is Cauchy since at the nth element and on, the first n decimal places are
kept fixed and so the most that the rest of the sequence can deviate by is 10™".

Definition 1.8 (Reals as the Cauchy-Completion of the Rationals)

Let R be the quotient space of all Cauchy (under the Euclidean metric) sequences (z,,) of rational
numbers with the equivalence relation (z,,) = (y») iff their difference tends to 0[7) That is, for every
rational € > 0, there exists an integer N s.t. for all naturals n > N, |z, — y,| < €.
1. Order. (x,) <g (yn) iff z =y or there exists N € N s.t. z, <g y, for all n > N.
Addition. () + (yn) = (Tn + Yn)-
Additive Identity. Og := (Og).
Additive Inverse. —(xy,) = (—xy).
Multiplication. (xn) XR (Yn) = (Tn XQ Yn)-
Multiplicative Identity. 1g = (1).
. Multiplicative Inverse. (z,)~1' = (x;1).

n

We claim that (R, +g, Xg, <g) is a totally ordered field, and the canonical injection ¢ : Q — R defined

u(q) = (g) (24)

is an ordered field isomorphism. Finally, by construction R is Cauchy-complete.

NS ot N

%This equivalence class reflects that the same real number can be approximated in many different sequences. In fact,
this shows by definition that 1,1,... and 0.9,0.99,0.999, ... are the same number!

Proof.

Theorem 1.4 (Cauchy Reals is Archimidean)

R¢ satisfies the Archimedean principle.

Proof. Rg contains Q, which is Archimidean.

The best thing about Cauchy completeness is that we can just take Q™ to create R™. It becomes quite
general. However, note that first, Cauchy completion depends on which metric you use to complete it.

Example 1.2 (P-adic Numbers)

Let p be a prime number. For a non-zero rational z = p* - £ where p { a, b, define the p-adic nornﬂ as
jelp =p" 0], =0 (25)

The p-adic numbers Q,, are the Cauchy completion of Q with respect to the p-adic metric d,(z,y) =
|z — y|,. This set not only does not satisfy the Archimidean principle; it doesn’t even have a natural
ordering!

2This measures divisibility by p: the more p divides x, the smaller |z|,. For example, |8|2 =273 = 1/8 and 3|2 = 1.
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Definition 1.9 (Axiomatic Construction of Cauchy-Reals)

R’; is a totally ordered field that is Cauchy complete and that satisfies the Archimidean principle.

Note that we require the extra Archimidean assumption in the axiomatic construction.

Example 1.3 (Ordered Cauchy-Complete Fields that are Not Archimidean)

Provide examples of ordered, Cauchy-complete fields that are not Archimedean. Hyperreals?

1.3 Least Upper Bound Completeness

Definition 1.10 (Least Upper Bound Property)

A totally ordered algebraic field F (must it be a field?) is least-upper-bound complete, or is said to
satisfy the least upper bound (LUB) property, if every nonempty set of F having an upper bound
must have a least upper bound (supremum) in F.

Theorem 1.5 (LUB is Equivalent to GLB)

A set (F, <) has the least upper bound property iff it has the greatest lower bound property, which
states that every set bounded below has a greatest lower bound.

Proof. We will prove one direction since the other is the same logic. Let S C X be a nonempty set
that is bounded below by some [ € X. Let L C X be the set of all lower bounds of S. Since [ exists,
it is nonempty. Furthermore, L is bounded above by any element of S. Due to LUB property L has a
least upper bound, call it z = sup L. We claim that z = inf S.

1. z is a lower bound of S. Assume that it is not. Then there exists s € S s.t. s < z. But by
construction s is an upper bound for L and so z s not the least upper bound, a contradiction.

2. z is a greatest lower bound. Assume that z is not. Then there exists a 2/ € X st. 2 < 2/ < s
for all s € S. But since z’, 2z are lower bounds, this means z,z’ € L by definition and 2z < 2’
contradicts the fact that z is an upper bound of L.

We are done.

Q does not satisfy the least upper bound property, but proving this can be tricky for the first time. We state
this as a lemma.

Theorem 1.6 (Rationals Doesn’t Satisfy LUB Property)

Q does not satisfy the LUB property.

Proof. Assume it does, and let us denote
pi=suplz |Q|2? <2} €Q (26)

The key here is to find another rational that we can always “squeeze” in between p and 2. This can be
done with the Archimidean principle, which is already satsified in Q. Since we have [proved that there
exists no rational that squares to 2, we only need to consider the two cases.

1. p? < 2. Take € € Q so small that

PP+ 2peted =(pt+e?<?2 (27)
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To show complete steps, we can see that by density of reals, there exists some rational 7 s.t.
0 < r < 2 — p? Therefore, we can invoke Archimidean principle to find a n € N s.t. € = p/n <
2p/n < r. Therefore, p is not an upper bound, so this cannot be true.

2. p? > 2. We can again take an € € Q so small that

PP —2pet+ € =(p—e)?>2 (28)

Therefore, p is not least, so this cannot be true.

Definition 1.11 (Axiomatic Construction of Reals with LUB Property)

R’ is a totally ordered field that satisfies the least upper bound property.

Note that we don’t need to explicitly assume Archimidean principle here. The LUB property is strong
enough that it implies Archimidean!

Theorem 1.7 (LUB Property Implies Archimidean)

R is Archimidean.

Now let’s see how our previous constructions of the reals relate to the LUB property.

Theorem 1.8 (Dedekind Completed Reals Satisfies LUB Property)

Rp satisfies the least upper bound property.

Proof. Let A be a nonempty subset of Rp bounded from above by T. Then, VA € A, A = (A, A°) is
a Dedekind cut, and we can define

(B,B') = ( U4 N AC> (29)

AcA AcA

We claim that this is a Dedekind cut.
1. First, it is nonempty set A # ) and so for each A € A, A C Q is nonempty. It is also not all of
Q since T is an upper bound of A, and so T' > a Va € A VA € A, which implies that

T¢|)A (30)

AcA

2. Now let z € B,y € B’. Then, z € Ay for some Ay € A, and since y is in the intersection of all
the corresponding A€, it must be in the corresponding A§. Therefore we invoke the Dedekind cut
property of (Ag, A§) and see z < y.

3. Finally, for the sake of contradiction, let m € Q be the maximum of B. Then, m € A* for some
A* € A. But m is an upper bound for the whole B, so this means that m = max{A*}, which
contradicts the fact that lower cut cannot have a rational maximum.

Now we claim that B is the supremum. It is an upper bound since

ACB=[JA vAdecA (31)
AcA

To prove least, we should see that if (S,S5¢) is another upper bound of A, then A C S for all A €
A = B=J c4ACS, which establishes that B is least.
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1.4 Nested Intervals Completeness

The next flavor we present is nested-intervals completeness. This is the least popular way to construct the
reals, and it is used more as a post-hoc tool to analyze the reals after you construct it using either of the
two previous methods.

Definition 1.12 (Nested Interval Completeness)

Let F be a totally ordered algebraic field. Let I,, = [an,b,] (a, < by,) be a sequence of decreasing
nested intervals that are

1. closed,

2. bounded,

3. nested, 1 DI, DI3D ...

4. and decreasing to 0 in the sense that lim, . b, — a, = 0.
F is nested-interval complete if the intersection of all of these intervals I,, contains exactly one
point.

s (3
n=1

Note that defining nested intervals requires only an ordered field. One may look at this and try to ask if
this is a specific instance of the following conjecture: The intersection of a nested sequence of nonempty
closed sets in a topological space has exactly 1 point. This claim may not even make sense, actually. If we
define nested in terms of proper subsets, then for a finite topological space a sequence cannot exist since we
will run out of open sets and so this claim is vacuously true and false. If we allow S,, = S,,4+1 then we can
just select X D X D ..., which is obviously not true. However, a slightly weaker claim is that every proper
nested non-empty closed sets has a non-empty intersection is a consequence of compactness.

Theorem 1.9 (Rationals are Not Nested-Interval Complete)

Q is not nested-interval complete.

Proof. This is a nice proof that uses a class method of algorithmically selecting nested intervals that
satisfy a following property. This trick will be used many times in analysis.
For the sake of contradiction, let us assume that QQ satisfies nested intervals completeness. Since Q is
countable, enumerate it as ¢q1, g9, .. ..

1. Choose any closed interval I of length 1 with rational endpoints that doesn’t contain ¢ .

2. Now partition I7 into two segments of equal length, and choose I5 to be the segment that doesn’t

contain ¢o.

At this point, I, is a closed interval with rational endpoints of length 2= that cannot contain g,.
Therefore, N, I, cannot contain any ¢, € Q. But this contradicts our assumption of nested interval
completeness.

One may ask: what is the relationship between LUB property and nested-intervals completeness? It turns
out that they are equivalent.

Theorem 1.10 (LUB is Equivalent to Nested Interval Completeness in Reals)

Listed.
1. R’ satisfies nested intervals completeness.
2. R} satisfies least upper bound completeness.
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Proof. Listed.
1. Note that {a,} is bounded above by b;. Therefore by LUB property it must have a supremum,
call it = sup,,{a, }. Then, we see that a,, < x < b, for all n, and so z is in the intersection.

Theorem 1.11 (Cantor’s Intersection Theorem)

R is nested-interval complete.

Proof. We prove this by first proving the claim that given nested, closed, and bounded sets I,, (not
even necessarily intervals), then

() 1. #0 (33)
n=1

Suppose this is not true. For every = € R, there exists a n, s.t. = & I, (and all later I, for m > n).
Let O,, = I¢ open sets. Then, R C U, O,, In particular, I; C U,0,,. But I is closed and bounded. So
we can extract a finite subcover. O,,,,Op,,...,0,,  (ordered ny < nz < ... < ny,). Then since O,, are
increasing, Iy C Oy, =I5 . But I,,,, C I, a contradiction.

Now with this, we know that because the limits of the endpoints of the intervals go to 0, then there

cannot be more than 2 points in the intersection. Thus there must be 1 unique point.

Definition 1.13 (Axiomatic Construction of Reals with Nested Intervals)

R; is a totally ordered field that
1. satisfies the nested intervals completeness, and
2. satisfies the Archimidean principle.

1.5 Properties of the Real Line

Perfect, now all that remains is to unite the two constructions of the reals.

Theorem 1.12 (Dedekind and Cauchy Complete Reals are Isomorphic)

Given that Rp is the Dedekind-completed version of the rationals and R¢ is the Cauchy-completed
version of the rationals, we claim that the two are isomorphic as ordered fields.

Rp ~Re (34)

Proof.

Therefore, it doesn’t really matter which one we talk about, and we can refer to the real numbers as a single
set. Great! Now we can finally feel satisfied about defining metrics, norms, and inner products as mappings
to the codomain R.

Definition 1.14 (Reals (as Construction from Rationals))

The reals R is the totally ordered complete Archimedean field constructed as the completion[] of Q.

%either one

So far, we have taken the completion of the rationals as our main mode of construction. However, we can
take an axiomatic approach, and it turns out that there is only one set, up to isomorphism, that satisfies all
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these properties.

Theorem 1.13 (Axiomatic Definition of Reals)

The real numbers, denoted R, is any totally ordered complete Archimedean field. R is unique up to
field isomorphism. That is, if two individuals construct two ordered complete Archimedean fields R 4
and Rp, then

R4 ~Rp (35)

Proof. The proof is actually much longer than I expected, so I draw a general outline[”] We want to
show how to construct an isomorphism f: R4 — Rp.

1. Realize that there are unique embeddings of N in R4 and Rp that preserve the inductive prin-
ciple, the order, closure of addition, and closure of multiplication, the additive identity, and the
multiplicative identity. Call these ordered doubly-monoid (since it’s a monoid w.r.t. + and x)
homomorphisms ¢4, t3.

2. Construct an isomorphism f; : ta(N) — (p(N) that preserves the inductive principle, order,
addition, and multiplication. This is easy to do by just constructing f; = tp o Lzl.

3. Extend f; to the ordered ring isomorphism f5 by explicitly defining what it means to map additive
inverses, i.e. negative numbers.

4. Extend fy to the ordered field isomorphism f3 by explicitly defining what it means to map
multiplicative inverses, i.e. reciprocals.

5. Extend f3 to the ordered field isomorphism on the entire domain R4 and codomain Rg. There
is no additional operations that we need to support, but we should explicitly show that this is
both injective and surjective, which completes our proof.

%Followed from here.

It seems that the real numbers is any set that satisfies the definition above. Therefore, a line I with +
associated with the translation of L along itself and - associated with the "stretching/compressing" of the
line around the additive origin 0 is a valid representation of the reals. R can also be represented as an
uncountable list of numbers with possibly infinite decimal points, known as the decimal number system.

o, —2.583...,...,0,...,1.2343 ... V2, ... (36)

The first property we should know is that the reals are uncountable.

Theorem 1.14 (Cantor’s Diagonalization)

R is uncountable.

Proof. We proceed by contradiction. Suppose the real numbers are countable. Then there exists a
bijection f : N — R. This means we can list all real numbers in [0, 1] as an infinite sequence

f(l) = 0.a11a12a13 e (37)
f(?) = 0.0@1&220,23 PN (38)
f(3) = 0.a31a32033 . .. (39)

(40)

where each a;; is a digit between 0 and 9.
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Now construct a new real number » = 0.r1ra73 ... where:
1 if 1
2 ifa,,=1

This number 7 is different from f(n) for every n € N, since r differs from f(n) in the nth decimal place.
Therefore r € [0,1] but r ¢ range(f), contradicting that f is surjective. Thus our assumption that the
real numbers are countable must be false.

%This must be explicitly proven, but we can take the set of all Cauchy sequences of rationals in their decimal expansion
and construct the reals this way.

With this, we can add the inner product, metric, and topology.

1.6 Exponentials, Roots, and Logarithms

Now we will focus on some other operations that become well-defined in the reals. We know that z™ for
n € N denotes repeated multiplication and 2~! denotes the multiplicative inverse. We need to build up on
this notation. As a general outline, we will show that =™ is well defined, then x9, ¢ € Q is well-defined, and
finally ", r € R is well-defined. For the naturals, we have defined z™ as the repeated multiplication of n. It
is trivial that the canonical injection ¢y : N — R commutes with the exponential map of naturals. We prove
that ¢; : Z — R also commutes.

Lemma 1.3 (Integer Exponents)

We have
1. For xy,...,7, €R, (z1...7,)7 ! :xgl...xl_l.
2. For x € R, x > 0, (z")~! = (2~1)". This value is denoted z~™.
3. For x € R and w,z € Z, z¥* = gWa=.
4. For w,z € Z, x"* = (*)* = (z™)*.

Proof. Listed.
1. The proof is trivial, but for n = 2 and 1 = x, 5 = y, we see that by associativity, (z 1z ~1)(xy) =
y~ a7 la)y =y~ 'y = 1 and we know inverses are unique.
2. Set x; = x using (1).
3. If w, z > 0 this is trivial by the associative property. If either or both are negative, say w < 0 < z,
then we set w’ = —w > 0 and using (2) we know that

2Vt — (m—l)w’xz _ x—w’—i—z — pwtz (42)

by associativity in the second last equality.

Therefore, we have successfully defined x* for all z € Z, and if z is negative, we’re allowed to “swap” the —1
and |z| in the exponents. Now we want to extend this into rational exponents, first by proving the existence
and uniqueness of nth roots for any real. The proof is a little involved, but the general idea is that we want
to use the LUB property to define the nth root as the supremum of a set.

Theorem 1.15 (Existence of Nth Roots)

For any real x > 0 and every n € N there is one and only one positive real y € R s.t. y™ = x. This is
denoted /™.
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Proof. Let E be the set consisting of all reals t € R s.t. " < 2. We show that
1. it is nonempty. Consider t = z/(1+ ). Then 0 <t <1 = " <t < z. Thust € F and F is
nonempty.
2. it is bounded. Consider any number s =14 x. Then s” > s > z,s0 s ¢ F, and s = 1+ x is an
upper bound of E.
Therefore, E is a nonempty set that is upper bounded, so it has a least upper bound, called y = sup F.
We claim that y™ = =z, proving by contradiction. For both cases, we use the fact that the identity
" —a" = (b—a)(b" ' +b"2a+ ...+ a"" ') gives the inequality

V" —a" < (b—a)nd" t for0<a<b (43)

1. Assume y™ < x. Then we choose a fixed 0 < h < 1 s.t.

z—y"
h<< ——F—— 44
n(y +1)n-t (44)

Then by putting a = y,b = y + h, we have
(y+h)" —y" <hny+h)" P <hnly+ 1"t <z —y" (45)

and thus y™ < (y + h)™ < x. This means that y + h € E, and so y is not an upper bound.
2. Assume y" > z. Then we set a fixed number

y" -
k= 46
TLyn71 ( )

Then 0 < k < y. If we take any ¢ € R s.t. ¢t > y — k, this implies that t" > (y — k)" = —t" >
—(y — k)™, and so
yn _ tn S yn _ (y _ k,)n < knyn—l — yn — (47)

Thus t" > z and t € E. So it must be the case that ¢t < y — k, and so y — k is an upper bound of
FE, contradicting that y is least.

At this point, rooting has been introduced as sort of an independent map from exponentiation. We show
that they have the nice property of commuting.

Lemma 1.4 (Rooting and Exponentiation Commute)

For pe Z,q € N and x € R with z > 0, we have

(zp)l/q — (Il/q)p (48)

Proof. If p > 0, then let = (2P)Y/9. By definition 79 = 2P. Let s = x'/9 By definition 57 = .
Therefore 77 = (s7)? = s% from the lemma on integer exponents. But since roots are well-defined and

unique
r= ()Y = (s = P — (gP)V/T = (g1/9)P (49)

p = 0, this 1s trivially 0, and if p < 0 the by the same logic with p = —p forp’ >0and y =27 > 0.

If 0, this is trivially 0, and if 0 the by th logic with ! for p’ > 0 and >0
we know

@)= (™))" = (= ) = ) e (50)

= @ = (@Y = @) = @ (6
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Theorem 1.16 (Rational Exponential Function)

Given m,p € Z and n,q € N, prove that
(™)™ = (")1/q (52)

Hence it makes sens to define " = (b™)'/™, since every element of the equivalence class r of each
rational number maps to the same value.

Proof. Since m/n =p/q = mq = np,

pmd — P —s (bm)q — (bp)n

Therefore we can define for any r € Q
"= xm,/n _ (:Cm)l/n _ (xl/n)m (57)

where the final equality holds from the commutativity of rooting and exponentiation.

It turns out that this is a homomorphism.

Corollary 1.1 (Rational Exponential Function is a Homomorphism)

The rational exponential function is a homomorphism. That is, given r,s € Q and = € R,

xS ="t (58)
Proof. Let r =m/n,s = p/q. Then

LS — xm/n+p/q _ x%tnp (addition on Q)

= (gmatrp)t/na (exp and roots commute)

= (2™ 4 mnp)l/nq (int exp lemma)

= (z™a)1/ma(gn)1/na (int exp lemma)

— gma/ndnp/ng (exp and roots commute)

— pm/ngp/a (relation from Q)

With rational exponents defined, we can use the least upper bound property to define a consistent extension
of a real exponent.

Lemma 1.5 ()

If re Qwithr >0, thenforz e R, x >1,1<b".

Proof. Let 7 = m/n. Then 2" = 2™/™ = (2™)Y/". Since 1 < z, and m > 0, we have

I1<r<a?’<... <™ = 1<bp™ (59)
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Now set y = 2™/™ and assume that y < 1. Then
M=yt <yt i< <y<1 (60)

and so " < 1, which is a contradiction. So it must be the case that y > 1.

Lemma 1.6 (Monotonicity of Rational Exponents)

If z,y € R, then for any rational r € Q with » < z 4 y, there exists a p,g € Q s.t. p < z,q < y and
p+ g = r. The converse is true as well.

Proof. < x4+y = r —y < z. By density of Q in R, we can choose r — y < p < z. Then
—r4+y>-p>xr = r—r4+y>r—-p>r—x = y>r—p>r—zx,and weset ¢q =1 —p.
We are done. The converse is trivial since given p,q € Q with p < x,q < y, then by the ordered field
properties p+ g < z + y.

Corollary 1.2 (Real Exponential Function)

Given z € R, we define
B(z)={z"€R|qeQ, q<u} (61)

We claim that given r € R,
a” = sup B(r) (62)

is well-defined and is a homomorphism extension of the rational exponential function. That is,

sup B(z + y) = sup B(x) - sup B(y) (63)

Proof. To show that 2" := sup B(r) where B(r) = {zt e R |t € Q,t <7},
1. We show it’s an upper bound. Assume it wasn’t. Then " < ! for some t € Q satisfying ¢t < r.
But t <r = 0 < r —t, and by the previous lemma, 1 < 2"t So 1 < 2"t = g2~ ¢ =
2" (xt)7! = ' < 2", which is a contradiction.
2. We show that it is least. Assume that it is not. Then I’ € Q s.t. ! < 2" and v < r. Now let
s € Q be an element between 7’ and r, which is guaranteed to exist due to density of rationals in
reals. But s < r, so by definition z® € B(r), but

O<s—1 = 1<b" (64)
— ()< b () (65)
— 1<b*(b)7! (66)
— b <P (67)

and so b” is not an upper bound for B(r). By contradiction, b” is least.
Since this is defined, the analogous definition for real numbers is consistent with that of hte rationals,
and it is upper bounded by the Archimedean principle, so such a supremum must exist. Note that ¢
is rational. For the second part, from the previous lemma and the homomorphism properties of the
rational exponent,

Bx+y)=B(x+y) ={V""eR|pqeQp<zq<y} (68)
={0"0?eR|p,qgeQp<z,q<y} (69)
(70)

Therefore we can treat B and B’ as the same set.
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1. Prove upper bound sup B(z + y) < sup B(z)sup B(y). Given a € B'(xz +y), there exists pa, ¢o €
Q (with p, < x, go < y) s.t. bPbl> = . But

bPeble < sup{bP~} - sup{b?} = sup B(z)sup B(y) (71)
Pa da
2. To prove least, assume there exists K € R s.t. supB'(z+y) < K < sup B(x)sup B(y). Then,
since the image of b* is always positive, we assume 0 < K. We bound its factors as so: K <
sup B(z)sup B(y) = K/supB(z) < sup B(y). By density of the rationals, there exists a
B €Q, s.t.

m < B < sup B(y) (72)

This means K/8 < supB(z) and S < supB(y). But this means that there exists ¢,y €
B(z),B(y) st. K/f < ¢, <y = K= (K/B)-B<d¢y = ¢y € B'(z+y) by defi-
nition. So K is not an upper bound.

Furthermore, this is an isomorphism, and the inverse is defined. Let’s define this analytically.

Theorem 1.17 (Logarithm)

For b > 1 and y > 0, there is a unique real number z s.t. b* =y. We claim
z=sup{fw e R | ¥ <y} (73)

x is called the logarithm of y to the base b.

Proof. We use the inequality " — 1 < n(b—1) for all n € NEI By substituting b = b'/™ (valid since
b>1 <= b/ >1)s0b—12>n(b" —1). Now set some ¢ > 1, and by Archimidean principle, we

can choose some n € N s.t. n > %' Then n(t — 1) > b — 1, and with the inequality derived we get
nt—1)>b—-1>nbY" —1) = t > b/ (74)

This allows us to prove 2 things.
1. If w satisfies b < g, then b*T(1/?) < 4 for sufficiently large n. Setting t = yb~" (which is greater
than 1 since b* < g) gives y - b= > bY/" = bWpl/" <y = pwHI/7) <y,
2. If w satisfies b > g, then b*~(1/") > y for sufficiently large n. Setting t = b%y~' (which is
greater than 1 since b* > y) gives by~ > b'/" = pv=(1/") > ¢,
Now we can prove existence. Let A the set of all w s.t. b* < y. We claim that x = sup A.
1. Assume that b < y. We know that there exists n € N s.t. v*+(/7) <y — 4 (1/n) € A,
contradicting that x is an upper bound.
2. Assume that b >. We know that there exists n € N s.t. b*~(1/") >y — 2z — (1/n) is also an
upper bound for A, contradicting that z is least. Therefore b* = y.
We now prove uniqueness. Assume that there are two such x’s , call them z,z’. By total ordering
and z # 2/, WLOG let © > 2/ = z—2' >0 = b* % > 1. By density of rationals, since
we can choose 7 € R s.t. 0 <7 < & — 2/, we have 1 < b" < b*~* and so B(r) C Bz — z'). Since
1<bm = 1.0 <b* 7 .p7 = b*, we have b* < b® and they cannot both by y. So x = x’.

We prove by induction. For n = 1 b! — 1 < 1(b — 1). Assume that this holds for some n. Then "1 — 1 =
bl b4 b—1=bb"—1)+(b—-1)>bn(b—1)+(b—1) = (bn+1)(b—1) > (n+1)(b— 1), where the last step follows
sinceb>1 = bn>n = bn+1>n+1.
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1.7 Extended Reals

Often, we deal with numbers that are not finite, and we would like to have a system to incorporate +oo
into the real line. Most first courses glaze over this, but it’s important to see the construction as well. The
problem is that we can’t really add in these numbers without breaking a lot of the algebraic properties, but
let’s see for ourselves. It should be pretty obvious that we want (note the strict inequalities)

—o <z <400 VreR (75)
To define addition, we can’t make x + oo a finite number since then
co<zr+oo=y (76)

which is a contradiction. So x + oo = +00. We keep doing this but the main problem comes in with trying
to define 0o — 0o or oco/oo, which are known as indeterminate forms. These are particularly bad since we
cannot deduce r = y from x 4+ oo = y + oo or from z - 00 = y - co. The solution to this is to simply avoid
themm by making these indeterminate terms undefined.

Definition 1.15 (Extended Real Number Line)
The extended real number line is the set R U {£oo} with the following operations.
1. Order. —oo < x and x < +oo for all z € R.
2. Addition.
Ve e Rz +00 =00+ =400 (77)
VeeRzr —00=00—2=—00 (78)
+ 00 + 00 = 400 (79)
— 00— 00 =—00 (80)
+ 00 — 00, —00 + 00 are undefined (81)
3. Multiplication][q
if x>0
Ve e R\ {0},x - +o0o =400 -2 = +oo?:z: (82)
—ooifx <0
—oo if 0
Ve e R\ {0}, 2 —o00o=—00 -2 = oo?z< (83)
—ooifx >0
0-400=400-0= (84)
0-—c0o=—-00-0=0 (85)
+ 00 400 = —00: —00 = +00 (86)
+00:—00=—00"+00 = +00 (87)
(88)
%The fact that 0 - co = 0 might sound odd. Look at the extension into hyperreals later.

It turns out that this is still Dedekind-complete, which is nice. Unfortunately this is not even a field since
the multiplicative inverse of +o0 is not defined. Furthermore, we lose the Archimedean property.

The general rule of thumb is that if one wishes to use cancellation, this is only safe if one can guarantee
that the numbers we work with are all finite. If we must work with infinity, another way is to work with the
nonnegative reals.

Tas far as I know
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Definition 1.16 (Extended Real Number Line)

The extended nonnegative reals is the set R>q U {+oc} with the following operations.
1. Order. x < +oo for all x € R.

2. Addition.
V€ [0, +00],+00 + =z + 00 = +00 (89)
3. Multiplication.
Vo € (0,400],+ 00 -2 =2 400 = 400 (90)
0-40c0=400-0=0 (91)

There is a tradeoff here: we can work with infinity, or negative numbers, but not both. Also, note that if
we define oo - 0 = 0, the multiplication becomes upward continuous, but not downwards continuous. This
leads to an asymmetry when defining integrals, but in univariate analysis we will only work with bounded
functions, and this will not hinder us until measure theory.

1.8 Hyperreals

The loss of the field property of the extended reals is quite bad, and we might want to recover this. Therefore,
we can add more elements that serve to be the multiplicative inverse of infinity. We call these inverses
infinitesimals and the new set the hyperreal numbers.

Theorem 1.18 (Hyperreals)

The hyperreals

In fact, when Newton first invented calculus, the hyperreals were what he worked with, and you can sur-
prisingly build a good chunk of calculus with this. Even though this is a dead topic at this point, a lot of
modern notation is based off of this number system, so it’s good to see how it works. For example, when we
write the integral

JECLE (92)

we are saying that we are taking the uncountable sum of the terms f(z)dx, the multiplication of the real
number f(z) and the infinitesimal number dz living in the hyperreals. Unfortunately, we cannot fully
construct a rigorous theory of calculus with only infinitesimals. However, in practice (especially physics)
people tend to manipulate and do algebra with infinitesimals, so having a good foundation on what you can
and cannot do with them is practical. While the focus won’t be on smooth infinitesimal analysis (SIA), 1
will include some alternate constructions later purely with infinitesimals.

1.9 Some Algebraic Inequalities

We also introduce various inequalities that may be useful for producing future results. The following lemmas
can be proved with elementary algebra on the field of reals.

Lemma 1.7 (Bernoulli’s Inequality)

For any real z > —1 and n € N, we have

1+z)">1+nx (93)
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Proof. We prove by induction. For n = 1, it is trivial. Now given that the inequality is satisfied for
some n € N, we have

(1+2)"™ =1 +2)"(1+2) (94)
> (1+nz)(1+2) (95)
=1+ nz + z + na? (96)
=1+ (n+1)x (97)

Lemma 1.8 (Young’s Inequalities)

If @ > 0 and b > 0, and the numbers p and p are such that p # 0,1 and ¢ # 0,1, and % + % =1, then

L 11
arbi < —a+ -bifp>1 (98)
p q
L1 1
avbi > —a+ -bifp<1 (99)
p q

and equality holds in both cases if and only if a = b.

Proof.

Lemma 1.9 (Holder’s Inequalities)

Let ¢; > 0,1; > 0 for i = 1,2, ...,n, and let % + ¢ =1 Then,

1

n 1 1
S < (3@) (Zyg)“ for p > 1 (100)
=1 =1

i=1

ixiin(Zl’f)p(Zy;1>qf0rp<1,p7é0 (101)
i=1 i=1

i=1

Proof.

Lemma 1.10 (Minkowski’s Inequalities)

Let z; > 0,y; > 0fori=1,2,...,n. Then,

(o) < (5

1

-
=

when p > 1 (102)

=3
N———
D=
+
7N
<
ST
N———

n

<»_1(‘ri+yi)p>;2<ix?) +<iy”) when p < 1,p #0 (103)

7

10
10

Proof.
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2 Euclidean Topology

With the construction of the real line and the real space, the extra properties of completeness, norm, and
order (for the real line) allows us to restate these topological properties in terms of these “higher-order”
properties. It also proves much more results than for general topological spaces. Therefore, the next few
sections will focus on reiterating the topological properties of R and R™ (this can be done slightly more
generally for metric spaces, but we talk about this in point-set topology).

Theorem 2.1 (Euclidean Topology)

The Euclidean topology 7 on R” is defined in the equivalent ways:
1. If n =1, it is the order topology generated by the basis of open intervals (a,b) for a < b.
2. It is the metric topology generated by the basis of open balls under the LP metric for p > 1.
3. It is the n-fold product topology of the Euclidean topology on R.

Proof. Let’s call these sets .71, %5, J3. We first show that these are indeed topologies.
1. This is proven in the |[definition of the order topologyl
2. This is proven for the L? metric in the |definition of the metric topologyl and then we prove
lequivalence to LP metrics|
3. This is proven in the |[definition of the product topology|
Now it remains to show that these topologies are all the same. For n = 1, it suffices to show 7 = %.
We do this by comparing their bases; let % be the basis of 7.
1. &1 € . Given any open interval (a,b) € %1, (a,b) is the open ball with center ‘%b and radius
b’T‘l and so it is in %s.
2. 95 C 2. Given an open interval with center « and radius r, the corresponding interval (z—r, z+r)
is in 4.
Now we show that .95 = 3 for R".
1. We show that the product topology is the same as the metric topology under the L> norm.

2. The equivalence of all LP norms is already proven

Example 2.1 (Examples of Open and Not Open Sets)

Here are some examples of sets which are open and not open.

1. U= {(z,y) € R? : 2% + 42 # 1} is open since for every point z € U, we just need to find a radius
€ > 0 that is smaller than its distance to the unit circle.

2. (a,b) x (c,d) C R? is open since given a point z, we can take the minimum of its distance between
the two sides of the rectangle and construct an open ball.

3. S ={(x,y) € R? : xy # 0} is open since given a point # € S, we can take the minimum of the
distance between it and the x and y axes.

4. The set of all complex z such that |z| < 1 is not open since we cannot construct open balls at the
boundary points that are fully contained in the set.

5. The set S = {1/n},en is not open since given any point = 1/n, we can construct an open ball
with radius € < 1/(n + 1), which contains irrationals that are not in S.

Corollary 2.1 ()

Every closed bounded interval in R is compact.

Proof. Let I = [a,b]. Then if z,y € I, |t —y| < b—a = ¢. Now by contradiction, suppose that there
exists an open cover {U,} of I which contains no finite subcover of I. Then letting ¢ = (a + b)/2, at
least one of the two intervals [a, ¢], [c,b] cannot have a finite subcovering (otherwise their finite union
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can be covered). WLOG let it be [a, c]. We keep subdividing and get the sequence of nested intervals.
I>DLDLD... (104)

We know that I, is not covered by any finite subcollection of {U,} and if z,y € I,,, then |z —y| < 27"0.
From the nested intervals theorem, there exists a point z lying in every I,,. There must then be an
open neighborhood U, in the open cover, and by definition of openness there exists a ¢ > 0 s.t.
z € Be(z) C U,. By the Archimidean property, we can set n so large that 27”0 < € and this means
that Be(z) D I, which contradicts the fact that I, is not covered by a finite subcollection. Therefore
I is compact.

Now here are some useful properties.

Theorem 2.2 (Countability)

R™ is 2nd countable.

Theorem 2.3 (Separability)

R™ is Hausdorff.

Proof. 1t is a metric topology.

Theorem 2.4 (Connectedness)

R™ is
1. connected,
2. path connected,
3. locally connected,
4. locally path connected

Theorem 2.5 (Compactness)

R™ is
1. not compact,
2. locally compact.

Theorem 2.6 (Convexity)

An open ball is convex in a normed vector space. What happens if we weaken it to a metric?

Proof. The normed part is important here, as the properties of the metric is not sufficient. Given
B.(p), x,y € B,.(p) implies that ||z — p|| <r and ||y — p|| < r. Therefore,

[tz + (1 =)y —pl| = [tz —tp+ (1 —t)y — (1 — t)p|| (105)
<tllz —pll + (1 =)y —pl| (106)
=tr+(1—-t)r=r (107)
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Theorem 2.7 ()

Let E be a nonempty set of real numbers which is bounded above. Let y = sup E. Then y € E. Hence
y € Eif F is closed.

Proof. Assume that y is not a limit point of E. Then, there exists some € > 0 s.t. (y — €,y + €) does
not intersect with £. This means that y — € is an upper bound of F, and so y is not the supremum.

The general notion of compactness for topological spaces is not needed for analysis. Rather, we make use of
the following theorem which allows us to focus on the compactness of subsets in Euclidean spaces R™.

Theorem 2.8 (Heine-Borel)

Let £ C R™. The following are equivalent.
1. E is closed and bounded.
2. F is compact.
3. F is sequentially compact.
4. F is limit point compact.

Proof. To prove the equivalence of the last three, note that X is a metric space, so it is Hausdorff.
Therefore, all three forms of compactness is the same.

Example 2.2 (Open Sets in Real Plane are Not Compact)

An open set in R? is not compact. Take the open rectangle R = (0,1)2 C R2. There exists an infinite

cover of R )
h 2ntl 1
R=]J(0,1) x (QW) (108)

n=0

that does not have a finite subcover.

Corollary 2.2 (Bolzano-Weierstrass Theorem)

Every bounded sequence in R™ has a limit point, i.e. contains a convergent subsequence.

Proof. The fact that the infinite sequence is bounded means that there exists some closed subset I € R™
that contains all point of the sequence. By definition I is compact, so by the Heine-Borel theorem,
every cover of I has a finite subcover.

Now, assume that there exists an infinite sequence in I that is not convergent, i.e. has no limit point.
Then, each point z; € I would have a neighborhood U (z;) containing at most a finite number of points
in the sequence. We can define I such that the union of the neighborhoods is a cover of I. That is,

i=1

However, since every U(x;) contains at most a finite number of points, we must have an infinite open
neighborhoods to cover I = we cannot have a finite subcover. This contradicts the fact that I is
compact.

Proof. Tt suffices to prove that there exists a monotonic sequence within a bounded sequence (zy,).
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Theorem 2.9 (Connectedness)

A subset E of the real line R is connected if and only if it has the following property: if xt € E,y € E
and x < z < y, then z € E.

Proof.

Definition 2.1 (Perfect Sets)

A set P is perfect if it is closed and all of its points are limit points of P. In other words, the limit
points of P and P itself coincide.
P=P (109)

Theorem 2.10 ()

Let P be a nonempty perfect set in R¥. Then P is uncountable.
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3 Sequences in Euclidean Space

We assume that you know what sequences are, and what it means for them to converge in R™. Let’s primarily
focus on sequences in R. Note that there are many way in which a sequence can be divergent.

1. Increasing/decreasing indefinitely

2. Oscillating between two constant values

3. Oscillating between a value tending to +00 and a value tending to —oo
4

. Many other classes of divergence

Definition 3.1 (Sequence Tending to Infinity)

The sequence {z,} tends to positive infinity if for each number ¢ there exists N € N such that
T, > c for all n > N. It is denoted

Zp — 400 or lim z, = +00 (110)
n—oQ

We define sequences that tend to negative infinity similarly. And {z,} tends to infinity if for
each c there exists N € N such that |z,,| > ¢ for all n > N, which is written

Ty, — 00 (111)

Note that
T, — +00 or T, - —00 —> T, —> OO (112)

but the converse is not necessarily true. The simple example is the sequence z, = (—1)"n. Also, it is
important to know that a sequence may be unbounded and yet not tend to 400, —00, or oo.

Example 3.1 (Unbounded Sequence that Doesn’t tend to o)

The sequence x, = n{~"" is divergent yet does not tend to positive infinity, negative infinity, nor
infinity.

Definition 3.2 (Monotonic Sequences)

Let X be an ordered set. (z,) is
1. strictly increasing if x,11 > z, for all n.
2. strictly decreasing if =, < x, for all n.
3. increasing (nondecreasing) if 2,11 > z,, for all n.
4. decreasing (nonincreasing) if 2,11 < x, for all n.
Sequences of these types are called monotonic.

The properties of a general metric space give us some general conditions to determine whether a sequence
converges in R™. To add to our toolbox in determining convergence, we will focus on sufficient conditions for
convergence in R, which has the additional properties of being an ordered field. These additional structures
unlock a whole new suite of theorems in convergence. Why do we want to focus on just real-valued, i.e.
numerical, sequences? First is that since R™ is constructed as the product topology of R, we can prove a
lot about continuity of functions in R™ by proving limits in R, and letting the construction of the product
topology do the rest. Second, the codomain of many natural structures such as inner products, norms, and
measures lie in the reals, and we often need to prove convergence of these values.
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3.1 Convergence Theorems from Completeness and Order

So far, in order to show that a sequence is convergent, we must identify a real number first and then show
using the e-§ definition that it converges. This might be overkill in a case where we just want to prove that a
sequence converges, but we don’t care what it converges to. The following theorems are direct consequences
of the Cauchy-completeness and the least upper bound property of the reals.

Theorem 3.1 (Cauchy-Convergence Criterion)

A cauchy sequence in R converges.

Proof. This is by definition true, and to see how other forms of completeness implies Cauchy conver-
gence, see above.

The second result is an immediate consequence of Dedekind completeness, which is equivalent to Cauchy
completeness in the reals.

Theorem 3.2 (Convergence Criterion for Monotonic Sequences)

Let (x,)n be a sequence.
1. If (x,,) is monotonically increasing/decreasing and bounded above/below in R, then it converges.
2. If (z,,) is monotonically increasing/decreasing in R U {+o00}, then it converges.

Proof. It satisfies to prove the first case, as the second case can be done similarly without much
difficulty. Let 2, < x4+1. Then the set {z,} is bounded above in R, which has the least upper bound
property, and so there exists a least upper bound x. We claim that the sequence converges to x. For
every ¢ > 0, since it is least, there exists at least one xx € (x — ¢, x). By monotonicity, this means that
Zn € (x —€,x) for all n > N, and so the sequence converges to x.

We are able to see how both Cauchy and Dedekind completeness of the reals define convergence in R. Now
let’s squeeze a bit more out of the total ordering to gain some properties of convergence and divergence.

Theorem 3.3 (Preservation of Ordering Between Sequences and Limits)

Given convergent sequences (z,,) and (y,), if

lim z, < lim y, (113)

n—oo n—oo

then there exists an index N € N such that z, <y, for all n > N.

Proof. Given x, — x,y, — y and & < y(€ R), then for every ¢ > 0, there exists Ni, Ny € N s.t.
d(z,z,) < e for all n > Ny and d(y,y,) < € for all n > N. Setting N = max{N;, Ny}, we can say the
same for all n > N. We choose € = 5% > 0. Then, there exists N € Ns.t. z, € (r — ¢,z + ¢) and
yn € (y — €,y +€) for all n > N. Therefore, if a € (x —€,2+¢€) and b € (y — €,y + €), then

a<supB(r)=zx+e=y—e=inf B(y) <b (114)

which implies that z,, <y, for all n > V.
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Theorem 3.4 (Squeeze Theorem for Sequences)

Given sequences (), (yn), (zn) such that
Tn < Yo < 2 (115)

for all n > N, if {z,,} and {z,} both converge to the same limit, then the sequence {y, } also converges
to that limit. That is,
lim 2, = lim 2, =4 = lim y,=A4 (116)
n—oo

n—oo n—oo

Proof. We first prove that if there exists a N € N s.t. a,, < b, for all n > N, then lim,, , a, = a <
b =lim,_ s b,. Assume this weren’t true, that a > b. Then for ¢ = ‘ZT_Z’ > 0, there must exist M € N
st. anp € (a—€,a+¢€) and b, € (b—¢,b+¢) for all n > M. But

by, <sup(b—e,b+e)=b+e=a—ec=inf(a—¢c,a+¢€) <a, (117)
which contradicts a,, < b,,. Therefore, a < b. Therefore, we can use this to get

A= lm 2z, < lim y, < lim 2, =4 = lim y,=A4 (118)
n—00 n—00 n—00

n—oo

Theorem 3.5 (Unbounded Sequence has Subsequence Tending to Infinity)

If (x,,) is not bounded above then it has a subsequence x,, — +00.

Proof. We can construct such a subsequence.

Therefore, we can construct a subsequential limit to +oo if (z,,) is not bounded. If it is bounded, then by
the Bolzano-Weierstrass theorem it contains a convergent subsequence. Therefore, we have the following.

Corollary 3.1 ()

From each sequence of real numbers there exists either a convergent subsequence or a subsequence
tending to infinity.

Proof. 1f it’s bounded, then Bolzano-Weierstrass. If it’s not bounded, then use previous theorem.

Example 3.2 ()

We claim that
lim
n— o0

V=1 (119)

3.2  Arithmetic
Theorem 3.6 (Arithmetic on Limits)

Given that (z,), (yn) are numerical sequences with y,, # 0 for all n, and let

lim z, =z, le Y=y #0 (120)

n—oo
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then,
lim (x, +yn) =2 +vy (121)
n—oo
nlirgo(cx,L) =cx (122)
nh_)ngo(xn “Yn) =Ty (123)
lim 22 =2 (124)
It immediately follows that the set of all convergent sequences in RY is a subspace of RY.
Proof. For every € > 0, there exists N1, No € N such that
|z — x| < € for all n > Ny (125)
|yn — y| < € for all n > Ny (126)

Therefore, for a given ¢, we wish to prove that there exists a N such that for all n > N,

Li(zn +yn) — (z+y)| <e (127)

2ex, —cx| <e (128)

3 (@nyn) — (xy)| <€ (129)

I e (130)
Yn Y

1. yy the triangle inequality, we can see that
[(@n +yn) = (& +y)| = [2n — 2] + [y — | (131)

Since we can choose the error between z,, and x for n > Ny, and y,, and y for n > Ny as small
as we want, we set it to €/2. Then, we have

[(@a+yn) = (@ 4+ 9) = |ow =l + Iy — 9l < 5+ 5 = (132)
for all n > N = max{Ny, Na}. Therefore, for a given e, there exists an N such that
(n +yn) — (z+y)| <eforalln >N (133)
2. This proof is easy. For a given ¢, we choose the error to be .
|z — 2| < E for all n > Ny (134)
Then, there exists natural number N; such that

lcxy, — cx| < c|lzy, — x| = S =ecforalln> Ny (135)
c

3. We first observe that since the limit of {y,} exists, it must be bounded by a value, say y. That
is,

lyn| <Y foralln e N (136)
Then, we see that
|'Tnyn - -Ty| = |($nyn - :Eyn) + (‘Tyﬂ - xy)| (137)
<|ZnYn — 2Yn| + |TYn — Y| (138)
= |ynllzn — 2| + |2|lyn — ¥l (139)
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Suppose € > 0 is given. Then, we can set the error bounds freely; there exists N1, No € N such

that
|z, — 2| < % for all n > Ny (140)
lyn — 4| < ﬁ for all > Ny (141)

Then, we can see that

€ €

|mnyn - Z‘y| S |yn||mn - I| + |x‘|yn - y| < Y. 2Y + |x|2|(E| =€ (142)
for all n > N = max{Ny, Na}.
4. We use the estimate
X Tn |$n||yn_y|+‘yn”mn_x| 1 |yn_y|
A : , O(y) = Y 143
Y Yn y2 1 —0(yn) (v) || (143)
For a given € > 0, we find natural numbers N7, Ny such that
. elyl
|z — 2| < min{ 1, 5 for all n > Ny (144)
[yl ey’ }
-yl < =, ———— % foralln > N 145
lyn — v mln{ 11602 7 1) or all n 5 (145)
From this we can deduce that
|Tn| = |2n — 2 + 2| < |zp — 2|+ 2| < |2|+1 (146)
and
|y| = |yn+y_yn| < |yn| + ‘Z/—yn‘ (147)
Y Yy
— il > Iyl = by — 9l > o~ > 1 (148)
1 2
— — < — (149)
lyn| [yl
lyn =yl lyl/4 1
= 0<d(yn) = < == - (150)
|yn lyl/2 2
1
= 1-08(y) > 5 (151)
1
—0< — <2 152
1- 5(yn) ( )
So, we can substitute
1 4 €-y? €
al = lyn —yl < 1) — = - 153
1 2 eyl e
— ey -z < = —=— == (154)
Yn| " lyl 8 4
into the final equation to get
Tz,
= — —| <eforall n > N = max{Ny, No} (155)
y y"L
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Example 3.3 ()

We claim that n
lim —n=01fq>1 (156)

n—oo q

Since x,, = ql = Tp41 = %xn for n € N. Since

1 1\1 1 1 1 1
lim 21— fim <1—|—):1im <1+)-lim:1-:<1 (157)
there exists an index N such that ”n—le < 1 for n > N. Thus, we have
n+1
Ty > Tyt = Tp - forn> N (158)
ng

which means that the sequence will be monotonically decreasing from index N on. The terms of the
sequence
ITN4+1 > TN42 > TN43 > .. (159)

are positive (bounded below) and are monotonically decreasing, so it must have a limit.
Finding the actual limit is easy. Let 2 = lim,,_,o0 . It follows from the relation z,,; = “tlz, that
+ nq

1 1 1
= lim ($n+1) = lim <n+ $n> = lim ntl, lim z, = - (160)
L q

n—00 n— 00 ng

which implies that (1 — %) =0 = z=0.

Definition 3.3 (Cauchy Product)

The Cauchy Product is the direct convolution of two sequences.

Definition 3.4 (Recursive Sequence)

Sometimes, a sequence may be defined recursively, where the nth term contains a combination of the
n — 1 terms before it.

3.3 Limsup and Liminf

The superior and inferior limits represent some sort of "bound" on the sequence in the long run. That is,
on the long run, the terms of the sequence (x,,) cannot be greater than its superior limit and cannot be less
than its inferior limit. With this interpretation, the following definition should be clear.

Definition 3.5 (Inferior, Superior Limits)

The superior/inferior limit of a sequence (z,,) is defined in the equivalent ways.
1. Given that F is the set of all partial limits, the limsup/liminf is the supremum /infimum of E.

lim sup z,, := sup{F} liminf x,, = inf{E} (161)
n—oo

n—oo

2. The limsup/liminf is the limit of the sequence of supremums/infimums of the elements up to k.

limsup x,, := lim sup zy limsup z,, == lim inf x (162)
n— 00 n—=00 >n n—00 n—oo k>n
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e — = — et —

(a) In order to find the limsup, we first look the whole se-
quence in N and find the supremum. We now "decrease"
our domain from N to {2,...}, then {3,...}, then {4,...}
and so on, continuing to label the supremum of the se-
quence. The limit of this sequence of supremums is the
limsup.

subsequential limits.

Figure 1: Two ways to visualize the superior and inferior limits of the divergent sequence xz,, = ( L4
0.5) sin(2rz). The left is the limit of the supremum, and the right is the supremum of the closed set of

RN U U G U U P S er S R N S S )

(b) The 5 red lines marked in the middle (along with in-
finitely many others) are viable partial limits because one
can choose a subsequence such that all of its points after a
certain n lie in some e-neighborhood of the limit. There-
fore, we claim that the limsup/inf is the supremum of this
set E.

x+1

Example 3.4 (Computing Limsup and Liminf)

We give some basic examples.
1. Let &, = (—1)". Then E = {-1,+1} and

n—oo

2. Let , = (—=1)"/[1 + (1/n)]. Then

n—oo

limsupx, =1,

limsupx, =1,

liminfx, = —1 (163)
n—oo
liminfx, = —1 (164)
n—oo

Let’s give two warnings. First, limsup and liminfs do not behave like limits under addition and multiplication.

That is,
lim sup z,, + limsup y,, # limsup z,, + yn (165)
Example 3.5 (Counterexamples of Arithmetic Consistency of Limit superior)
Consider (z,,) = (—1)" and y,, = (—1)"*1. Then
limsup z,, = limsupy, =1, liminf z,, = liminfy, = —1 (166)
But (2, + y») =0, so
limsup z,, + y, = liminf z,, + y, =0 (167)

Second, note that even though we are talking about subsequential limits, the limsup and liminf are not
subsequential limits! It is the supremum of subsequential limits £, which may or may not be in E.

Example 3.6 (Limsup that is not attained by any subsequential limit)

This should be a sequence not in R.

However, in R, it turns out that the limsup and liminf are both contained in E, so we are fine.
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Lemma 3.1 ()

If (z,,) is a sequence in R, then
1. the limsup is indeed a subsequential limit, i.e. limsupz,, € E.
2. If x > limsupx,, then AN e Nst. n> N = =z, < .

Proof. For the first claim, there are two cases to consider. If (z,) is unbounded from above, then
I(xy,) such that x,, — o0 = oo = limsupz, € E. If (z,) is bounded from above, then the
subsequential limits of (z,,) are either in (x,,) or they are limit points of x,,. This implies that the set
E consists of points either in {x,} or are limit points of the set {z,} = sup E is in E since it’s a
limit point.

For the second claim, if there are infinitely many terms of the sequence larger than x, then we could
find a subsequence (z,, ) with x,, > x for all k. Therefore (z,) has a subsequential limit which must
be > x. Every subsequential limit of (z,,) is also a subsequential limit of (). This contradicts
limsup x,, = sup E.

Theorem 3.7 (Requirements of Partial Limits for Limit to Exist)

Here are two results in which we can use partial limits to determine if a sequence has a limit or not.
1. A sequence has a limit or tends to oo if and only if its inferior and superior limits are the same.

limsupz, =liminfz, =02 — hIJP Ty =X (168)
n——+0o0o

2. A sequence converges if and only if every subsequence of it converges.

Proof. For (1), we pick 2+ ¢ > x. Then every term past some N; must be less than x + €. By the same
logic, we have Ny for x — e < x. So take N = max{Ny, N2}, which is contained in the e-ball around z.

Theorem 3.8 (Ordering on Subsequential Limits)

If s,, <t, for n > N, where N is fixed, then

liminf s, < liminft,
n—oo n—oo

limsup s, < liminft,

n—00 n—oo
Example 3.7 ()
We claim
lim n'/" =1 (169)
n—roo

We can consider z,, = n'/™ — 1 and want to show that z,, — 0. We have x,, > 0. If n > 1, then
n=(z, +1)" > a2 w from the binomial theorem. This means that

2 [ 2
2 < = 0<z2, < — 1
n n 1 0 Tn n 1 0 ( 70)

And so by the squeeze theorem, z,, — 0.
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Example 3.8 ()

If x > 1, € R, then

(e

lim — =0 (171)

n——+oo "

3.4 Convergence Tests for Real Series

Definition 3.6 (Series over R)

Given a sequence of real numbers (), the series (of partial sums) is the sequence

() = Zxk (172)
k=1

The sum of the series is the limit of (s, ). Usually we define (s,) implicitly and use the summation
notation.

Z Ty = 7}1_)11;0 Sn (173)

n=1

1. If the sequence (s,) converges to s, the series is convergent, written

> an < +oo (174)

2. If the sequence does not converge, it is divergent.
3. If the series of partial sums of (|x,|) converges, then it is said to be absolutely convergent@

> Jaal (175)

[eS)
n=1

@Clearly, every absolutely convergent series is convergent because | e an| <> |an|. This is sort of the infinite

analogue of the triangle inequality.

We must reiterate a few warnings here. Note that the series ) ,, is simply notation and should not be
treated as an “infinite sum.” Such a thing does not exist for algebraic structures which have finary operations.
More specifically, given a series, we cannot in general split nor combine series, and we cannot reindex nor
rearrange (an infinite number of) terms. However, we can manipulate each term for a fixed index.

Example 3.9 (Disasters of Reindexing and Rearranging)

Let us take the series > 0. We clearly know that the corresponding sequence of partial sums 0,0, ... is
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convergent to 0. But if we do this series of steps.

The wrong steps show that the series is divergent.

(Can manipulate terms)

(Cannot split series)

(Can take 1st term out)

(Cannot reindexing)

(Cannot combine series)

(Can manipulate terms)

(176)

We have seen the consequences of these mistakes that beginners make and are often on popular media.
However, note that we can always do splitting, combining, reindexing, and rearranging for finite sums, which
are algebraically defined. Later on, we will show that some of these operations are allows for series that we

know are convergent.

Lemma 3.2 (All Series in Extended Positive Reals Converge)

All series in R>q U {400} converge.

Z Zn € [0, +00]
n=1

(177)

Proof.

Since the convergence of a series is equivalent to convergence of its sequence of partial sums, applying the
Cauchy convergence criterion to the sequence {s,} leads to the following theorem.

Theorem 3.9 (Cauchy Convergence Criterion for Series)

allm>n>N,
lan + ...+ am| <€

The series a3 + ...+ a, + ... converges if and only if for every € > 0 there exists N € N such that for

(178)

Corollary 3.2 (nth Term Test)

tend to 0 as n — oo. That is, it is necessary that

lim a, =0
n—oo

A necessary (but not sufficient) condition for convergence of the series a; +...a, +... is that the terms

(179)
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Proof. It suffices to set m = n in the Cauchy convergence criterion. This would mean that for every
€ > 0 there exists a N € N such that

lan| = lan, — 0] < eforalln >N (180)

which, by definition, means that {a, } converges to 0.

Nothing so far is really suprising here. The Cauchy convergence criterion really just follows from the definition
of Cauchy completeness, and the nth term test is pretty trivial. The way that we will build up convergence
tests is by proving some special cases of convergence and then using the direct comparison test to then
classify further series.

Example 3.10 (Telescoping Series)

A telescoping series is a series in which the partial sums can cancel out. An example is the series of
1

partial sums of the sequence (z,) = CESYE In here, the series term is

n 1
Sn= WETTD) (181)

k=1
1 1
=y - (182)
= ko k+1
1 1
DTS 153
P k P k+1
n n+1
1 1
— — Z 1
2 - (184)
k=1 k=2
1 "1 "1 1
= Z) ) 185
i+ (1) (X8) - (155
k=2 k=
~1 1 1
=1 e 1
+<Zk k) | (186)
k=2
1 (S0) - ! (187)
n+1
k=2
1
=1 188
n+1 (188)
Note that all of the examples that we have done here are for finite sums, so they are all legal.
Example 3.11 (Geometric Series)
The series ZZOZO q" is called a geometric series.
l+qg+¢+...+¢"+... (189)

is called the geometric series. We can see that
1. g > 1 < > ¢" is divergent. |¢] > 1 = |¢|™ > 1, and so the terms ¢" does not converge to
0, and the nth term test is not met.
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2. |q| <1 < > ¢ is convergent. We can use the identity

1—ag™ 1 —g" 1
T — fm L = (190)
1—gq n—oo 1 —gq 1—g¢q

Sp=14qg+...+¢" 1=

since lim,, o, ¢" = 0 if |g| < 1.

The Cauchy convergence criterion can be used to prove the direct comparison test.

Theorem 3.10 (Direct Comparison Test)

For some fixed N, if
1. If |zp| < yp for all n > N and > y,, converges, then > x,, converges.
2. fzp, >y, >0foralln > N and >y, diverges, then Yz, diverges.

Example 3.12 (Comparison with Telescoping Series)

We can prove the special case a geometric series with the direct comparison test. We claim that
> oo, -5 is finite. We can see that

2
nn+1)
where the series of the terms in the RHS is telescoping and therefore converges. So by the direct
comparison test, Y # converges.

< (191)

1
n2

Now we prove another corollary of the Cauchy convergence criterion.

Theorem 3.11 (Cauchy Condensation Test)

If ay > as > ... > 0, the series Z:;l an converges if and only if the series

D 2%a = a1 + 202 + das + 8as + ... (192)
k=0

converges.

Proof. Letting Ay = a1 +as+ ...+ ax and S, = a1 + 2a2 + ... + 2"agn, it is clear that by adding up
the inequalities

az < az < aq

2a4 < a3z +aq < 2a2

dag < as +ag+ay+ag < 4day

2%agn+1 < Agng1 + ... F Aontr < 2"agn,

we get
1
§(Sn+1 — al) S A2n+1 —a; < Sn (193)

Since the sequences { Ay} and {Sk} are nondecreasing, and hence from the inequalities we can conclude
that they are either both bounded above (which means that they are both convergent since it is a
bounded, nondecreasing series) or both unbounded above (which means that they are both divergent
since they are nondecreasing and unbounded).
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Corollary 3.3 (p-series Test)

The series
ZOO 1

converges for p > 1 and diverges for p < 1[7]

%This sort of reminds you of u-substitution. For example, look at f1°° t)dt = f e f(e*) du, where the convergence
of LHS <= convergence of RHS.

Proof. Suppose p > 0. By the previous theorem, the series converges or diverges simultaneously with

the series
k 1—
E 2 2k E 2°7P) (195)

k=0

which is really just a geometric series. A necessary and sufficient condition for the convergence of this
series is that 277 < 1, that is, p > 1.
Now suppose p < 0. The series is then clearly divergent since all of the terms are larger than 1.

Example 3.13 (Harmonic Series)

The harmonic series

11 1
R T e Y 196
totg et (196)

seems at first glance to be converging since the terms converge to 0. However, it does not pass the
Cauchy condensation test since

22”%22"21”211%0 (197)
n= n= n=

As you can see, this increases logarithmically, so in early calculators it was hard to numerically detect
divergence (you would have to double the number of series terms to get a linear increase).

3.5 Ratio and Root Tests

Now we introduce the root and ratio tests, which are derived by the comparison test with a geometric series.
The ratio test is used more day-to-day, but not as decisive as the root test. Both tests have a similar flavor.

Theorem 3.12 (Ratio Test)

an+1

Suppose the limit lim,, f = « exists for the series Zn 1 @pn. Then,
LLa<l = > a, Conve1 ges absolutely.
2. a>1 = > a, diverges.
3. a=1 = Y a, is inconclusive.
Alternatively, if
1. limsup |ap41/an| = @ < 1, then > a,, converges
2. If 3N s.t. |apt1/an] > 1 for all n > N, then Y a,, diverges.
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Proof. Since lim sup aa—:l| =a <1, fixany a < 8 < 1. Then IN s.t. if n > N, |ap+1/an| < 5. So
lanv+1] < Blay| = |ans2| < B%|an]. So letting C = |ay], for all m > N,

C ~
|am| < ﬂ—N ™ = |a,| < CP™ foralm > N (198)

So > a, converges by comparison test since > ™ < co when 5 < 1.

Theorem 3.13 (Root Test)

Let >°>° | a, be a given series and

a = limsup V/|ay| (199)

n— oo

Then,
1. a <1 = > ay converges.
2. a>1 = > a, diverges.
3. a=1 = > a, is inconclusive.

Proof. Listed.

1. If limsup {/|a,] = a < 1, take any a < 8 < 1. Then 3N € N s.t. if n > N, then |a,|"/" <
B < la,| < p". Since 8 < 1, Y ™ < 0o, and by comparison test, Y a,, converges.

2. Suppose o > 1. Then limsup|a,|'/" = a > 1. So there exists a subsequence (a,,) s.t.
(|an,|'/™) — a > 1. This means IN s.t. for n > N, |a,, "™ > 1 = |a,| > 1. But
this fails the nth term test.

3. We do not claim anything and so there’s nothing to prove.

Example 3.14 (Root Test Inconclusive Results)

Consider )~ 1 = 400, but from the root test
W1
— =1, s0a=1 (200)
n
Consider ) - < +o0, but from from the root test

2
1 1
":< > —1,s0a=1 (201)

n2 nl/n

Example 3.15 ()

The sequence ) < always converges for ¢ € R.

n
n:

Theorem 3.14 (Weierstrass M-test for Absolute Convergence)

Let .07, a, and > 7, b, be series. Suppose there exists an index N € N such that |a,| < b, for all
n > N. Then,

Z b, converges —> Z a,, converges absolutely (202)

n=1 n=1
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We finally conclude by giving a theorem about the convergence of some special sequences.

Theorem 3.15 (Special Sequences)

Some special sequences:
1. If p > 0, then lim,,_, 73}, =0.

If p > 0, then lim,, o ¢/p=1.

lim, oo ¥n=1.

If p > 0 and « is real, then lim,, W

@

=0.

DAl

If |z| < 1, then lim, . 2™ = 0.

3.6 Euler’s Number and Trigonometric Functions

Definition 3.7 (Euler’s Number)

We define Euler’s number as

1
e=Y ~ (203)
n=0
The first thing we should do is show that it converges, this is a one-liner.
ii:1+1+il<2+i# (204)
— n! L —n(n—1)
Theorem 3.16 (Euler’s Number as a Limit)
We have N
1
lim <1 + > =e (205)
n—-+oo n
Proof. Let us define the sequence
=Yg = (147) (206)
k=0
We know that t,, — e, and we want to show that s,, — e. We do this with the squeeze theorem.
1. We can see that
1 n
Sp = (1 + > (207)
k
1
= 1k 208
-2 (1)) 9
_ nn—1)1 nn-1)(n—-2)1
=1+1+ o 2 al $+.. (209)
n—1
1 1 1 1 2 1 k
=1+1 ni1—-— —({1-—=)(1—— o+ =1 1—— 210
W) ra0(-n) () oI () e
_lo1 11 1 -
<ottty oot =tn (211)
and so s, <t, = limsups, <limsupt, =
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2. Let m < n be fixed. Then,

1 1 1 1 2 -1
sp>141 4+ (1-= )+ +—(1-=)(1==2)... (1T (212)
2! n m! n n n

since we are just taking the first m positive terms of the element. Therefore, letting n — 400
and keeping m fixed, we get

1 1
hmlnfsn 2141+ 5+...+—foralmeN (213)
n!

n—4oo 2

which implies liminfs, > t,, for all m € N, and now letting m — 400, we have liminfs, >
liminf¢,, = e.

Now we prove the 1rrat10nahty of e. It is usually extremely difficult to prove that an arbitrary number is
irrational, e.g. 7€ or 7w°¢

Theorem 3.17 (e is Irrational)

e is irrational.

Proof. Letting t, = >_j_, 7, we have

oo

1

e—t, = Z — (214)
k= n+1 '
1
1+ +... (215)
n+1' n+2 +3)(n+2)
1
1 21
n+1'( +n+2 n+2)2+ ) (216)
geometric
217
m)'(l — 1
(n+2)n
_ = 21
n’n (n+1)2 (218)
—_———
<1
1
= 219
nln (219)

Note that we can combine and split sums since we know that e is convergent. Now suppose that

e =p/q. Then,

1
0<qglle—ty) < p (220)

But ¢le is an integer and g¢!t, is also an integer. So we have ¢! - g, an integer, between 0 and 1, which
is a contradiction.

Since we have defined some number e € R, we know that exponential exist, and therefore we the function
x +— e” is well-defined. In fact, it is so important that we have a separate name for it.
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Definition 3.8 (Exponential Function)

The exponential function is generally referred to as the function xz +— e®.

There is a nice series representation.

Theorem 3.18 (Exponential Function as a Series)

We have
0 "
e =y o (221)
n=0

Proof.

Now that this is done, we can define the trigonometric functions formally as such.

Definition 3.9 (Trigonometric Functions)

We have

N 299
— (2n + 1) 31" 5l (222)

(223)

oo T (224)
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4 Limits and Continuity of Functions

We now extend our analysis to real-valued functions over a metric space. The ones that we will be particularly
interested in are continuous functions. But before this, let’s introduce a new notation. Given a metric space
X, we will talk about a variable x approaching a particular value a € X, denoted x — a. But this isn’t
clear. When we talk about the concept of something approaching another thing, we have two definitions.

1. A sequence can approach to its limit, which is a point.
2. A point can be a limit point of a set.

When we write x — a, we are talking about some indeterminate variable x and a point a, it isn’t immediately
clear what this means. As we will soon define, this will refer to a neighborhood of a or equivalently to all
sequences converging to a. So we can think of x — a as notation for all sequences (z,,) — a.

Definition 4.1 (Constant and Ultimately Constant Functions)

Given a real-valued function f: E — R defined on domain E C R,
1. fis a constant function if f(z) = Aforallz € E )
2. f is called ultimately constant as x — a if it is constant in some deleted neighborhood U (a),
where a is a limit point of E.

Definition 4.2 (Bounded and Ultimately Bounded Functions)

Given a real-valued function f : £ — R defined on domain F C R,
1. f is bounded, bounded above, or bounded below respectively if there is a number C' € R
such that |f(z)| < C, f(z) < C,or C < f(z) forall z € E.
2. [ is ultimately bounded, ultimately bounded above, or ultimately bounded below as
2 — a if it is bounded, bounded above, or bounded below in some deleted neighborhood Ug(a).

Example 4.1 (Unbounded but Ultimately Bounded)

The function ]
iy 1
f(x) = sin p + x cos p (225)

for x # 0 is not bounded on the domain of definition, but it is ultimately bounded as = — 0.

4.1 Limits of Functions
Definition 4.3 (Limit of a Function)

Let f: X — Y be a map between metric spaces, with £ C X and p € E' (note the limit point!). We
say f(z) = qasxz — p, ie.
lim f(z) =¢ (226)

T—p

if it meets the following equivalent conditions.
1. €0 Definition. If Ve > 0,30 > 0 s.t. 0 < dx(z,p) <§ = dy(f(2),q)) < €[]

45/ [199)



Univariate Real Analysis Muchang Bahng Spring 2025

s pzl,' B \ q l'
~ s 7 \ /
~_ - ,\ // A R4
1 (Be(q)) o

Figure 2: Said in one line, the preimage of any open ball around y = f(z) must contain some open deleted
open ball around z.

2. Sequential Definition. If for all sequences (z,) — p, f(xn) — ¢.
X Y
: f i
p. (-U")/\ q- U (yn))
° [ ]

.(l'n) (f(zn))

Figure 3: For every sequence that converges to the left, the new sequence mapped through f converges to q.
Note that we choose the points z, to be in the "deleted" neighborhood E \ a (neighborhood E with point a
removed) to force us to choose a sequence that is not a,a,.... That is, it forces us to choose different points
for the sequence.

%Note that the strictly inequality 0 < dx (x,p) is important to ensure that = # p, since functions can jump at p.

Proof. We prove equivalence.
1. (—). Assume lim,_,, f(z) = ¢. Let (z,) € E s.t. z, — p with z,, # p. We wish to show that
f(xzn) = q. Let € > 0. Then 3§ > 0 s.t. 0 < dx(z,p) <d = dy(f(x),q) < e. Since § > 0, by
definition 3N € N s.t. if n > N, dx(zn,p) <6 = dy(f(zn),q).

Sometimes, the e-§ definition is good, but a lot of the times the sequential definition is good enough and
more insightful.

Example 4.2 (Limit of the Signum Function)

The function sgn: R — R defined

1, x>0
sgnx=<¢0, x=0 (227)
-1, =<0

has no limit as x — 0.

First, it is ludicrous that the limit would be any number that is not {—1,0,1}. If we assume that
A ¢ {-1,0,1}, then we can choose any arbitrarily small e-neighborhood of A that does not include the
three numbers. Clearly, there doesn’t exist any § > 0 such that the deleted §-neighborhood of 0 maps
to a set completely contained in the e-neighborhood of A. That is,

sgn(Us(0)) = {~1,1}  Uc(4) (228)

It doesn’t even intersect the e-neighborhood at all.
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1. If A = 1, we can construct a e-neighborhood V4 for ¢ = % Clearly, there exists no open
neighborhood Uy of 0 that is entirely mapped to V', since Uy contains both negative numbers and
0 and hence must be mapped to 0, —1.

2. Similarly, given the (¢ = $)-neighborhood of A = —1, there exists no open neighborhood Uy of 0
that is entirely mapped to it, since Uy contains both positive numbers and 0 and hence must be
mapped to 0, 1.

3. Finally, given the (e = %)-neighborhood of A = 0, there exists no open neighborhood Uy of 0 that
is entirely mapped to it, since Uy contains both positive and negative numbers and hence must
be mapped to +1.

Therefore, the limit does not exist.

Example 4.3 (Limit of Absolute Value of Signum Function)

We will show that
lim |sgnz| =1 (229)
z—0

We construct a e-neighborhood U,(1) around 1. Given this neighborhood, we can imagine choosing the
deleted §-neighborhood Us(0) around 0. Since every element in Us(0) maps to 1, it is clearly in U,. In
fact, for arbitrarily small € > 0, we can choose any ¢ > 0 since everything in R \ 0 maps to 1. We can
visualize this in R? as

Theorem 4.1 (Arithmetic on Limits of Functions)

Given two numerical valued functions f,¢g: E C R — R with a common domain where g(z) # 0 for
all z € F, let

lim f(z) = A, lim g(z) = B (230)
then, o |
lim (f +g)(z) = A+ B
lim (cf)(z) = cA
lim (f-g)(z) =A-B

Wl =

im (5)-

Proof. Cauchy sequence criterion for a limit immediately proves this.

We end this with a theorem connecting the relationship between a limit of a function as * — @ and its
ultimate behavior as x — a.

Theorem 4.2 ()

Let f: E — R be a function. Then,
1. f is ultimately the constant A as  — a implies that lim,_,, f(z) = A.
2. limg_, f(x) implies that f is ultimately bounded as z — a.
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Definition 4.4 (Infinitesimal Function)

A function f: EF C R — R is said to be infinitesimal as x — a if

lim f(z) =0

r—a

Lemma 4.1 (Sums, Products of Infinitesimals)

It is clear that if «, 8 are infinitesimal as © — a, then

1. a+ f is infinitesimal as  — a

2. « - [ is infinitesimal as z — a
Furthermore, if « is infinitesimal and ( is ultimately bounded as x — a, then the product « - 3 is
infinitesimal as x — a.

Proof. We prove all three statements.
1. Assume that o and § are infinitesimal as # — a. Then, let us fix a small € > 0. This means
that for every & there exists an open deleted neighborhood U’(a) such that its image a(U’(a)) C

U!/5(0) C R. Additionally, for every 5 there exists an open deleted neighborhood U”(a) such
that its image B((}”(a)) C Ué/2(0) C R. Thus, for the deleted neighborhood

U(a) c U'(a) UU" (a)

we can see that for all z € U(a),

(@ +B)(@)] = la(@) + B)| < la(@)| +[B@)| < 5+ 5 =e
and hence (a+ 5) (U(a)) C U(0).

2. This case is a special case of assertion 3. That is, every function that has a limit is ultimately
bounded.

3. Since B(x) is ultimately bounded, this means that there exists a constant M and an open deleted
neighborhood U’(a) C E such that for all # € U’(a), its image is bounded: |3(x)| < M. Let
us fix a small € > 0. Then, by definition of the limit, for every 47 there exists an open deleted
neighborhood (DJ”(a) such that its image B(f]”(a)) C Ue/m(0) C R. Therefore, for the deleted
neighborhood ) ) )

Ua) cU'(a) UU" (a)

we can see that for all z € U(a),

€

M'M:e

(- B)(@)] = |a(x)B(z)] = |a()]|B(x)] <

Therefore, (o - ﬁ)(U(a)) C U(0).

Note that in proving these properties of the limits, we have used the following fact about open deleted
neighborhoods around a.

1. U(a) is not the empty set.

2. Given open deleted neighborhoods U”(a) and U” (a), there exists an open deleted neighborhood in the
intersections of these neighborhoods.

U(a) C U'(a) UU"(a)
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Theorem 4.3 (Representation of a Convergent Function as a Shift of its Infinitesimal)

Given a function f: EF C R — R, its limit exists and

lim f(z) = A (231)
if and only if f can be represented as
f(z) =A+ax) (232)

where « is infinitesimal as © — a. We can visualize this theorem by thinking of a function f that
results from a "shift" of an infinitesimal.

Figure 4: Shift of f(z) = 2 sin(3z) + 2.

Finally, we reiterate some limit theorems already stated for sequences, but now corresponding to functions.
Interpreting the function limit as the Cauchy sequence definition of limits renders the proofs of these theorems
trivial.

Theorem 4.4 (Bounds on Limits of Functions)

If the functions f,g : E — R are such that

lim f(z) = A < B = lim g(x) (233)

r—a T—a

then there exists a deleted neighborhood Us(a) in E at each point of which f(z) < g(z).

Theorem 4.5 (Squeeze Theorem for Limits of Functions)

Given the functions f,g,h: E C R — R such that

f(x) <g(x) <h(z)forallz € E (234)
then,
lim /(2) = lim h(z) = C — lim g(a) = C (235)
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4.2 Asymptotic Behavior of Functions

Definition 4.5 (Little-O Notation)

The function f: F — R is said to be infinitesimal compared with the function g: E — R as
x — a, written (by abuse of notation) f = o(g) as x — a, if

TG

z—a g(x)
or in other words, if f/g is an infinitesimal function as © — a. Therefore, f = o(1) as © — a means
that f is infinitesimal as z — a. [7]

%Note that writing f = o(g) is again, an abuse of notation. f = o(g) is really a shorthand way of writing that f is in
the class of functions that is infinitesimal compared with the function g.

Intuitively, f = o(g) means that the ratio between f(x) and g(x) will tend to infinity as z — a (this does
not mean that f will be infinitely greater than g, however!).

Example 4.4 (Linear vs Quadratic)

For example, looking at the two functions f(z) = 2 and g(z) = =, we have
1. 22 = o(z) as x — 0 (since % = ¢ is infinitesimal as x — 0)
2. = o(z?) as ¥ — oo (since % = 1 is infinitesimal as z — 00)
We can visualize g/ f(z) tending to infinity within a neighborhood of 0 and f/g(z) tending to infinity

within a neighborhood of oo.

Y
) o 1,2
flx) =37
%(;l:) ==z
=0 izQ)
ixQ _ as r > 00
asz /4 0
z
Figure 5

Definition 4.6 (Orders of Infinitesimals, Infinities)

If f = o(g) and g is infinitesimal as * — a, then f is an infinitesimal of higher order than g as
2 — a. Furthermore, if f and g are infinite functions as © — a and f = o(g) as ¢ — a, then g is a
higher order infinity than f as z — «a.
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Definition 4.7 (Big-O Notation)

By abuse of notation, f = O(g) as * — a means that

lim f@) =00 (236)

v—a g(x)

or in other words, f/g is ultimately bounded as x — a. In particular, f = O(1) as * — a means that
f is bounded within a certain neighborhood U(a) of a.

Definition 4.8 (Functions of Same Order)

The functions f and g are of the same over as * — a, written
f=<gasz—a (237)

if f=0(g9) and g = O(f) as x — a. Intuitively, this means that the ratio between f and g within
some deleted neighborhood of a is finite.

Note that the condition that f and g be of the same order as © — a is (by definition of ultimately
bounded functions) equivalent to the condition that there exist ¢1,co > 0 and an open neighborhood
U(a) such that the relations

alg(@)| < [f(@)] < calg(@)] (238)
is true for x € U(a).

Definition 4.9 (Asymptotic Equivalence of Functions)

For functions f and g, if
tim L) 4 (239)
T—ra g(l’)
we say that f behaves asymptotically like g as = — a, or that f is equivalent to g as = — a,
written

f~gasz—a (240)

Moreover, ~ is an equivalence relation, which means that
1. f~fasx—a
2. frvgasx —a = g~ fasx—a
3. f~gandg~hasx —a = f~hasz—a

We list a few examples in order to develop some sort of visual intuition for when two functions are asymp-
totically equivalent.

Example 4.5 (Both Converges at Finite Value to Nonzero Finite Value)

If f(a) = g(a) # 0, then f ~ g trivially since the ratio of f and g converges to 1 within a neighborhood
of a.
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Example 4.6 (Both Converges at Finite Value to 0)

smaller than the other.

(a) When f(z) = sinz and g(z) = z, then f ~ g since we
see that limg,_,o 22%

2 =1,andsosinz ~zasz — 1.

(c) When f(x) = 22 and g(z) = x*, then lim,_,0 2—;1 =0,
and so x% # 22. In fact, z¢ = o(z?).

Figure 7: Examples

When f(a) = g(a) = 0, it may be f may be equivalent to g or one function may be infinitesimally

(b) When f(z) = 2 and g(x) = a°, then limz—0 £ =0,

and so x2 % 22. In fact, 2% = o(x2).

) =a®

g(z) = 0.522
(d) When f(z), g(z) = x2,0.522, then lim,_,0o 0'521'2 = ;
So 0.5z2 o6 2.

of different scenarios.
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Example 4.7 (Analyzing at Infinity)

When analyzing the behavior of functions as x — oo, we can picture the two graphs of f and g on the
plane and "zoom out" to see if the ratio of the values converge to 1. This would mean that as =z — oo,
we should see the graphs overlapping more and more.

g(z) = 2% + 204 + 120
100
>
flz) =a?
—10 10 —106 l 106
(a) Comparison of f(x) = 22 and g(x) = 22 + 10z + 100 (b) Asymptotic behavior with g/f ~ 1

Figure 8: taking f(z) = 2® and g(z) = 2 + 10z + 100, we can see that the discrepancy is high around a
neighborhood of x = 0. But as z — +o00, we get limgz 4o M = 1, and so the graphs look like they
are overlapping. Notice that even though the absolute difference |(ac + 10z + 100) — 2?| = |10z 4 100| tends to

infinity, this difference increases infinitesimally compared to f and g.

From this, we can see that if f ~ g as x — a, then their difference

f—yg=o(g) =o(f) (241)
That is, (f — ¢g)(x) is infinitesimal compared to g or f (doesn’t matter which one we compare it to). This
leads to our next section, where we formalize this concept with absolute and relative errors.
4.2.1 Approximations of Functions

It is useful to note that since the relation lim,_,, v(z) = 1 is equivalent to

v(z) =1+ a(x), where lim a(z) =0 (242)

r—a

the relation f ~ g as x — a is equivalent to saying that

g((g = v(x), where ilg}l y(x)=1 (243)
which implies
f(z) = g(z) + a(z)g(z) = g(z) + o(g(z)) as z = a (244)
or, symmetrically,
g(x) = f(2) + (@) f(x) = f(z) + o(f(x)) as z = a (245)

This means that f can be exactly represented by another function g, plus another (error) function o(g(x))
that is infinitesimal compared to g.
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(a) Functions f, g, and their difference (b) Behavior of f — g (little-o of g)

Figure 9: Visualization of asymptotic behavior where f — g = o(g)

Note that it is not a sufficient condition that the error function be infinitesimal! The error function f— g must
be infinitesimal compared to g! This tells us that not only does the error function decrease infinitesimally,
but also is infinitesimal compared to the approximation function we already have, which is in general a much
stronger claim. This representation of certain types functions will provide the foundation for differential
calculus when we talk about "good" approximations for a function.

Definition 4.10 (Relative Error)

Since f ~ g as x — a means that

f(@) = g(z) + a(x)g(z) = g(x) + o(g(x)) (246)

we can define the relative error of g as an approximation of f to be

a()] = \W (247)

Clearly, since f ~ g, the relative error must be infinitesimal as x — a.

We use the following lemma to check whether two functions are asymptotically equivalent.

Lemma 4.2 ()

f ~ g as x — aif and only if the relative error of ¢ is infinitesimal as x — a.

Example 4.8 ()

We claim that .
m2+x:(1+>x2~x2asx—>oo (248)
x

We see that the absolute error of this approximation |(z? + z) — z%| = |z| tends to infinity, but the

relative error ‘;—J = ﬁ — 0 as x — oo.
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Theorem 4.6 (Prime Number Theorem)

Let 7(x) be the number of prime numbers strictly less than x. Then 7 ~ = as x — 400, or more
precisely,

T x
m(z) = Iz + O(lnx) as x — 400 (249)

Example 4.9 ()

sinx
T

It is a fact that lim,_,¢ =1, so we have sinx ~ x as ¢ — 0. So,

sinz =xz+o(z)asz — 0 (250)

The following theorem proves useful when computing limits.

Theorem 4.7 ()

Iffwfasm—>a,then R
lim f(z)g(x) = lim f(z)g(x) (251)

T—a r—a

provided one of these limits exist.

Theorem 4.8 (Properties of o(g) and O(g) Functions)

For x — a,

L o(f) + o(f) = o(f)
o(f) is also O(f)
o(f) +0(f) = O(f)
O(f) +O(f) = O(f)
If g(x) # 0, then

Gk o

o(f(z)) _ (fE))) ang 2V @) _ O(fU) (252)
)

4.3 Continuous Functions

Definition 4.11 (Continuity of a Function)

A function f is continuous at point a if for any neighborhood V (f(a)) of f(a), there is a neighborhood
U(a) of a whose image under the mapping f is contained in V (f(a)).

Generalizing this, we say that a function is (globally) continuous if the preimage of every neighbor-
hood in its codomain is an open set in its domain.

Lemma 4.3 (Existence of Limits of Continuous Functions)

f:+ E — R is continuous at a € E, where a is a limit point of F if and only if

lim f(z) = f(a) (253)

r—a
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Proof. The limit equaling f(a) means that, by definition, for any arbitrarily small deleted neighborhood
of f(a), denoted Uy, \ f(a), its preimage will be an open neighborhood of a, which itself will contain
an open set.

This also means that we can use the Cauchy limit definition to defined continuity of a function at a point.
That is, for any sequence {a,, } of point in codomain E which converges to point a, the function f is continuous
at a if the corresponding sequence {f(a,)} converges to f(a).

Theorem 4.9 ()

This means that the continuous functions commute with the operation of passing to the limit at a
point.

lim f(z) = f( lim x) (254)

T—ra Tr—a

Lemma 4.4 (Properties of Continuous Functions)

Let f:R" — R™, g:R™ —3 RP with ¢ € R.

. f continuous at zg = c¢f continous at x.

. f,g continuous at ry = f + g continuous at z.

. Let m =1. f,g continuous at xy = fg continuous at z.

. f continuous at z¢ and f(z) # 0Vz € R® = 1/f continuous at xg.
I f(x) = (fl(x),fg(x), ceey f,,,(a:)) coordinate-wise, then

Uk W N~

f continuous at zy < f1, fa2,..., fm continuous at z (255)

6. f continuous at x¢ and g continuous at yo = f(xg) = ¢ o f continuous at .

Proof. This is an immediate result of the equivalence of a function being continuous at point a and its
limit at point a existing.

Theorem 4.10 (Local Properties of Continuous Functions)

Let f: E — R be a function that is continuous at the point a € E. Then,
1. f is bounded in some neighborhood U(a).
2. If f(a) # 0, then in some neighborhood U(a) all the values of the function have the same sign as
f(a).
3. If the function g : U(a) C E — R is defined in some neighborhood of a and is continuous at a,
then the following functions

are also defined in U(a) and continuous at a.
4. If the function g : ¥ — R is continuous at a point b € Y and f is such that f : £ — Y,
f(a) =b, and f is continuous at a, then the composite function

gof:E—R

is defined on F and continuous at a. This is easy to see because given the open neighborhood of

56/ [199]



Univariate Real Analysis Muchang Bahng Spring 2025

g(b), we know for a fact that Us(a) maps completely into U, (b), and that U, (b) maps completely
into Uk (g(b)) and so the composition of these mappings must mean that Us(a) maps completely
into Uy (g(b)).

Example 4.10 ()

An algebraic polynomial
P(z) = apx™ + a12™ ' a0z 2+ .. 4 ap_12 + ay (256)

is a continuous function on R. Since f(z) = x and f(z) = c¢ are continuous functions, by induction
on z, we can multiply them together to find that f(x) = z™ is continuous, which implies that az™ is
continuous, which implies that the sums of these functions are also continuous.

4.3.1 Intermediate and Extreme Value Theorem

Unlike local properties, the global property of a function is a property involving the entire domain of definition
of the function.

Theorem 4.11 (Compact Sets to Compact)

If f: X — Y is continuous and K C X is compact, then f(K) is compact in Y.

Proof.

Corollary 4.1 (Extreme Value Theorem)

A continuous real-valued function over a compact set attains its maximum and minimum.

Theorem 4.12 (Intermediate Value Theorem)

If a function f is continuous on an open interval and assumes values f(a) = A, f(b) = B, then for any
number C € (A, B), there is a point ¢ between a and b such that f(c) = C.

~

Figure 10: Illustration of a continuous function with a root in the interval [a, b]

57/ (199



Univariate Real Analysis Muchang Bahng Spring 2025

Proof.

This following proof provides a very simple algorithm for finding the zero of the equation f(xz) = 0 on
an interval whose endpoints has values with opposite signs. Note that the colloquial description of the
intermediate value theorem, that is is impossible to pass continuously from positive to negative values
without assuming the value 0 along the way), assumes more than they state. That is, this theorem is
actually dependent on the domain of definition: that is is a closed interval, or more generally, that it is
connected.

4.3.2 Inverse Function Theorem

We begin by introducing this intuitive lemma.

Lemma 4.5 ()

A continuous mapping f : E — R of a closed interval E = [a, ] into R is injective if and only if the
function f is strictly monotonic on [a, b].
Furthermore, every strictly monotonic function f : X C R — R (for arbitrary X) has an inverse

fFlefX)cR—R

with the same kind of monotonicity on f(X) that f has on X.

Lemma 4.6 (Criterion for Continuity of a Monotonic Function)

A monotonic function f : E — R defined on a closed interval E = [a, b] is continuous if and only if its
set of values f(F) is the closed interval with endpoints f(a) and f(b).
Note that both conditions imply that there are no points of discontinuities in the graph of f.

Theorem 4.13 (Inverse Function Theorem)

A function f : X — R that is strictly monotonic on a set X C R has an inverse f~! : ¥ — R defined
on the set Y = f(X) of values of f. The function f~!: Y — R is monotonic and has the same type
of monotonicity on Y that f has on X.

7/
oﬂecrdasim?

e
£(x)

(<,
-F ) f {,[acreas}ny
<
£x,) T

>
>

f
Y- £k

X[ Y,_ )(;
X=X,UX, VX,

If in addition, X is a closed interval [a,b] and f is continuous on X, then the set Y = f(X) is the
closed interval with endpoints f(a) and f(b) and the function f~!: Y — R is continuous on it.
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Example 4.11 (Sin and Arcsin)

The function f(z) = sinz is increasing and continuous on the closed interval [ — Z,Z]. Hence, the
restriction to the closed interval [— 55 g] has an inverse z = f~1(y), called the arcsin, and denoted
by & = arcsiny.

Yy
1 £(2) = sinz)
| ! | @
2 _x z T
-1+ f~Y(z) = arcsin(z)
Figure 11: This function is defined on the closed interval [ — sin ( — %),sin ( — )] = [—1,1] and increases

; us s
continuously from —3 to 3.

4.4 Uniform Continuity

Roughly speaking, a function f is uniformly continuous if it is possible to guarantee that f(x) and f(y) be as
close to each other as we please by requiring only that z and y be sufficiently close to each other. Intuitively,
uniform continuity says that given any two points z,y in the domain where their distance is arbitrarily small
(6 apart), we can guarantee that the distance between f(x), f(y) is at maximum some arbitrarily small e.

Definition 4.12 (Uniform Continuity)

A function f : F — R is uniformly continuous on a set £ C R if for every € > 0, there exists 6 > 0
such that

|f($1)—f($2)’ <€ (257)

for all points x1, 29 € E such that |z — 29| < 6.

Example 4.12 (Uniformly Continuous)

The following visual shows the radical function f(z) = y/z defined on RT. We can see that it satisfies
uniform continuity because the graph does not escape the top and/or bottom of the € x ¢ window, no
matter where the box is located on the graph. More strictly speaking, no matter what we set the €
(how long the box is), uniform continuity says that we can choose a sufficient 6 (width of the box) such
that the graph does not escape the top/bottom of the window no matter where the window is.

59/ 199



Univariate Real Analysis

Muchang Bahng Spring 2025

Figure 12: Graph of f(z) = /= with -6 rectangles at various points

Example 4.13 (Not Uniformly Continuous)

We can clearly see that the function f(x) = 1/2 is not uniformly continuous, since the graph escapes
the € x 6 window at some point (marked in red). More strictly speaking, given any length e of the
window, we cannot create a thin-enough § box that will contain the graph, since as x — 1, the function
becomes unbounded. That is, arbitrarily thin boxes don’t help when the slope is arbitrarily steep.

Figure 13: Graph of f(x)

% with epsilon-delta boxes and magnified view

To compare uniform continuity with regular continuity, we can adapt this alternate (yet equivalent interpre-
tation): Let there exist function f : E — R. Given any € > 0, we can choose a § > 0 such that given any
point x € E and f(z), as long as a second point y is § away from z, then f(y) is € away from f(z). This
visualization would lead to there being a 2e¢ x 2§ window around point . Therefore, given a certain € > 0,
the way we choose ¢ is only dependent on €, and so it must be a function of e:

6 =d(e) (258)

However, in continuity, there just has to exist some J-neighborhood of = such that its image is contained in

the e-neighborhood of f(x).
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20

w w

(a) Uniform continuity means that the box above does not (b) In continuity, there are no restrictions on the dimensions
change dimensions no matter where the point is (hence, the of this box. It just has to exist for every point, through a
name uniform). function of e.

Figure 14: Uniform continuity vs continuity.

With this intuition, it is easy to see the result below.

Lemma 4.7 (Uniform Continuity Implies Continuity)

If f is uniformly continuous on the set F, it is continuous at each point of that set. However, the
converse is not generally true.

Example 4.14 ()

Let f: R — R, f(z) =3z + 7. Then f is uniformly continuous. Choose € > 0. Let § = ¢/3. Choose
z,y € R and assume |z — y| < d. Then,

@) = ()| = 132 +7—3y— 7| = 3la —y| < 35 = ¢ (259)

Example 4.15 ()

Let f:(0,4) C R — R, f(z) = 2%. Then f is uniformly continuous on (0,4). Choose ¢ > 0. Let
d = ¢/8. Choose z,y € (0,4) and assume |z — y| < J. Then,

[f(z) = W)=l =yl = (@ +y)le—yl <@+ 4) |z —y| =8 = ¢ (260)

A natural question one might ask is: under what assumptions is the converse true?

Theorem 4.14 (Cantor’s Theorem on Uniform Continuity)

A function that is continuous on a compact set is uniformly continuous on that set.

Proof. Here is a proof I derived myself. The general idea is that with continuity, we we can control the
6 with an € plus some point z. To decouple this dependence on z, we can restrict our scope to each z
that are the center of the balls in the finite cover of z, and then taking the minimum (most restrictive)
over them.
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We wish to show that Ve > 0, 3§ > 0 s.t.
d(z,2') <6 = d(f(z), f(z)) <€ Va,2’ € X (261)
We begin by constructing an open cover. Fix ¢ > 0. Vz € X, 30, > 0 s.t.

d(z,x) <6, = d(f(2), f(x)) <e (262)

This gives us an open cover {B(%,2)}.ex of X, and by compactness, let’s take a finite cover

2
5,
{B(5" 2i) Yz
Now set ¢ = min,;{d,,/2}. We hope that when we choose z,y € X s.t. d(z,y) < 4§, we can trivially
assume that € B; for some i. By setting the radius to be half, we can also assume that y is also in
the same ball as = since

A(zi,y) < dle2) + dwy) < %54 mings., /2) <0, (263)

This pretty much means that we can use the continuity properties locally within B;, and so we can
bound

d(f(x), f(y)) < d(f (@), f(zi)) +d(f(z), f(y)) < 2€ (264)

Proof. Here is another proof recommended by Prof. Kiselev, who mentioned that a sequential proof is
what he would go with intuitively. Let’s prove by contradiction[?] Assume f is not uniformly continuous.
Then deg > 0 s.t. V6 = % > 0, there exists x,,y, € X s.t.

A(wy) < = but d(f (), f)) 2 <o (265)

Since X is compact, we can take a convergent subsequence (z,,) of (z,), which converges to say
z. We can take the same subindex to define the corresponding (y,, ). We first show that these two
subsequences converge to the same value. By triangle inequality, we see that

d(2,Yyn,) < d(2,Tn,) + d(Tny s Yy, ) (266)

As we take the limit as k — oo, we see that d(z,z,,) — 0 by construction of our subsequence, and
ATy, Yny,) < % be construction. Therefore, d(z, yn, ) — 0 and we establish convergence. By continuity
of f, we can see that

lim f(zr) = f(z) = lim f(ys) (267)

k—4oc0 k—4oc0

However, we have picked z,,y,—and thus z,,,yn,—such that d(f(z,,), f(yn,)) > €o, which is a
contradiction to the equality above.

%Thanks to Kiselev. This is also Exercise 4.10 in Baby Rudin.

Example 4.16 (Wrong Proof Attempt to Reflect on My Actions)

Here’s a wrong proof I had in my first attempt. Fix € > 0, and consider any two points z, 2’ € X. Take
r =d(z,2') + 1, and take the finite subcover of the open cover of all r-balls of X, giving us

{Br(2i)}iea (268)

Let’s focus on one ball, which we can assume contains both z,z’ since we can just add it. Since we
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know that f is continuous on z;, we know that 34 > 0 s.t.

d(z,2z;) < 6; = d(f(x,2)) < (269)

NN ORI}

d(z',2;) <8 = d(f(z',2)) < (270)
Therefore, if we unfix z, z’, we can always find a ball B,(z;) containing both of them and find a §; = 26}
such that

d(f(x), f(2") < d(f(2), [(z)) +d(f(z), f(2")) <e (271)

Theorem 4.15 (Uniformly Continuous Function is Linearly Bounded)

If f: R — R is uniformly continuous, then there exists constants, a,b € R such that |f(z)| < a + b|x|
for all z € R.

Proof. Since f is uniformly continuous, for every € > 0 there exists a § > 0 s.t.
lz—yl <6 = [f(z) - fY)l <e (272)
for all z,y € R. Then, setting y = 0 and € = 1, we have some ¢ > 0 s.t.
7] <0 = [f(0) = f(z)[ <1 (273)

Now for any k € N, take |z| < kd. Then we can construct a sequence (x; = i%);“:o, where zo = 0 and

xr = |z|, and from the triangle inequality followed by uniform convergence, we have

k—1 k—1
7 — | = % < %5 =0 = |£(0) — f(@)| < D (@) — flain)| <Y 1=k (274)
i=0 i=0

and so we come to the result
|z] < k6 = |f(0)— f(z)| <k (275)
Now set m(z) = min{k € N | |z| < kd}. It must be nonempty by the Archimedean property, so it’s

lower bounded by 1.
|z| < dm(z) = 5 <m(z) = m(x) < %

where the final implication comes from m(z) being minimum. Therefore,

il +1 (276)

[f @) < [fO) + () = FO < [£O0)] +m(z) < [f(O0)] + % +1 (277)
and we have found such a = |f(0)| + 1,b = 5.
4.5 Lipshitz and Holder Continuity
In both examples, the function satisfied an inequality of form
[f(21) = fla2)] < M|zy — 9] (278)

this is called the Lipshitz inequality. Lipshitz continuity is a strong form of uniform continuity for functions.
Intuitively, a Lipshitz continuous function is limited in how fast it can change (by the Lipshitz constant).
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Definition 4.13 (Lipshitz Continuous Function)

Given f : E C R — R, f is Lipshitz continuous if there exists a M > 0—called the Lipschitz
constant—such that for all x,y € F,

|f(z) = f(y)l < M|z —y] (279)

Note that Lipshitz continuity pops up as a very natural extension of uniform continuity. The inequality
above just means that given an €, we can choose a § such that a linear multiple of § is always greater than
€. This means that Lipshitz continuity is just uniform continuity such that the ¢ function is linear:

1
§=10d(e) = e (280)
L
el | o
755
—
d=¢
6 =2
() M =1 (b)y M =1 (c) M =2

Figure 15: Relationship between slope M and the ratio of § to ¢

Definition 4.14 (Bi-Lipshitz Continuity)

A function f: E' C R is Bi-Lipshitz continuous if there exists constant M > 1 such that for all real
z,y € F,

Lla— 4] < 17(@) ~ F)] < Mz —y

It immediately follows that for « # y, | f(x) — f(y)| cannot equal 0, which means that a bilipshitz map
is injective. A bilipshitz map is really just Lipshitz map with its inverse also being Lipshitz.

Theorem 4.16 ()

A bilipshitz map f is a homeomorphism onto its image.

Definition 4.15 (Holder Continuity)

Given f: E C R — R, f is a-Holder continuous if there exists a C' > 0 such that for all x,y € F,

[f (@) = fy)| < Mz —y[* (281)

4.6 Discontinuity

If the function f: F — R is not continuous at a point of F, then this point is called a point of disconti-
nuity, or simply a discontinuity of f. That is, a is a point of discontinuity of f if for some neighborhood
V(f(a)) of f(a), there exists no neighborhood of a whose image under the mapping f is contained in V'(f(a)).
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There are three types of discontinuities, ranging from least to most extremeﬁ

Definition 4.16 (Removable Discontinuity)

A removable discontinuity is characterized by the fact that the limit lim,_,, f(xz) = A exists, but

A+ f(a).

4

8

Figure 16: A function with a removable discontinuity at = 1. The function is defined as f(x) = 1:’:11 for
xz # 1 and f(1) = 1. The limit of the function as z approaches 1 is 2 (shown by the open circle), but the

function value at « =1 is 1 (shown by the filled circle).

This means that we can modify f and define a new function f : E — R as

f(x)—{f(x)’ z€FE\a

282
A, r=a (282)

which would be continuous on FE.

Definition 4.17 (Jump/Step Discontinuity, of First Kind)

A discontinuity of first kind, also known as a jump/step discontinuity, is characterized by both the
left and right-hand limits

Tgin—of(m) and xl}g}s—o (x) (283)

existing, but at least one of them is not equal to the value f(a) that the function assumes at a.

8]

Figure 17: A function with a step discontinuity at = = 0. The function is defined as f(z) = 14 0.25z2 for z < 0
and f(z) = 2+ 0.252° for £ > 0. The limit from the left lim,_,o— f(z) = 1 is shown by the open circle, while
the function value at x = 0 is f(0) = 2 shown by the filled circle. The dashed line highlights the jump in value.

8Note that strictly speaking, a removable discontinuity is really a discontinuity of first kind, but in this context we distinguish
them.
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Definition 4.18 (Essential Discontinuity, of Second Kind)

A discontinuity of second kind, also known as an essential discontinuity, is characterized by at least
one of the two limits
lim f(z)and lim f(x) (284)

r—a—0 r—a+0

not existing.

)
2 1
1
+ + + + x t t t t xr
1 1 2
2

(a) The function f(z) = % has an infinite discontinuity at (b) The function f(z) = |1.5sin (%) | has an oscillatory
z=0 discontinuity at x = 0

Figure 18: Examples of discontinuities of the second kind, where the limit does not exist as x approaches the
point of discontinuity

Example 4.17 (Dirichlet Function)

The Dirichlet function, defined
1, ifze@

Dla) = {0, ifzeR\Q (285)

is discontinuous at every point, and obviously all of its discontinuities are of second kind, since in every
interval there are both rational and irrational numbers and therefore there exists no limit at any point
a € R.

More specifically, given any point a € R, assume that a is rational. We can set ¢ = 0.1-neighborhood
around the value 1, but no matter how small we let J, the interval (a — d,a + ¢) will contain both
rationals and irrationals, meaning that it will map to {0,1} always, which is not fully contained in
(0.9,1.1).

Here is a slightly more interesting example.

Example 4.18 (Riemann Function)

Let the Riemann function R be defined
R(z) = = %f.IZ%EQ, where ged(m,n) =1 (256)
0, ifzeR\Q

We first note that for any point a € R, any bounded neighborhood U(a) of it, and any number
N € N, the neighborhood U(a) contains only a finite number of rational numbers »>n, where n < N.
By shrinking the neighborhood, we can assume that the denominators of all rational numbers in the
neighborhood are larger than IV, since rationals with larger denominators have smaller gaps between
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them. Thus, at any point = € U(a) \ a, we have
R — 287

and therefore lim,_,, R(x) = 0 at any point a € R\ Q. Hence, the Riemann function is continuous at
any irrational number.
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5 Differentiation of Single-Variable Functions

In general, there are two ways that we define a derivative: as a limit and with infinitesimals. In a standard
analysis course we use limits, but in differential equations physicists tend to use the language of infinitesimals.
This is where our introduction of the hyperreals in smooth infinitesimal analysis (SIA) will be useful.

Definition 5.1 (Derivative Using Limits)

Given f : [a,b] CR — R, fix = € [a, b], and define the difference quotient as the following function

of y[7]
f(x) = fy) (288)
-y
If the following limit exists, we define it’s value—called the derivative of f at z—as
f'(z) = lim f@) = 1) (289)

Yy r—y

and say f is differentiable at x. If f is differentiable at = for every z € E, then f is said to be
differentiable over FE.

2Often, textbooks introduce the difference quotient as M These two are equivalent definitions since the

following two different quotients ¢(y) = %ﬂy) and y(h) = M are related in the sense that ¢(y) = vy(y — x).

So the following two limits exist simultaneously (or fail to exist simultaneously).If they do both exist, then limy, . ¢(y) =
limy .z y(y — ) = limy—0v(y) = limp_,o y(h) where the only nontrivial equality is the second equality, which is true
(should be shown).

So if f is differentiable, we can just treat it as a new function g(x) = f’(x). An immediate consequence of
the derivative is the following lemma, which states the existence of some error function ¢ that is “small” in
a sense.

Lemma 5.1 (Fundamental Increment Lemma)

Suppose the derivative of f : [a,b] C R — R at z exists. Then, there exists a function ¢ : (a,b) CR — R
such that

f@+h) = f(@)+ f(2)h+o(h)h (290)
for sufficiently small nonzero h, and
%in%) w(h)=0 (291)
—

Proof. We can define

o) = LEXN 2@ iy (292)

Is the converse is true? I think so. This gives us a new language to work with.

Definition 5.2 (Little-O Notation)

Let f: R — R be function and g(h) is a monotonically increasing function with g(0) = 0. We say that

f(h) is o(g(h)) if ‘)
Jim 27 =0 (293)

More generally, o(g(h)) is a class of functions.
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So, the ¢ in the fundamental incremenent lemma is really just describing an o(h) function. This is a more
powerful language since we can use little-O notation to extend to other classes of functions.

Theorem 5.1 (Differentiability with Little-o Notation)

A function f : [a,b] C R — R is differentiable at x if and only if there is a number f'(z) s.t.
flx+h) = f(z) = f'(x)h + o(h) (294)

where by abuse of notation, we write +o(h) to denote adding a function in (k) € o(h)[%]
¥\

£leth) |
£06) + dFGINT

£(x) -

“We also use the increment notation to write Af(xz) = f(xz + h) — f(x) and Az := h to denote the difference in the
input and outputs of f, leading to another familiar form: Af(z) = f/(z)Az + o(h).

Proof.

In other words, the difference between the increment of the function and the value of the function df () in
h is an infinitesimal of higher order than h. For this reason, we say that the derivative is the principal linear
part of the increment of the function.

In particular, if f(x) = x, then we have f’(z) =1 and
de(h)=1-h=h
Substituting this equality into df (x)(h) = f'(x)h, we get
df (x)(h) = f'(x) dz(h)

or without the input parameter h,
df (z) = f'(z) dx

Note that this is an equality between two functions of h. From this, we obtain the familiar Leibniz notation
of the derivative:

df(x)(h) _ df(z) _
W—f@)‘:’ dr = f'(=)
That is, the function %, which is the ratio of the functions df (z) and dz, is constant and equals f'(x).

Let us try to construct successive approximations to an arbitrary function f : E — R at a given limit point
xo. That is, we find a function g such that

f=g+o(g)

Depending on what g is, we can construct better approximations of f.
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Example 5.1 (Constant Approximation)

The 0th order approximation is when ¢ is a constant. That is, g = ¢g for some ¢y € R. This means
f(x) =co+o0(co) =co+0(1) as x — xo (295)

More precisely, we want this difference f(x) — ¢y to be o(1) as  — x, which means that it is simply
infinitesimal. Visualizing this, we can see that given a constant approximation (labeled in blue) to a
function at xg, its error term (labeled in green) is in fact, infinitesimal. All this boils down to the fact
that

lim f(z) = co

Tr—To

If the function is continuous at xg, then

lim f(z) = f(zo)

T—To

and naturally ¢y = f(zo). Both the continuous (left) and noncontinuous case (right) is shown, but in
most cases, we will assume continuity.

‘ £ f ,
f(x) . £0x0) |
Co (o -~
”
& <]
X ©
Example 5.2 (Linear Approximation)
The 1st order approximation is a linear function that approximates f as
f(z) =co+ci(x —xp) + o(x — zp) as x — xo (296)

Following the previous logic, assuming f continuous means that ¢g = f(xg). Furthermore, as x — x¢

f(@) —co — oz — )

fx) =co+ci(r —w0) +o(x —20) = 1 = pra— (297)
e f(@) —co oz — ) (298)
T — X Tr — X
P A Rl NPT (299)
T — X0
o= lim L@ T (300)

z—=x0 T — X

But this just means that f/(z¢) = ¢1, Note that before, we have proved the equivalence of the existence of
a derivative at xo with differentiability at x¢ (which itself means that there exists a linear approximation
df (z)(h) that is a function of h). Here, we have created a linear approximation with respect to x =
xo + h, rather than h (shifted the function).

Therefore, the function

az) = f(zo) + f'(w0)(z — o)
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provides the best linear approximation to the function f in a neighborhod of zg in the sense that for
any other function S(z) of the form

B(x) = co + c1(x — xo)
we have f(z) — f(x) # o(x — z¢) as © — . The graph of the function « is the straight line
y — f(zo) = f'(zo)(z — x0)

This leads to the definition of our familiar tangent line.

Definition 5.3 (Tangent Line)

If a function f: F — R is differentiable at a point xy € F, the line defined by
y — f(xo) = f'(0)(x — x0) (301)

is called the tangent to the graph of f at the point (zg, f(z¢)).

Definition 5.4 (Tangent Space)

Given function f : E — R and a point zy € E, the increment of the argument h = x — x¢ can be
regarded as a vector attached to the point xy and defining the transition from xq to xg+ h. h is called
a tangent vector, and the set of all such vectors as T, ,R. Similarly, we denote T};,R the set of all
displacement vectors from the point yy along the y-axis.

IR f

fOeth) § } /

) Nl £c0) (R € Ty y R
&«
héTxR > R
Xo 7Co+h

Then, we can see that the differential is a mapping
df(xo) : TmoR — Tf(aco)R

Note that that there are two functions to pay attention to here:
1. The true increment of f, defined h — f(zg + h) — f(zo) = Af(xo;h) (labeled in green).
2. The differential h — f’(x¢)h = df (xo)(h), which gives the increment of the tangent to the graph
for increment h in the argument (labeled in red).
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Example 5.3 ()

Let f(x) = sinz. Then we will show that f'(z) = cosz.

; - in (1) cos (x4 b
s (z+h) —sin(z) _ im 2sin (%) cos (z + %)

h—0 h h—0 h
" h
= lim cos (x + ﬁ) - lim 51nh(2)
h—0 2/ h—0 (5)

= cos(x)

Here, we have used the theorem on the limit of a product, the continuity of the function cos(z), the
equivalence sint ~ t as t — 0, and the theorem on the limit of a composite function.

Example 5.4 ()

We will show that cos’(z) = — sin(z).

lim cos(z + h) — cos(z) _ iy 250 (&) sin (z + %)
h=0 h h—0 h

= — lim sin (Jc+ %) - lim

h—0

Lemma 5.2 (Differentiability Implies Continuity)

If f is differentiable at x, it is continuous at x.

Proof. If f is differentiable at x, then the derivative

y—r T — Y

exists. Therefore,

0=f'(z)-0=f'(z)( lim z — y) (303)

Yy—x

= lim f@) = 1), lim x —y (304)

= ?}IE}D xi—y(z ) (305)
= lim f(z) = f(y) (306)

Yy—x

which implies that f(x) = lim,_,, f(y), and hence f is continuous at x.

Therefore, we can see that the set of differentiable functions is a subset of the set of continuous functions.
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5.1 Rules of Differentiation

Lemma 5.3 (Arithmetic)

If f and g are differentiable at x, then
1. f+ g is differentiable at z with

(f +9)(z) = f'(z) + g'(2) (307)
2. fg is differentiable at x with
(f9)' = f'(x)g(x) + f(2)d (x) (308)
3. f/g is differentiable at x with
I oy F(@)g() = fa)g' ()
() 0= H2s (309

Proof. The proof for addition is pretty trivial, so we will prove for multiplication and division. For
products, let’s not take the quotient just yet.

(fo)(x) = (f9)(y) = f(2)g(z) — f(y)g9(y) (310)
We know something about f(z) — f(y) and g(z) — g(y), so try to put it into this form.
(f(x) = f(v)9(z) + f(y) (9(x) — 9(v)) (311)
Therefore,
(fg)(:c; - ;fg)(y) _ f(mi - ;(y) (@) + £() g(:c; - z(y) (312)

So by taking limits, f is continuous so f(y) — = as y — z, and we finally have

f(@)g(x) + f(z)g' (z) (313)

For the quotient rule, it suffices to show from the product rule that (1/g)'(z) = —ggé(Tﬂ”)z.

In proving properties of differentiability, it is useful to observe that

i 1) = f)

y—=x T —y

= f(x) = fly) = (@ —y)(f'(x) + E) (314)

for some function E where lim,_,, E(x) = 0. This is known as Taylor’s formula. This is similar to the
decomposition of sequences into a constant plus an infinitesimal sequence.

From this, we can find the derivative of polynomials.

Corollary 5.1 (Polynomial Derivatives)

The following are true.
1. The derivative of a constant function is 0
2. The derivative of the identity function f(z) =z is 1.
3. The derivative of f(x) = 2™ is nz" 1.
4. The derivative of a polynomial f(x) = a,z™ + ...+ ag can then be found.

Proof.
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Theorem 5.2 (Chain Rule)

Let f : [a,b] C R — R be a differentiable function, fix « € [a,b], and assume differentiable g : I — R
where f(z) € I. Then, h = go f is differentiable at « with the derivative

() = g'(f(x))f (x) (315)

Proof. We have
9(f(2)) = g(f(y)) = (f(2) = f(¥) (¢'(f(2)) + Efy)- s)) (316)

Now we divide by x — y.

9(f(=) —g(f(y) [f(=)—f(y)

r—y -y (6" (F@) + Ef)— @) (317)

Now if x — y, then f is continuous, which implies f(y) — f(z) and so E — 0, and so by taking this
limit, the above evaluates to

f'(z) - g'(f(x)) (318)

We could have also done

g(f(=)) —9(f(y) _ 9(f(2) —9(f(y) [f(z) = f(y)
z =y fx) = f(y) Ty

=g (f(z))- f'(z) (319)

Theorem 5.3 (Differentiation of Inverse Functions over R)

Let B1,Ey CR, and f: E; — E5 and f~!: E; — E; be mutually inverse and continuous at points
2o € Ey and f(xg) = yo € Ey. If f is differentiable at x¢ and f’(z¢) # 0, then f~! also differentiable
at the point yg, and

(F7) o) = (F'(w0)) ™ <= df (yo) = (df (x0)) "

EQ El
£
f' (o) (f~(0) = w6y
Yo f*l
xg

E FE
Zo ! / Yo 2

Figure 19: Relationship between a function f and its inverse f~!, showing how their derivatives are related

Note that if we knew in advance that f~! was differentiable at yo (which is a stronger hypothesis), we
can find immediately by the identity

(frof)z)=2

and the theorem on the differentiation of a composite function that

(f 1) (yo) - f'(x0) =1
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Note that if the hypothesis was satisfied, but f’(x) = 0, then f~! would not be differentiable since it would

have an undefined differential.

f71

Figure 20: A function through three points and its inverse relation

5.2 Theorems of Differentiable Functions

Theorem 5.4 (Local Extrema of Differentiable Functions Have Vanishing Derivative)

f'le) =

Let f : [a,b] — R and assume f has a local maximum at ¢ € (a,b) with f differentiable at ¢. Then

1. If > ¢ (with z sufficiently close to c), then f(¢) > f(x) and so

2. If z < ¢, then f(c) > f(z) and so

So0< f'(e) <0 = f'(¢) =0.

Proof. Let us pick two sequences—a left one and a right one—that converges to x from either side.

(320)

(321)

Note that it is generally not true that f'(¢) =0 if ¢ =a or ¢ = b, i.e. at the endpoints.

Theorem 5.5 (Rolle’s Theorem)

such that f’(c) = 0.

Suppose f : [a,b] — R is differentiable on (a,b). Then, if f(a) = f(b), then there exists a ¢ € (a,b)

f(a) = f(b), this implies that f(z) = f(a) for all z € [a, b], which implies f'(z) = 0.

Proof. Since f is continuous on [a,b], it has to attain its global max and min values somewhere in
[a,b]. If either is in (a,b), then the derivative is 0. If max and min are attained on {a, b}, then since
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Theorem 5.6 (Mean Value Theorem)

Assume f : [a,b] — R is differentiable. Then there exists a ¢ € (a,b) for which

= f()(b—a)=f() - f(a) (322)

f(b) — f(a)

L —a)+ f(0) (323)

Geometrically, this means that there exists a tangent line somewhere at ¢ € (a,b) that is parallel the secant
line connecting the two points (a, f(a)) and (b, f(b)).

Some remarks:

1. Physically, if z is interpreted as time and f(b) — f(a) as the amount of displacement over the time b—a
of a particle moving along the line, this theorem says that the velocity f’(z) of the particle at some
time ¢ € (a,b) is such that if the particle had moved with constant velocity f’'(¢) over the whole time
interval, it would have been displaced by the same amount f(b) — f(a). We call f'(¢) the average
velocity over the time interval [a, b].

2. Note that the Mean Value Theorem is important in that it connects the increment of a function over
a finite interval with the derivative of the function on that interval. Up to now, we have characterized
only the local (infinitesimal) increment of a function in terms of the derivative or differential at a given
point. MVT connects the increment of a function over a finite interval with the derivative of the
function.

The MVT actually leads to multiple useful corollaries.

Theorem 5.7 (Derivative of a Monotonic Function)

Given function f : [a,b] — R that is differentiable on (a,b),

) >0 = f is increasing
f'(z) > 0 < f is nondecreasing
f(x) =0 < f is constant
f'(z) <0 < is nonincreasing

(x)

0 = f is decreasing
Note the one-sided direction for the strict inequalities[”] The reverse implication is a bit weaker.

[ is increasing = f’(x)

>0
[ is decreasing = f'(z) <0

@Think of the function f(x) = 3, which is strictly increasing, but has derivative f/(0) = 0 at = = 0.
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Proof. If 1 < x5 are two points of the interval, then the MVT

fl@2) = f(x1) = f/(Q)(x2 — 1) (325)

shows that the sign of the left hand side must equal that of the right.

Corollary 5.2 (Derivative of a Constant Function)

A function that is continuous on a closed interval [a, ] is constant on it if and only if its derivative
equals 0 at every point of the interval [a, b] or the open interval (a,b).

Therefore, if the derivatives f](z) and f}(x) of two functions f;(z) and f2(x) are equal on some interval
(that is, fi(x) = f}(x) on the interval), then the difference

(f1 = f2)(@) = fr(z) — fa(z) (326)

is constant.

Proof. Given constant function f, the MVT equation

0= f(x2) — f(z1) = f()(x2 — 1) (327)

implies that f'(¢) =0 for all 1,29 € E. It follows that by the arithmetic properties of the derivative,
given two functions fi, fo with the same derivative on an interval, the derivative of their difference
(f1 — f2)' =0, and therefore must be constant on that interval.

Theorem 5.8 (IVT For Derivatives)

Suppose f : [a,b] — R is a real and differentiable function and suppose f'(a) < A < f’(b). Then there
exists x € (a,b) such that f'(z) = A[]

%i.e. f doesn’t have to be continuous, but it must have a middle value.

Proof. Let g(x) = f(x) — Az. Then g is differentiable with ¢’(x) = f'(z) — A. But this implies that
1. ¢’(a) = f'(a) — XA < 0, which implies that

g(t1) — g(a)

r— <0 = g(t1) —g(a) <0 = g(t1) < g(a) (328)

for some t; > a sufficiently close to a.
2. ¢’(b) = f'(b) — A > 0, which implies that

g(t2) — g(b)

280 >0 = glta) —g) >0 = glt2) > gb) (329)

for some ty < b sufficiently close to b.
By the mean value theorem there exists © € (a,b) s.t. ¢'(x) =0 = f'(x) = A.

Corollary 5.3 (Derivatives Cannot Have Jump Discontinuities)

You can’t have a jump discontinuity?] for derivatives.

%Also called a discontinuity of the first kind.
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That is, the derivative of a differentiable function cannot “jump,” so it’s like the IVT of derivatives. However,
it may as well have discontinuities of the second kind.

Example 5.5 (Derivative Might Jump if Not Differentiable)

A non-example is f(x) = |z|. It is not differentiable over [—1, 1], and so we see a jump in the derivative.

The following theorem is a useful generalization of Lagrange’s theorem.

Theorem 5.9 (Cauchy’s Finite-Increment Theorem)

Let = z(t) and y = y(t) be functions that are continuous on a closed interval [«, 8] and differentiable
on the open interval (a, §). Then, there exists a point 7 € [«, 5] such that

'(7) (y(8) — y(a)) =¥/ (7)(2(B) — =(a)) (330)
If in addition #'(t) # 0 for each t € («, 8), then z(«) # x(8) and we have the equality

y(8) — y(a) _ y/(7)
o(r)

(331)

5.3 Extrema and Concavity

Similarly, we can connect the concepts of extrema and derivatives.

Theorem 5.10 (First Derivative Test)

Let function f : E — R be defined in a neighborhood U (xo) of point xg, which is continuous at g
and differentiable in U(xzg), a deleted neighborhood of zy. (Note that this is broader hypothesis than
just assuming that f be differentiable at z(.) Let

U™ (w0) = {x € Ulwo) | & < w0}, Ut (wo) = {w € Ulao) | & > wo}

That is, U~ (x) is the left portion of U () and (}"’(xo)ois the right portion of f](ﬂ?o)- Then,
1. (zo, f(wo)) is strict local minimum if f/'(z) < 0 in U~ (x) and f'(z) > 0 in U™ (z0).
2. (o, f(wo)) is strict local maximum if f/(z) > 0 in U~ (zo) and f'(z) <0 in Ut (x0).
3. (2o, f(20)) has no extremum at zo if f'(z) > 0 in both U~ (z9), U™ (2¢), or if f'(z) < 0 in both
U~ ($0)7 U+({,U0).

Note that if there is a discontinuity at a point xg, then this theorem does not apply. For example, (o, f(z0))
in the graph below is a local minimum, even though the derivatives to the left of x( are positive and those
to the right of z are negative (within neighborhood U(xy)). Similarly, (x¢, g(x0)) is a local maximum, even
though the derivative to the left and to the right of xg are both positive.
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Theorem 5.11 (2nd, nth Derivative Test)

Let function f : E — R be defined on a neighborhood U(z¢) of x¢ has derivatives of order up to n
inclusive at zq. If its derivatives up to the (n — 1)th order vanishes

F(xo) = f"(w0)... = F" "V (wg) =0
but the nth derivative at xy does not vanish

F(xo) #0

then
1. nis odd = there is no local extremum at zg
2. n is even = there is a local extremum at x(
(a) f("(xg) >0 = it is a strict local minimum
(b) fM(29) <0 = it is a strict local maximum

Definition 5.5 (Convex, Concave Functions)

A function f : (a,b) — R defined on an open interval (a,b) C R is convex if the inequality
flarzy + agms) < ay f(x1) + asf(x2)

holds and concave, or convex upward, if the inequality
flarmy + agxe) > ay f(r1) + az f(22)

holds for all pairs of points x1,zs € (a,b) and any numbers «y, s > 0 such that a; + @y = 1. If this
inequality is strict whenever x7 # xo and ajas # 0, the function is said to be strictly convex and
strictly concave, respectively.

Note that using induction on the number of points, we get a primitive form of Jensen’s inequality.
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Lemma 5.4 (Jensen’s Inequality)

If f: (a,b) — R is a convex function, x1, ..., x, are points of (a,b), and aq, ..., a,, are nonnegative
numbers such that oy + ... + a,, = 1, then

flarzr + oo+ anxy) < arf(ay) + .o+ anf(zn) (332)

The following is also another equivalent condition for a function to be convex over (a,b).

Theorem 5.12 ()

A function f : (a,b) — R that is differentiable on the open interval (a,b) is convex on (a,b) if and
only if its graph contains no points below any tangent drawn to it.

Theorem 5.13 (2nd Derivatives of Convex Functions)

Given a function f : (a,b) — R that is differentiable in its domain,
1. fis convex <= [’ is nondecreasing on (a,b) < f” >0 on (a,b)
2. f is strictly convex <= f’ is increasing on (a,b) <= f” > 0 on (a,b)
3. fis concave <= f’ is nonincreasing on (a,b) < f” <0 on (a,b)
4. f is strictly concave < [’ is decreasing on (a,b) < f"” <0 on (a,bd)

Definition 5.6 (Inflection Point)

Let f: £ — R be a function defined and differentiable on a neighborhood U (zg). If the function is
convex downward (resp. upward) on the set U~ (z9) = {z € U(xo) | # < x0} and convex upward (resp.
downward) on U™ (x¢) = {x € U(zg) | * > z0}, then the point

(.’170, f(xo))
is called a inflection point of the graph.
Y inflection
point
— — /¢ — < z
U™ (20) U™ (o)
- 1">0

Figure 21: Curve with changing concavity and inflection point at m

5.4 Theorems of Continuously Differentiable Functions

Now continuously differentiable functions are called smooth functions, denoted f € C*([a,b]).
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Theorem 5.14 (C! Implies Lipschitz)

A continuously differentiable function is Lipschitz continuous.

Proof.

Example 5.6 ()

Suppose f is twice-differentiable on R and that My, My, M are the least upper bounds of | f(x)|, | f/(z)],
and |f”(x)|. Then M} < 4MyMs,.

Theorem 5.15 (L’Hopital’s Rule)

Suppose f, g are continuously differentiable functions with f(c) = g(¢) = 0 and ¢’(¢) # 0. Then,

tim £ i (333)
r—cC g(x r—c g’(x)
Proof. We have
lim M — lim M (334)
aoe g(x)  a—e g(x) —g(c)
f@)—f(c)
=l @ (335)
r—c
lim,,_,, {&=1()
_ M e (336)
!/
~ i L) (337)
a~e g' ()
Example 5.7 ()
Let f(z) =sinz and g(z) = —0.52. Then, the function
f(x) sin x
h(z) = —= = 338
() g(x)  —0.5z (338)
is clearly undefined at x = 0. However, we can solve the limit using L’Hopital’s rule to get
. sin _ .o cosxz
Iy —se A g5 = 2 (339)

Therefore, h : R\0 — R can be completed to continuous function on all of R by defining the extension:

H(zx) = {h(;)’ f i 8 (340)
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5.5 Higher Order Derivatives

Note that the mean value theorem states that given differentiable f : [a,b] — R, there exists a ¢ € (a,b) s.t.

f) = f(a) + f'(e)(b - a) (341)

which is like a first order approximation. We would like to attain a second order approximation using the
fact that f is twice differentiable. To do this, recall how we proved the MVT. We subtracted a linear function

from f(z) to get a new function g(x) satisfying g(a) = g(b) = 0. We will do the same here.

Theorem 5.16 (Taylor’s Theorem of 2nd Order)

If f is twice differentiable on [a, b], then

16 = f(a) + £ O)0 ) + T30 — a2 (342

for some ¢ € (a,b). This is like a mean value theorem for the second order, where only the final term
is dependent on c.

Proof. Let us define the function

g(x) = f(x) = f(a) = f'(a)(z —a) — M(z — a)® (343)

where M was chosen such that g(b) = 0. Now notice that
gla) = f(a) = f(a) =0-0=0 (344)
g'(a)=f'(a) = f'(a) —0=0 (345)

and so by using Rolle’s theorem on g, there exists a ¢; € (a,b) s.t.
g'(e1)(b—a)=g(b) —g(a) =0-0=0 = g'(c1) =0 (346)
therefore, we can use Rolle’s theorem again on ¢’ and claim there exists a ¢ € (a,c;) s.t.
g"(c)(cr —a)=g'(c1) —g'(a) =0-0=0 = g¢"(c) =0 (347)

This gives us all we need. By taking the double derivative of g, we get

0=g"(c)= f'(c) —2M — M =1 HQ(C) (348)
and substituting this in gives
0= 4(b) = ) ~ f(a) - F (@6~ a) - L2106~ a? (349)

We can continue this process to get a nth order approximation.

Theorem 5.17 (Taylor’s Theorem)

Suppose f : [a,b] — R, is nth differentiable over [a,b] and f"+1) exists over (a,b). Then there exists a
c € (a,b) s.t.

") (g (n+1) (¢
f(o) = Zf ,( Jp—ap) + L2 . (,) (b—a)"*! (350)
—= Kk (n+1)!
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Where
g = (351)

Proof. We do the exact same process. Let us define

= M)
P(z) = kzz;) o (x —a)* (352)
and set
g(x) = f(z) = P(z) = M(z — a)"** (353)

where M was chosen such that g(b) = 0. Now notice that evaluating on g gives us

9(@) =g () = g"(a) = ... = ¢™(a) = 0 (354)

So by using Rolle’s theorem on g, there exists a ¢; € (a,b) s.t. ¢’(c1) = 0. Therefore we can use Rolle’s
theorem on ¢’ to show there exists a ¢y € (a,c¢;). We keep doing this until we show that there exists a
c € (a,b) s.t. g (c) = 0. With this, we can directly evaluating the nth derivative of g to find

(n)
0= g(n)(c) - f(n)(c) M — M = f '<C) (355)
n!
We can continue this pattern to get a quadratic approximation of f in the form
f(z) =co+ cr(x — x0) + ez — 20)* + o((z — :co)z) as r — xo (356)

As we have done in the previous subsection, we can derive (assuming continuity of f) ¢o = f(x0),c1 = f/(x0).
To derive what ¢y should be, we see that the equation above implies

f@) —co —er(z —mo) —o((w —20)%) _ f(x) —co — er(x — x0)

Co = (x — xO)Q (a: — xo)z — 0(1) (357)
which means fa) ( )
T Tr)—Cyp— C1\T — X9

2= i SRR @59

Extending this, if we are seeking a polynomial P, (zg;x) = co + ¢1(x — x0) + ... + cn(x — 20)™ such that

f@)=co+ci(z—zo)+...4cole —20)" +o((x —20)") as  — x (359)

we would find
co = lim f(z) (360)
¢ = Tim L8 =0 (361)

=T X — T
fl@) —co— c1(z — x0)

€2 = xllg:lg (x — x0)2 (362)

L= (363)
s f(x)_(CO+---+Cn—1(Z‘—xO)”—1)

tn = lim (@ — o) (364)

We formalize the order of these approximations by analyzing their error bound.

83/ [199]



Univariate Real Analysis Muchang Bahng Spring 2025

Definition 5.7 (nth Order Contact)

If f,g: E — R are continuous at point o and (f — g)(z) = o((z — z0)") as ¢ — o, then we say that
f and g have nth order contact at x(, or more precisely, contact of order at least n.

The following visual shows approximations g of an arbitrary function f that have Oth (left), 1st (middle),
and 2nd (right) order contact at x.

7\ 10 N f‘ / N f

$x) £x) £ 7

i '
'3 S s —

v
v
v

Lemma 5.5 (Leibniz’ Formula)

Let u(x) and v(x) be functions having derivatives up to order n inclusive on a common set E. Then,

()™ = 3 (”)um—m)U(m)
m

m=0

This means that given a polynomial P, (z) = co + c1(xz — xo) + ... + ¢n(z — x0)™, then

Pn(.lﬁ()) =0
P! (zg) = 1lc;
PT/L/(LL‘()) = 2!02

Lk)(xo) =0fork>n
and thus the polynomial P, (z) can be written as

1

1 1
1'PT(L1)(330)($ —x0) + EPT(?)(.I())(l‘ —20) 4.+ EPTS") (xo)(z — x0)"

Py (x) = P (x0) +

5.5.1 Taylor’s Formula

From the following results one may deduce that the more derivatives of two functions coincide (including the
derivative of the Oth order) at a point, the better these functions approximate each other in a neighborhood
of that point. Using Leibniz’s rule, approximations up to a certain degree at a point can be expressed as a
polynomial

p’rg’n) (:I:O)

Pn(I07I) = Pn(l‘o) —+ nl' . ol

(x — )"

where each coeflicient of the polynomial
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Definition 5.8 (Taylor Polynomial)

If a function f : F — R has derivatives of all orders n € N at a point z, the unique series

f'(20) ; S (o)

P, (zo;x) = f(x0) + 1 ol

(LC — {E()) + . (LU — IL‘())n

is the Taylor polynomial of order n of f(x) at xy. We can see that the derivatives of f and P,
coincide up to order n.

Definition 5.9 (Analytic Functions)

We cannot assume that the Taylor series of an infinitely differentiable function converges to the function
f within a neighborhood U (zg), nor can we assume that it converges at alll These types of "nice" func-
tions that have a Taylor approximation within the neighborhood of xg are called analytic functions
and can be written in the form

f (o)

fl(la!;o)(x—aro)—i—...—i- -

f(@) = flxo) +

(x —x0)" + 10 (205 )

where 7 is called the remainder term.

Example 5.8 (Infinitely Differentiable, Non-Analytic Function)

A example of a non-analytic function is

e~ if g #0
x) = 365
f(@) {O ifx=0 (365)
which looks like the following.
)
o
y=e =*
% % r
-1 1

Figure 22: Graph of the function y = e_ff. This function equals 0 at = 0 and approaches 1 as |z| approaches
infinity. One can verify that the derivative f* (0) = 0 for all k£ and hence the Taylor series is identically equal
to 0, while f(z) # 0 if z # 0.

The relationship between these different conditions is nicely summarized in the figure.
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f infinitely differentiable at xg <= Taylor series of f exists at xg

Taylor series converges at xg

Taylor series converges to f at xyp <= f is analytic

The following lemma proves why Taylor Polynomials are considered a "good" approximations to analytic
functions.

Lemma 5.6 (Infinitesimality of Functions with Vanishing Derivative up to Order n)

Given a function ¢ : E — R defined on a closed interval E with endpoint x, let its derivatives vanish
up to order n at xo. That is

c»0(550) = @/(LCQ) =...= gp(”)(;po) =0

Then, ¢ = o((z — 20)") as z — .

Proof. We prove by induction. For n = 1, the definition of differentiability states that
p(x) = plag) + ¢ (z — x0) + o(z — o) as = — zg
and so we have proved that
o(z0) = @' (20) =0 = ¢(x) = o(x — x0) as & — 7
Now, suppose this assertion has been proved for order n = k — 1 > 1. That is, we have shown that
o(zg)=...= ga(k_l)(xo) =0 = p= 0((3@ — Io)k_l) as T — Tg
Then we must show that this is valid for order n = k > 2. Assume that
p(z0) = ¢'(w0) = ... = oM (wg) = 0
We can see that this is equivalent to
(') (o) = ()P (@) = ... = (PN =0
and therefore by the induction assumption, we have
= 0((3: — xo)kfl) as T — xo
which means that we can put it in form
o

Uso that lim ¢(z) = lim a(z) =0

rT—rT0o T—T0

p(r) = a(z)(x — o)
From the mean value theorem and substituting what we have above, we get
p(z) = o(x) — (o) = ¢'({)(z — x0)
= ()¢ — 20)* !z — o)

where ¢ € (z9,x). However, this implies that | — x| < | — x¢|, and thus, as * — zg, { = x¢, which
then makes a(¢) — 0. Since

l(@)] < |a(Qfa — wol* |z — wo| = |a({)||z — zol*
This means that ¢(z) is bounded by function |o(¢)||z — zo|*, which is o((z — z0)*), and so
¢ =o((x — m0)*) as z — 20

By induction, this works for all orders n.
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Theorem 5.18 (Peano’s Form of the Remainder)

Given analytic function f : F — R, a point ¢ € F, and its nth order Taylor polynomial P, (x;x)
around zo, P, is a "good" approximation of f in the fact that its error term is o((z — z¢)™). That is,

f(@) = Pa(z0;2) + o((z — 0)") as  — g

This equation where r,,(z;z9) = o((x — z9)™) is called the Peano’s form of the remainder.

Proof. Since the Taylor polynomial P, (zo;x) is constructed from the requirement that its derivatives
up to order n inclusive must coincide with the corresponding derivatives of f at xg, it follows that

n(z032z0) = f*) (20) — P (20520) =0 for k=0,1,...,n

Using the previous lemma, a this means that r, (z;x0) = 0((m - xo)") as T — Tg.

Theorem 5.19 (Lagrange Form of the Remainder)

If f: F — R has derivatives of order n + 1 on the open interval with endpoints zg and x, then

/ (n)
f({L‘) = f(!l?()) + f (ITO) (.T — {E()) + ...+ f’ni('mo)(.f — fE())n + T‘n(:L';iC())
where (1)
ro(T;20) = f(n - 1()4') (z — o)™t

This form is called Taylor’s formula with the Lagrange form of the remainder. Furthermore,
this form says that if f(**1)(z) is bounded in a neighborhood of g, it also implies the formula

"z () (g
F@) = flwo) + L8 (o gy L) (0 — o))

1! n!

Therefore, we can use this boundedness of f("*1 to find the maximum error bound

|7 (5 20)|

of P, (x;x0).

Proof. Tt is a direct result from the lemma. This is actually a generalization of the mean value theorem
but for higher orders.

Corollary 5.4 (Table of Asymptotic Formulas for Elementary Functions)

We write the Maclaurin series (Taylor series around x = 0) for elementary functions. Note that these
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error terms are O(2" 1) (bounded compared to 1) and o(2") (infinitesimal compared to z™).

1 1 1
e”:1+—x+—x2+...+ﬁx"+0(m"+1)

1! 2!

_ 1, 1, (=)™ 5, _—
COSJ}—l—i{E —I—I:v —...+<2n)!x +O(x )
NN L 3, 15 (D)™ 5 _—
blnl‘—af—g.ﬁ +§$ —+m$ —|—O(.]j )

= ! 2 1 4 2n 2n+2

coshz =1+ 5ra” + 7z +...+(2n)!x + O(x*"*?)
i = L R 1 2n+1 2n+3
Slnhx*x+§l +§"E ++ml’ +O(.E )
1 1 —1)
In (1 +.’E) =T — 5552 + gl’g — ...+ !CC" + O((E"""l)
n

~1 ~1)...(a—n+1
(1+x)“:1+%x+7a(a2, T Gl n,(a ntl

" + O(m”*l)
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6 Riemann Integration

We would like to define an integral. We do this essentially by defining the Riemann sums for a particular
partition, which is a number in R. If we consider the set of all such Riemann sums, somehow bound them in
a way. Then we define the upper and lower Riemann sums, and then consider the set of all Riemann sums.
By doing so, we can construct two sets that are lower bounded and

Definition 6.1 (Partition)

Let [a,b] be an interval. A partition P of [a,b] is a set of P = {xq,...,z,} (note that this is finite!)
s.t.
a=20<21 < ...<2p_1<Tp=0 (366)

with Ax; = [x;_1, 2] for i =1,...,n.

In some textbooks, we also define a partition with distinguished points which simply is a partition P along
with some set of &;’s that land in each interval. This allows for extra degrees of freedom for choosing points.

The natural way to define the Riemann integral is as the limit of the finite Riemann sums as partitions
gets finer and finer. But we must be careful in saying what “finer” means. It is not simply as the number
of partitions n — oo, since this may lead to multiple subsequential values of convergence by increasing the
partition within different subsets of [a, b].

et s s
< < [ ]
0 4 0o 4 4
(a) (b) (c)
=00 | .
¢ ¢ ¢
0 4 0 4 0 4

(d) (e) ()

Figure 23: Upper (top row) and lower (bottom row) Riemann sums with refinement of partition. In the upper row,
the rightmost rectangle remains fixed while other rectangles become thinner. In the lower row, the leftmost rectangle
remains fixed while other rectangles become thinner.

An alternative way is to have the partitions all converge “uniformly” as in the maximum length of an interval
in a partition must go to 0.
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(a) A(P) = 2 (b) A(P) =1 (¢) A(P) =05
Figure 24: Approximating an integral with increasingly fine partitions
A cleaner way it to simply look at the set of all partitions along with the set of the corresponding upper and

lower Riemann sums, and then hope that they behave nicely with each other. This is the approach we will
take.

Definition 6.2 (Riemann Sums with Respect to Partition)
Let P be a partition of [a,b] and f : [a,b] — R be bounded. Then, the upper and lower Riemann
sum is defined N "
UP,f) =Y MAw;,  L(Pf)=Y miAx (367)
i=1 i=1
where
M; = sup f(z), m; = inf f(z) (368)
Ax; Az;
Y Y
f f
x x
a=xg 1 To T3 T4 b= xs a=xo T To T3 T4 b= s
D R R R P DA R R R 0
ASEl AI’Q Alﬂg AIE4 A$5 Al‘l AIQ Ailig AI4 AI’5
(a) Lower Riemann sum. (b) Upper Riemann sum.
Figure 25

Often times, we talk about a partition with distinguished points. It’s worth mentioning here, but in general,
this construction tends to be more tedious.
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Y
&)~ f
f(&4)
o ) 1)
T
i &1 &2 &3 &4 &
a=xg T T2 3 T4 b=ux5
e e g
Azq Az Azs Axy Azs

Figure 26: Riemann sum approximation using sample points & within each subinterval. This is known as a Rie-
mann sum of a partition with distinguished points. The Riemann sum is a mapping that takes in a partition with
distinguished points p = (P, &) on the closed interval [a,b] and outputs a number representing the total area of the
Riemann sums.

Definition 6.3 (Riemann Integral)

Now, given the same assumptions, the upper and lower Rimemann integrals of f(x) are defined

b b
/ fla)dz = U(P, ), / £(@)do = sup L(P. 1) (369)

If the upper and lower Riemann integrals are equal, then f is said to be Riemann integrable over
[a,b], denoted f € R([a,b])[]

“Where R(X) is the set of all Riemann integrable functions over X.

Great, so we’ve defined Riemann integrable functions, but it’s hard to determine whether a function is
Riemann integrable—and if so—what the value of the integral is. We will determine the first problem by
talking about sufficient conditions for Riemann integrability, and then introduce the fundamental theorem
of calculus to address computability.

Definition 6.4 (Refinement)

P* is a refinement of P if P C P*. If P, P, are two partitions, then their common refinement
Pr=P UP,.

P’ >
a = xg a1 2 3 b= x4
P// )
a = Yo nm Y U3 W Y b ys
P >
a = T Zo1 T1 11 T12 T2 T3 T31 T32 b=uxy

Figure 27: Partitions P’ and P” with their common refinement P
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Lemma 6.1 (Fundamental Lemma)

If P* is a refinement of P and f : [a,b] — R is bounded, then

L(P, f) < L(P",F) <U(P",F) <U(P, f) (370)

Proof. By induction on the number of points we add to P to get P*, we might as well assume that
P* = PU{z.}. So,

P={a=z0,21,...,Tpn-1,Zn} (371)
pP* = {a‘ = L0y L1y vy Li—15Liy Ly Li1y - - - 7xn717$n} (372)
(373)

Now let’s compute L(f, P*) — L(f, P). Since the only intervals affected are [z;,x;11], we have

L(f,P") = L(f,P)= inf f(z)(@.—a;)+ inf f(z)(@ip1—=)— inf fl@)(@ip—a) (374)

[zi,x] [@s,iy1] [zi,iq1]
=( inf f(z)— inf f(z))(z.—a)+( inf f(z)— inf (@1 —zs)
[zi,74] [, @i41] [, @i41] [®i,@i41]
>0 >0
(375)

which is therefore greater than 0.

Theorem 6.1 (Lower and Upper Integrals as Bounds of Each Other)

We claim

/a  fla)de < / ' fw) o (376)

Proof. Given Py, P, partitions, let P* = P; U P5 be their common refinement. Then, from the theorem
above,
L(Pa, f) < L(P*, f) SU(P*, f) <U(P, f) (377)

So taking the supremum over all partitions P, and fixing P; gives

b
/ (@) do = sup L(P2, f) < supU(Pr f) = U(P. ) (378)

Then taking the infimum over all partitions P; gives us

b b b
[ f(z)dx = i}}lf[ f(z)dx < ilglf U(P,f) = / f(z)dx (379)

where we note that the infimum does not affect the terms that do not depend on P;.

6.1 Conditions for Integrability

We have seen some bounds of the upper and lower integrals, and defined the Riemann integral. However,
checking Riemann integrability is quite tedious, since we have to take the supremum and infimum over all
possible partitions. The following theorem is extremely useful as it only requires us to find one partition
given some e. This is because that the Riemann integral, as complicated as the formula is, is still a limit of
a function. That means that we can apply the Cauchy criterion to it to determine convergence.
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Theorem 6.2 (Cauchy Criterion for Riemann Integrability)

f € R iff Ve > 0, there exists partition P such that U(P, f) — L(P, f) < e

Proof. We prove bidirectionally. The reverse implication is easy, but for the forward direction you must
use refinements.
1. («). Pick any partition P. Since

b b
P) < / f(z)de < / f(z)dz < U(f, P) (380)
This implies that
b

b
0< [ f(a)da —/ F@)de < U(f,P) = L(f,P) < ¢ (381)

and since any nonnegative number less than any positive number must be 0 (since there are no
infinitesimals in R), the LHS is 0, and the result is proven.
2. (—). f is Riemann integrable, so

b b
[ t@yde= [ f@)ds — wtU(fP) =supL(£,Q) (382)
a a Q

for partitions P, Q. So we can find P that gets really close to the infimum and same for ) close
to the supremum, i.e. there exists a P, @, such that

b b
</ f(x)d:c—i—; L(f,Q)>[ f(a:)dx—g (383)

Now take the common refinement P* = P U @, and so by the fundamental lemma,

/f Jdr — £ < L(f,Q) < L(J,P*) < U(f, P*) S U(f, P /f yar+ S (34)

which implies that 0 < U(f, P*) — L(f, P*) <

Note that a necessary condition of f being Riemann integrable is that f is bounded. In fact it is defined
that way. You may know that a sufficient condition of integrability is that it is continuous, but we can prove
something slightly weaker.

Definition 6.5 (Oscillation)

Given an interval I, the oscillation of f on [ is defined

osc(f) = sup(f) — inf(f) (385)

T I

Intuitively, a function f is Riemann integrable if we can make U(f, P) — L(f, P) as small as we wish. This
is the case if we can find a sufficiently refined partition P such that the oscillation on f on each interval is
small.

93/ 199



Univariate Real Analysis

Muchang Bahng

Spring 2025

Lemma 6.2 (Functions with Vanishing Osillations are Riemann Integrable)

then f is Riemann integrable.

Let f be a bounded on a closed interval [a, b]. If, for every e > 0, there exists a partition P such that

n—1

Z osc f<e

T, 1+1

(386)

Proof. Given € > 0, choose €¢/(b — a).
oscillation is bounded above by €/(b —

By assumption we can find a partition P in which the total
a). Therefore,

n—1 n—1
UP.f)=LPPf) =) sw flx)Az;—) inf flz)Az (387)
o lwiwiga] —o [#i,2it1]
n—1
=Y (sup f(z)— inf f(x)Az; (388)
=0 [@iwit] [zi,@i41]
n—1
< osc fAz; 389
; oo (389)
n—1 ¢
< Az, 390
- ; b_a"" (390)
¢ n—1
- YA (301)
i=0
:b_a(b—a)zg (392)
Here is a classic example of a non-integrable function.
Example 6.1 (Non-Integrability of the Dirichlet Function)
The Dirichlet function
1, f
D(ay= b forweQ (393)
0, forzeR\Q

o(f;P¢)

i=1

as A(P) =0

Zl Az; =1 while o(f; P, &")

on the interval [0, 1] is not integrable on that interval. For any partition P of [0, 1] we can find in each
interval A; both a rational point &, and an irrational point £’. Then, we can see that the lower and
upper Riemann sums do not necessarily converge to each other since

Zo Az; =0

(394)

Example 6.2 ()

Is there a function f that is discontinuous on a dense set of [0, 1] but still Riemann integrable?

With this, we can use the uniform continuity of continuous functions over a compact set to place a bound
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on the oscillation of each subinterval-—and thus a bound on the oscillation of the whole interval.

Theorem 6.3 (Continuous Functions are Riemann Integrable)

f continuous on [a,b] = f is Riemann integrable on [a, b].

Proof. If f is continuous, then by EVT it is bounded and uniformly continuous. Therefore we can take
the evenly-partitioned intervals of [a,b] and by uniform continuity, the oscillation tends to 0, and we
are done.

Perhaps more explicitly, we wish to show that for all € > 0, there exists partition P s.t. U(P, f) —
L(P, f) < e. Now let € > 0, and since it’s uniformly continuous, take § > 0 s.t.

€

STE) (395)

[z -yl < = [f(x) = fly)l <

Let N € N be so large that b_T“ < 4. Now consider the partition of [a,b] given by z; = a + %z for
0 < i < N. Intuitively, we want these subintervals to be so small that f will not deviate too widely.
So it better be the case that b;\,“ < 4. So, we have

UP,f)— L(P, ) = Zl s f)ae - Zl nt f)As 0
- Zzn;([ ?uil]f( )= uf | fl@)Aw (397)
N—-1
) = 2(b—a) (398)
(bfa) (b )<2<e (390)

We can actually make a stronger claim.

Corollary 6.1 (Integrability of Discontinuous Functions)

If a bounded function f on a closed interval [a,b] is continuous everywhere except at a finite set of
points, then f € Rla, b].

Corollary 6.2 (Integrability of Monotonic Functions)

A bounded monotonic function on a closed interval is integrable on that interval.

Theorem 6.4 (Continuous Compositions of Integrable Functions are Integrable)

Let f € R([a,b]). Assume ¢ : R — R is continuous. Then ¢ o f € R([a,d]).

Proof. Since f € R([a,b]) is bounded, let |f x)|
K = sup,¢_ps,a) ¢(t), which exists since [—M, M] i
continiuous on [—M, M].

Now let € > 0. Then there exists a § > 0s.t. [t —s| <d = |p(t) — ¢#(s)| < e. Consequently,

[f(2) = f)l <6 = |o(f(2)) — o(F(y))] < e (400)

< M for all z € [a,b] for some M > 0. Now let
is compact and ¢ is continuious. ¢ is also uniformly
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Since f € R([a,b]), we can find a partition P of [a,b] s.t.

n—1
U(f,P)—L(f,P) < § = Z( sup f—[ inf ]f)AfUi<§2 (401)
i=1 [zizit] Ti,Tit1
Let
A={i| sup f— inf f<d} (402)
[i2it] [zi,zit1]
B={i| sup f— inf f>d6} (403)
[i,@i41] i, Tit1]

Colloquially, we can think of A as the “good” intervals with small oscillations, and B as the “bad”
intervals with larger oscillations. So,

1 1 1
= < 252 =
ZAwZ 3 Z(SA% <3. [mi?"csf+1] Az; < 55 ) (404)
i€B i€B i€B
Now, compute
U(¢(f), P) = L(S(f)s P) = Y 05C(s, 1] (S(S) A (405)

= Z OSC[Ii’JEi+1](¢(f))Axi + Z OSC[$i7mi+l](¢(f))Axi (406)

i€A i€EB

In the good sets, if f(x)’s are within § of each other, the oscillation by uniform continuity implies
osc(¢(f)) < e. In the bad set, we have osc(y, .,.,](¢(f)) < 2K, so the above can be bounded by

"<e) Ami+ > 2KAw (407)
€A i€B

<e(b—a)+ 2K (408)

<elb—a+2K) (409)

where the penultimate step is due to ), 5 Ax; < 4.

However, contrary to intuition, f,g both integrable does not imply that g o g is integrable. We present a
counterexample.

Example 6.3 (Composition of Integrable Functions May Not be Integrable)

Consider the functions
1 z#0

sgnl(z) = {0 "

and the Riemann function
1 m
< =2 cQ,ged(m,n) =1
R(z)= {7 ™€ Q, ged(m,n)
0 zeR\Q
We can see that R is continuous at all irrational points and discontinuous at all rational points except
0, meaning that it is integrable (Q has measure zero). Then, the composition of these two functions is

precisely the Dirichlet function
D(z) = |sgn|oR

which is not integrable.
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6.2 Linearity over Functions and Intervals of the Integral

The most important properties of integrable functions is that it is a vector space, and the definite integral
is a linear map.

Theorem 6.5 (The Vector Space of Integrable Functions)

The set of Riemann integrable functions R[a,b] over closed interval [a,b] is a vector space. That is,
given f,g € R[a,b] and ¢ € R, then

1. (f+g) € Rla,b

2. (cf) € Rla,b]
which makes R([a, b]) into a R-vector space.

Proof. We prove the following properties of a vector space.
1. If c € R and f € R, then we wish to show that ¢f € R and [c¢f =c [ f.
(a) If ¢ > 0, then U(cf, P) = cU(f, P), and L(cf, P) = cL(f, P).
(b) If ¢ <0, then U(cf, P) = cL(f, P), and L(cf, P) = cU(f, P).
So, for all € > 0, we can find P s.t.

U(f,P)— L(f,P) < g = U(cf,P) — L(cf,P) < ¢ (410)

and so cf € R
2. If f17f2 € R, then

supg(f1 + f2) < supg(f1) +supg(f2)

infp(fi + f2) > infr(f1) +infp(f2) ()

osce(f1 + f2) < osce(f1) + osce(fz) since {

for all £ C [a,b], which implies that f; + fo € R.

Theorem 6.6 (Integral is a Linear Map)

For fixed a,b € R with a < b, f — f; f is a linear map on R([a,b]), i.e. a dual vector.

Proof. Removing the a,b for convenience, we first show that [ fi + fo = [ fi + [ f2. Let ¢ > 0. Then
there exists P; s.t.

U(fi, b)) < /fz- +e (412)
for i = 1,2. Define P = P, U P, as the common refinement. Then
U(fi, P) < /fz- +e (413)
and so
[ 54 2 UG+ 2P SUGLP) + U1, P) (414)
§2e+/f1+/f2 (415)

which implies [ f1 + fo < [ f1 + [ fo. To prove the other way, we see that

Jem+ems [+ [eh) (416)
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and so

—/f1+f2§—(/f1+/f2):>/f1+f22/f1+/f2 (417)

For scalar multiplication, we can do similarly.

Theorem 6.7 ()

Given that f € R([a,b]),
1. fg € Rla,b]
2. |f| € Rla, b]

3.1 [ 1< [1f11

%This will later allow us to define inner products on function spaces.

Proof. Listed.
1. A nice trick is that

fo=1((F+97 ~(F ~9)) (418)

which is in R([a,b]) since the sum, difference, and squaring functions are all continuous, and
hence the composition ¢(f,g) is Riemann integrable.
2. ¢(z) = |x| is continuous, so ¢(f) € R.

3. Note that if f > 0, then f;f > 0. Consider |f| — f and |f| + f, both > 0. They are integrable
as the image of f composed with continuous functions. So we have

Jinsszo0= [in=-[ (419)
[ini=s20= [in> [ (420)

and so taking the maximum of the right hand side gives [|f| > | [ f].

Example 6.4 ()

Consider the space X = C([a,b]). Define d: X x X — Ry as

b
d(f,g) = / (@) - g(x)|do (421)

Then d is a metric. Note that in R([a,b]), it is not a metric since d(f,g) =0 ;= f = g. Consider
two functions that are different in 1 point.

Theorem 6.8 (Restrictions of Integrable Functions)

The restriction of f in any [e,d] C [a, b], denoted f|[c g 1810 Rle, d)

Proof.
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Theorem 6.9 (Integral is Additive Over Intervals)

We have f;—i—fcb = f:

Proof. Let P be a partition of [a,b]. If ¢ € P, then we can view P = PyUP,. If ¢ ¢ P, consider PU{c}.
Then we have

U(f,P)=U(f,P1) +U(f,P2) (422)
U(f,P)=L(f, P1) + L(f, P2) (423)

So f € R([a,d]), f € R([e, b]).

6.3 Monotonicity, Mean Value Theorem, and Change of Basis

We now show and prove the method what we call "u-substitution" for definite integration.

Theorem 6.10 (Change of Variable)

If : [, 8] — [a,b] is a continuously differentiable mapping such that ¢(a) = a and ¢(8) = b, then
for any continuous function f(z) on [a,b] the function f(y(t))¢’(t) is continuous on the closed interval

[a, B] and

b B
/ f(x) dz = / o) (B dt

Proof. We prove a slightly weaker form of the theorem with the additional hypothesis that ¢ is strictly
monotonic.

Theorem 6.11 (Change of Variable, U-Substitution)

Let f € R([a,b]) and ¢ : [c,d] — [a,b] is a strictly increasing continuous function. Then, g(y) =

(f o) (y) € R([c,d]), and
d b
/ 9(y) dy = / f(z)dzx (424)

Proof.

Lemma 6.3 (Monotonicity of the Integral)

If a <b,f1, fo € Rla,b], and f1(x) < fa(z) for every x € [a, b], then

/fl dw</ fa(x (425)

This immediately implies that given constants m, M such that m < f(x) < M at each = € [a,b], we
have

b
m~(b—a)§/f(x)dx§M—(b—a) (426)

In particular, if 0 < f(x) on [a,b], then

0< /b f(z)dx (427)
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Theorem 6.12 (Mean Value Theorem of the Integral)

Given f € R[a,b], with

m= inf f(z), M= sup f(x) (428)
z€la,b] z€la,b]

Then
1. there exists a number y € [m, M] such that

b
/ f@)de=p-(b—a) (429)

2. Furthermore, if f € Cla,b], it there exists a point £ € [a, b] such that

/.ﬂ@dm:f@Xb—w (430)

Theorem 6.13 (Bonnet’s Formula)

If f,g € R[a,b] and g is a monotonic function on [a, b], then there exists a point £ € [a, b] such that

b ¢ b
. x)dz = g(a x)dx b x)dx 4
Lu9x> m)Aﬂ)-wULfU (431)

6.4 Fundamental Theorem of Calculus

Let f € Rla,b], and let us choose an x € [a,b] in order to construct the function

Flz) = / "y at (432)

which is called an integral with a variable upper limit. By doing this, we can “upgrade” a Riemann integrable
function f to a continuous function F.

Theorem 6.14 (First Fundamental Theorem of Calculus)

Define F': [a,b] — R by
Fz) = / () dt (433)

Then
1. F'is continuous.
2. If F is continuous at xg, then F'(xz) = f(xo).
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Figure 28: This theorem amazingly tells us that the rate at which the integral F is increasing at = (represented
by the increasing area under the curve of f) is equal to the value of f at the point x itself!

Proof. Listed.

1. Since f € R([a,b]), let M = sup,e(q 4 |f(2)] < +00. WLOG let z,y € [a,b] with x < y. Then,
we can use the “trick” by writing the difference of F' as an integral, which follows from linearity
of the integral over an interval. So, we have

y y

Fw) - rl=| [ 10| < [0 (434
y

S/Mdt:M\y—ﬂ (435)

So given € > 0, we can take § = ¢/M and F is continuous.
2. Now let’s claim

since if the limit exists, we can add f(xo) to both sides. The term in the limit is

1

1 /:o+h oyt - /axo Fe)di f(xo)h‘ < ;L‘ /:*h f(t)dt — hf(xo) (437)

Now we do a trick that is simple but powerful. Notice that hf(zg) = fzﬁh f

(z0) dt, so we can
T
join it with the integrall? So, ’

zo+h

= [ 0= s (439)
zo+h

<o [ 1rw - o) de (439)
1 zo+h

< h/xo ol | f(t) = f(xo)]| dt (440)

Note that the supremum term in the integral is just a number, so evaluating it and taking the
limit as h — 0 gives
sup  |f(t) — f(zg)] > 0ash —=0 (441)
t€lxo,z0+h]

since f is continuous at x.

%Elgindi talked about how simple tricks can go a long way, e.g. the guy who was a master of Cauchy-Schwarz inequality.
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Corollary 6.3 ()

Every bounded function f : [a,b] — R on the closed interval [a,b] and has only a finite number of
points of discontinuity has a primitive, and every primitive of f on [a,b] has the form

F(z) = /zf(t)dt+c

where ¢ is a constant.

Theorem 6.15 (Second Fundamental Theorem of Calculus)

Let f be a real-valued function on a closed interval [a,b] with F any primitive of f on [a,b]. If f is
Riemann-integrable (i.e. f bounded with finite points of Lebesgue measure zero) on [a, b], then

b
/ f(x)dz = F|' = F(b) - Fla) (442)

NANNINNNAY SNNNY
[ T SR SN ESNSNANANANNNA

Figure 29: Graphical illustration of the Fundamental Theorem of Calculus, showing how the definite integral
equals the difference of antiderivative values.

Proof. We already know that a bounded function on a closed interval having a finite number of
discontinuities is integrable, and by the corollary, we are guaranteed an existence of a primitive F(z)
of the function f on [a,b] with the form

Fla) = / " ft)dt+ e (443)
Setting = a, we find that ¢ = F(a), and so
Flz) = / " () dt + Fla) (444)
Evaluating F at & — b gives
/a Koy dt = F(3) - Fla) (445)

Now a direct application of the fundamental theorem of calculus is the integration by parts. By the product
rule of differentiation, we have

(u-0)(z) = (u" - 0)(2) + (u- ') (2) (446)

where by hypothesis, v’ - v,u - v' are continuous and hence integrable on [a,b]. Using the linearity of the
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integral and the 2nd fundamental theorem of calculus, we get

b b
(u-v)(x)|Z:/ (' - v)(z )d;z;+/ (u-v')(z)dx (447)

Theorem 6.16 (Integration by Parts)

Suppose F,G : [a,b] — R are differentiable, with F’ = f,G' = g € R([a,b]). Then

b . b
/ F(z)g(x)dr = F(x)G(x)|a = / f(z)G(x) dx (448)

Proof.

Theorem 6.17 (Integral Form of the Remainder)

If f: E — R has continuous derivatives up to order n on the closed interval [a,z], then Taylor’s
formula holds

"(a (n—1) a
f@) = f(a) + fl(! )(ar —a)+...+ f(n—l()')(x —a)" ' 4 1(a; ) (449)
where
R ] / FO @) (@ — 1) dt (450)

This form is called Taylor’s formula w1th the integral form of the remainder.

Proof. Using the 2nd fundamental theorem and the definite integration by parts formula, we can carry
out the following chain of transformations, assuming continuity and differentiability when needed.

1

(n— 1)!f("*1)(a)(:c - a)nil +rn_1(a;x)

=flla)(x—a)+...+

where 7,_1(a; x) is given by the integral formula mentioned.
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6.5 Integration over Paths and Rectifiable Curves

Definition 6.6 (Integration For Vector Valued Functions)

A function f : [a,b] — R? is Riemann integrable if f = (f1,..., f4) and each component f; : [a,b] — R
is in R([a,b]). The integral is defined

/abf(x)dx</abf1,...,/abfd) (451)

. o . 1/2
Now since the codomain is R?, we can use the Euclidean norm [v] := (3, v?) /

on it.

Theorem 6.18 ()

If f € R([a,b], RY), then |f| € R([a,b], R?) and

‘/f‘ < 17 (452)

Proof. 1f f € R(|a,b],R%), then f; € R([a,b]), and so

Ifl=7\/fi+...[2eR (453)

since x + 22 and x + /7 are continuous. Now consider the vector v = fab f. Then
b d d b
|v|:‘/ f’ = |v\2:ZU?=ZUj/ fi (454)
a =1 j=1 a
b d
= / > it (455)
a =1
b d
:/ Z’Ujfj (456)
a 1
b

- / (0, (1) (dt (457)

b
< / o] [ £(2)] dt (458)

and so . )
o2 < Jo] - / FOldt = o] < / (0]t (459)

Definition 6.7 (Curve)

A curve is a function v : [0,1] — R9.
1. If 4(0) = v(1), then it is a closed curve.
2. If v is injective, then it is called a simple curve.

Curves are usually continuous but does not have to be.
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Example 6.5 ()

The curve can have different parameterizations and/or image. For example, the two are different curves
with the image in S C R2.
~(t) = (cos(27t), sin(27t)) (460)
(t) = (cos(4nt), sin(4nt)) (461)

Definition 6.8 (Length of a Curve)

Given a curve v : [0,1] — R? and partition P of [0, 1], let

N

A(y, P) = |y(wi) = y(wi1))| (462)

=1

i.e. the sum of the straight line distances between the curves. The length of the curve is defined as

A(v) = sup A(v, P) (463)

If the length is finite, then we call this a rectifiable curve.

Example 6.6 ()

Consider the curve given by
1
~(t) = (t, tsin t) (464)

~ is continuous but y(t) < +oo.

For most continuous curves, this is not finite, but there is a sufficient condition for it to be finite.

Theorem 6.19 (C! Curves are Rectifiable)

If v:[0,1] — R? is continuously differentiable, then + is rectifiable, and

1
AG) = / /(1) dt (465)

n

Proof. Since ~/(t) is continuous, then |y/(t)] is continuous and |y/(¢)| is Riemann integrable. Now is P
is any partition of [0, 1], then
n t;
A P) = 3o h) 2l = 30| [ () ds
i=1 i=1 1/t

n t;
<> [ Wl (466)
i=17ti-1

- / Iy (s) ds (467)

(Fund. Thm. of Calc.)

So we’ve proved one inequality. Now we prove the other. Let ¢ > 0 be given. Then since ~'(¢) is
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continuous on compact [0, 1], it must be uniformly continuous on [0,1]. So 36 > 0 s.t.
ls—t|<d = |¥'(s) =7 )] <e (468)

Now take a partition P of [0,1] s.t. |t; —t;—1]| < d for each 1 <i < N. ...

W
< AWN’{I\ME-fIM

€ €6 € &, 6 € & €

a %, %L Xy Xe X5 Xy %7b

Figure 30: We can visualize this by partitioning the interval [a,b] into the intervals A;, each with point & € A,.
This would partition the path to I'(A;), each with points I'(§;), and at each point I'(§;), we can imagine the velocity
vector of the curve. By taking the magnitude of this vector IV(§;), we multiply it by the length of the interval Ax;
to get one rectangle, creating an approximation for one partition of the path.

Corollary 6.4 (Length of the Graph of a C! Function)

An immediate result of this formula is the formula for the length of a graph of a function f : [a,b] — R
in R?, by looking at the paramaterization t — (¢, f(t).

b
Av):/ JIF (P2 dt (469)

The question on the effect of paramaterization on the integral now arises.

Definition 6.9 (Admissible Change of Parameter)

The path T : [, 8] — R3 is obtained from T : [a,b] — R?® by an admissible change of parameter
if there exists a smooth mapping
T:[o,8] — [a,b]

such that T'(a) = a,T(8) = b, T'(7) > 0 (that is, the reparamaterization T' is monotonic) on [a, f],
and B
I'=ToT

The series of mappings can be represented with the following commutative diagram, where I, g =
[, 5] CR and I, = [a,b] C R.

Iaﬁ L) th

Xﬂg
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T | g Ted

Figure 31: Note that the points are labeled 0, 1,2, 3,4, 5 do not represent numerical values, but rather the order
in which the points are paramaterized. We can see from this ordering that 7" is monotonic.

Theorem 6.20 (Invariance of Arclength Integral under Admissible Change of Parameters)

If a smooth path T : [, 5] — R is obtained from a smooth path I : [a,b] — R® by an admissible
change of parameter, then the lengths of the two paths are equal. That is, a

b B8 B
/|F’(t)|dt:/ |F’(t)|dt5/ (0o T) (1) dt (470)

[e3

6.6 Improper Integrals

Due to some limitations of the Riemann integral, we cannot integrate over "singularities" where either the
interval or the function is unbounded. We develop the tools of improper integration to deal with this problem;
there are two types of improper integrals.

Definition 6.10 (Improper Integral of Unbounded Interval)

Suppose the function = +— f(x) is defined on the interval [a,400) and is integrable on every closed
interval [a, b] contained in that interval. Then, we call the following term

@y de= im [ fa)ds
/ /

b—+4o00
the improper Riemann integral of f over the interval [a, +0c0) and

b b
[ r@ar= i [ s

a

the improper Riemann integral of f over the interval (—oo,b].If the limit exists, then we say
that the integral converges and diverges otherwise.
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Definition 6.11 (Improper Integral of Unbounded Function)

Suppose the function 2 — f(x) is defined on the interval [a, B) and integrable on any closed interval
[a,b] C [a, B). Then, we call the following term

B . b
/a f(m)dxzbgrg_ j f(z)dzx

the improper Riemann integral of f over interval [a, B) and

a— A+

/Abf(x)d;v = lim /abf(:r)da:

the improper Riemann integral of f over interval (A,b].

For cohesiveness, we can combine these two definitions of improper integrals into the following one.

Definition 6.12 (Improper Integrals)

Let [a,w) be a finite or infinite interval and  — f(z) a function defined on that interval and integrable
over every closed interval [a,b] C [a,w). Then, by definition

/awf(:n)dle}i_l)rllu/abf(w)dx

if this limit exists as b — w,b € [a,w). Similarly, given the finite or infinite interval (w,b] with f
integrable over every closed interval [a,b] C (w, b], we have

b b
/ f(z)dr = lim f(x)dx

a—rw a

Note that if w € R and f € R[a,w], the improper integral is equivalent to the regular Riemann integral.
w b
/ flx)= 1im/ f(z)dz
a b—w J,

Lemma 6.4 (Properties of the Improper Integral)

Suppose f, g are functions defined on interval [a,w) (without loss of generality, we let w be the upper
limit of integration) and integrable on every closed interval [a,b] C [a,w). Suppose the improper

integrals
/ f(z)dz and / g(x)dx
are well-defined.

1. For any A1, A2 € R the function (A;f + A2g)(2) is integrable in the improper sense on [a,w) and

/aw(Alf' + Aeg)(z) dz = M\ /aw f(@) dz 4+ A /aw 9(z) da

/awf(x)dx:/:f(a;)dw—i—/cwf(x)dx

2. For any ¢ € [a,w),
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3. If p: [o,7) — [a,w) is a smooth strictly monotonic mapping with ¢(«) = a and ¢(8) — w as
B — v, then the improper integral of the function ¢t — (f o ) ()¢’ (t) over [a, ) exists and
2l
e

/ Cfyde = [ (Fopo o) i

Convergence of an Improper Integral

Note that by definition, an improper integral

w b
/ flx)de = 1im/ f(x)dx
a b—w J,
is a limit of the function .
F(b) E/ f(z)dx

as b — w. This means that we can use the Cauchy criterion to determine the convergence of this limit, and
hence, existence of this improper integral.

Theorem 6.21 (Cauchy Criterion for Convergence of an Improper Integral)

If the function z — f(z) is defined on the interval [a,w) and integrable on every closed interval
[a,b] C [a,w), then the integral
| sayis

converges if and only if for every ¢ > 0 there exists B € [a,w) such that the relation

ba
f(x) dz

by

<€

holds for any by, be € [a,w) satisfying B < b; and B < bs.

Proof. We have
ba ba by
i f(z)dx = f(z)dx — f(z)dx = F(by) — F(by)

and therefore the condition is simply the Cauchy criterion for the existence of a limit for the function
F(b) as b — w.

Definition 6.13 (Absolute Convergence of an Improper Integral)

/awf(w)dx

[ Vi) as

/ * \fl(z)

by

The improper integral
converges absolutely if the integral
converges. Clearly, the inequality

ba
f()dx

b1

<

implies that if an improper integral converges absolutely, then it converges.
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This study of absolute convergence reduces to the study of convergence of integrals of nonnegative functions.
The following lemma is useful in determining convergence of such functions.

Lemma 6.5 ()

Let there be a function f defined on interval [a,w) that is also integrable over every closed interval
[a,b] C [a,w). If f(x) >0 on [a,w), then the improper integral

/awf(ac)dx

b
F(b) z/ f(z)dx

exists if and only if the function

is bounded on [a,w).

Proof. 1t is clear that
/?ﬂ@mthf@
a b—w

If f(x) > 0, then the function F(b) is nondecreasing on [a,w) and therefore has a limit as b — w only
if it is bounded (since every monotonically increasing sequence that is bounded always converges).

This leads to the familiar integral test for convergence of a series.

Theorem 6.22 (Integral Test for Convergence of a Series)

If the function x — f(z) is defined on the interval [1, +00), nonnegative, nonincreasing, and integrable
on each closed interval [1,b] C [1,+00), then the series

S fm) =)+ 2+

and the integral
—+oo
/ flx)dzx

either both converge or both diverge.

We can use the comparison test analogue to determine convergence of improper integrals.

Theorem 6.23 (Comparison Test for Convergence of Improper Integrals)

Suppose the functions f(z), g(z) are defined on the interval [a,w) and integrable on any closed interval
[a,b] C [a,w). If
0 < f(z) < g(x)

on [a,w), then

/ g(x) dx converges — / f(z) dx converges

/awf(m)d;v < /awg(w)dx
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holds. Also,
/ f(x) dx diverges = / g(z) dx diverges

Improper Integrals with Multiple Singularities

Definition 6.14 (Improper Integral with Both Limits as Singularities)

Given singularities w1, ws, the improper integral is defined

- f(z)dx = Cf(x)dx—i— - f(z)dz

w1 w1 c

where ¢ is an arbitrary point in (wq, wa).

Example 6.7 (Gaussian Integral)

The integral

+o0 2
/ e dr =7
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7 Sequences of Functions

Let us slightly extend the notion of limits of sequences with functions.

Definition 7.1 (Pointwise Convergence)

Let E CR and f, f, : E — R. We say that f,, — f pointwise if

lim fo(x) = f(z) forallz € E (471)

n—oo

The next question to ask is whether properties of functions are preserved under the limit operations. For
example, if the f,’s are continuous, differentiable, or Riemann integrable, is the same true for the limit
function f? What are the relations between f and f’ or [ f, and [ f? To say that a function f is
continuous at a point r means

lim (1) = f(z) (472)
For functions, the analogous result is whether
lim lim f,(¢) = lim lim f,(¢) (473)

t—x n—o00 n—oo t—x

Is this true? Let’s look at a few examples.

Example 7.1 (Double Sequence May be Swappable)

1

m+n)7n77leN. We can compute the limit as both n,m — +o00 in many

Consider the double sequence (
ways.

1. We can first set m — 400, then n — +oo.

2. We can first set n — +oo, then m — +4o0.

3. We might want to take n twice as slow as m.

All of these converge to the same value of 0, so there is no problem.

Example 7.2 ()

Let f,(z) = x/n. Then f,, — 0 pointwise, where 0 is the 0 function. This is true since for every fixed
x, we can set n so large that z/n < e for any e.

In this case, we are considering a double sequence in R. However, if we fix one value, then it becomes a
sequence of functions, and we already have established that classes of functions form a vector space. In
general, interchanging limits are not allowed.

Example 7.3 (Cannot Exchange Limits Under Pointwise Convergence)

)
m+n/m,n’

1. If m >> n, i.e. take the sequence of values (10*, k), then this will approach 1.
2. If n >> m, i.e take the sequence of values (k, 10%), then this will approach 0.
3. In intermediate cases, you can in fact get any number between 0 and 1.

Consider the slightly different sequence (

Therefore, in general, the limits are not equal. Even worse, the properties of these functions are violated.
To get equality, we need to make a stronger assumption than simple existence of limits.
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Example 7.4 (Pointwise Limit of Continuous Functions is not Continuous)

Let fn(x) :[0,1] — R defined f,(z) = ™. Then,

0<z<l = 2" —=0asn—o0 (474)
r=1= 2" > lasn— o (475)
So,
N 0 ifax<l
fo— [f(x) = ) (476)
1 ifx=1
Note that all f,, are continuous but f* is discontinuous since
lim lim fo(2) =07 1= lim lim f,(z) (477)
Example 7.5 (Pointwise Series Sum of Continuous Functions is not Continuous)
Consider
- 478
fn(@) = m (478)
and let
o0 oo 2
x
— ' (2) = S 479
10) =3 1) = ¥ (479)

Since f,,(0) = 0, we have f(0) = 0. For a # 0, the series is a convergent geometric series with sum
1 + 2. Therefore,
0 ifx=0
x) = 480
/(@) {1+x2 ifx#£0 (480)

Therefore the sum of a convergent series of continuous functions may not be continuous.

Example 7.6 (Cannot Exchange Integrals and Limits Under Pointwise Convergence)

Consider the function f, : [0,1] — R defined by f,(0) = fn.(1/n) = 0 and f,(1/2n) = 2n, with
everything else linearly interpolated. Then f, — 0 since it is constantly 0 at 0 and for every = > 0,
there exists 1/N < z and so f,(z) =0 for all n > N. However, fol fulz)dr =1, so

1

lim [ fo(z)dz # / 1 lim f,(z)dz (481)
0 0 n—oo

n—oo

So integration is not continuous with respect to the topology induced by pointwise convergence.

The problem is not in the construction of the limits or the integral, but with the pointwise convergence.
With pointwise convergence,

1. we cannot exchange two limits, which implies limit of derivatives may not equal to the derivative of
the limit

2. limits do not preserve continuity
3. cannot exchange integrals and limits

4. cannot exchange sums
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Example 7.7 ()

Review.

(1 - i)n —e ! (482)

So now the motivation is to find properties of these sequences of functions that do allow these manipulations.

7.1 Uniform Convergence

The problem seems to be that certain points may converge at a much slower rate than others. Therefore,
we want to impose some sort of uniform condition, which says that the values of the function at every point
must converge.

Definition 7.2 (Uniform Convergence)

Given f,, : E — R of bounded functions, (f,) is said to converge uniformly to a bounded function
[+ E— Rif Ve > 0, there exists N € N s.t.

n>N = |fo(r) — f(z)| <ecforallz € E (483)

the “for all x € E” is the uniform part, which is similar to uniform continuity.

Theorem 7.1 (Uniform Convergence iff Supremum of Difference Converges to 0)

This is an immediate consequence of the definition.

fn — f uniformly on £ <= lim sup|f,(z) — f(z)] =0 (484)

n—oo z€E

Proof. We can prove this with a bunch of iff statements. Let f, — f uniformly, then this is equivalent
to Ve > 0, AN € N s.t. n > N implies

|fu(z) — f(n)|<e VzeFE (485)

< M, sup|fn(z) — f(z)] <€ (486)
z€E

< M, —>0asn—0 (487)

which implies that M,, — 0 as n — 0.

Generally, to prove uniform convergence, you will need to find that |f,(z) — f(z)| is bounded by something
that is independent of x, and it goes to 0 as n — oo. Here is an equivalent condition.

Definition 7.3 (Uniformly Cauchy)

A sequence f, : E — R is called uniformly Cauchy if Ve > 0, there exists N € N s.t. Vn,m > N,

|[frn(x) — fm(x)]| <eforallz € E (488)
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Lemma 7.1 (Cauchy Criterion of Uniform Convergence)

(fn) converges uniformly iff (f,,) is uniformly Cauchy.

Proof. We prove bidirectionally.
1. (=). Suppose (f,) converges uniformly on F, and let f be the limit function. Then there exists

N € N s.t. c
n>N = |fn(x)—f(x)|<§for alz e F (489)
Therefore,
nm 2N = |fale) = @) < |fale) = J@)] + /@) = ful@)| < 5+ 5 =€ (490)
forall z € E.

2. (+). Suppose the uniform Cauchy criterion holds. For every = € E, the sequence (fn(x))n
converges as a Cauchy sequence in R. Call this limit f(z). Thus the sequence (f,) converges
pointwise to f.

Now let € > 0. Then, by uniform Cauchy, 3N € N s.t.

n,m>N = |fn(z) — fm(z)|<e VzeE (491)
Now, if we fix % we know that
m>N = [fal@) — fm(@)] < (192)

Now we can take the limit as m — oo, and therefore the limit of the LHS must be bounded by
that of the RHS.
W}LmOO [fn(z) = fn(2)] = | fu(z) — f(z)| < € (493)

Now this is true for all n > N, which basically is the definition of convergenceﬂ

%This is a classic trick used to convert Cauchy convergence to regular convergence. What we want to do is that since
given some X, the rest of the points x,, must also be close to z,, so the limit of the x,, must also be close to z,, which
is basically the definition of convergence.

bIf you are dissatisfied with the <, just set /2 to get strictly less than.

The wrong proof (that uniformly Cauchy implies uniform convergence) that I had in my first attempt was
that I tried to directly bound the distances using some variant of the triangle inequality, like

[fn(2) = fn(@)] < [fnl2) = F(@)] + [ (@) = frn(2)] (494)

However, this doesn’t really help since this is an wupper bound. Perhaps we can use the reverse triangle
inequality.

fn ()] = [fm (2)]] < [fn(2) = fin ()] (495)
but again, this inequality lacks f(z) entirely.

Example 7.8 ()

We have uniform convergence

sin(e"z) — 0 since sin("z) <—=0 (496)

n
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Example 7.9 ()

fn(x) = 2™ does not converge uniformly to any function in [0, 1]. It suffices to find a sequence (y,) C
[0,1] s.t. |fn(yn) — f(yn)] /0 as n — oo. Take y, =1 — % Then f,(yn) — % £ 0, but f(y,) — 1.

Example 7.10 ()

The triangle functions do not converge uniformly since f, is unbounded, i.e. fn(ﬁ) = 2n, while
fn(£) =0. So we can construct two sequences that

(1/2n) = o0, (1/n) — 0 as n — oo (497)

Lemma 7.2 (Uniform Convergence Implies Pointwise Convergence)

Uniform convergence implies pointwise convergence.

Proof. Say f,, — f uniformly. Then for every € > 0, there exists a N € N s.t.
n>N = |fo(z) — f(z)| <eforallz € E (498)

So just fix a point x, take any € > 0, and we have our d due to uniform convergence.

Theorem 7.2 (Weierstrass M-Test)

Suppose (f,) is a sequence of functions on E, and suppose
|fr(x)] < M, forall x € E (499)

for each n € N. Then if ) M, converges, > f, converges uniformly.

Proof. 1f 3~ M,, converges, then for arbitrary e > 0, we have

Zfi(iv)

provided n,m € N are large enough. Therefore this is uniformly Cauchy, and so uniformly convergent.

m

<y M, <e (500)

Here is my wrong first attempt for a proof. Assume that Y, M) converges, and we wish to show that

Ve > 0, dN € N s.t.
> ful@)

k=n-+1

n

ka(l’) - Z.fk(x)

k=1 k=1

n>N = = <e (501)

not allowed

The problem is that in our statement, we are assuming that we can actually subtract a finite term Y ;_; fi(z)
from a potentially divergent one: 2211 fx(x). Therefore, we are assuming that this is convergent in the
first place! This is exactly why we want to work with Cauchy sequences, which doesn’t carry this kind of
assumption, and so the sum from i = n to m is guaranteed to be finite.

After this, the rest of the steps are fine, since I use the fact that absolutely convergent series are also
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convergent, and so

S h@ s S @i Y M (502)
k=n-+1 k=n+1 k=n+1

Example 7.11 (Converse of Weierstrass M-test Not True)

The converse is clearly not true, since we can just take any uniformly convergent bounded sequence
and set M,, — +00 as n — 0.

The final theorem that establishes uniform convergence is the following. This is again where functions can
behave nicely over compact sets.

Theorem 7.3 (Dini’s Theorem)

Suppose K is compact, and
1. (fn) is a sequence of continuous functions on K.
2. (fn) converges pointwise to a continuous function f on K.
3. fu() > fug1(z) for all z € K,n € N.

Then f,, — f uniformly on K.

Proof.

7.2 Limits of Uniformly Convergent Functions

Now we will formalize and prove the manipulations that are unlocked by uniform convergence.

Theorem 7.4 (Limits are Swappable)

Suppose f,, — f uniformly over a set E of a metric space. Let € E’, and suppose that lim;_,,. f,,(¢t) =
A,, for all n. Then,
1. (Ay) converges, and
2. we have
lim f(t) = gr;o A, < lim lim f,(¢t) = lim lim f,(¢) (503)

t—x n t—x n—o00 n—oo t—x

Proof. Let € > 0, then by uniform continuity, there exists a N € N s.t.
n,m >N = |fo(t) — fm(t)] <e (504)
Now let ¢ — x, and since the limit exists, we have
n,m>N = |A, — An| <e€ (505)

and so (A,) is by definition a Cauchy sequence in R. Say that A,, — A.
Now we wish to prove that lim;_,, f(t) = A. Take € > 0, and we wish to show that there exists some
6 > 0 s.t.

[t—z|<d = |f(t)—A|<e (506)

Note that by the triangle inequality
|f(f) - A| < |f(t) - .f’rb(t)‘ + |f’rb(t) - An| + |An - AI (507)

Therefore, we can take 5 > 0.
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1. By uniform convergence of f,, — f, there exists a N; € N s.t.
n> N, = |falz) — f(z)] < g for all z € (508)
2. By convergence of A,, — A, there exists a Ny € N s.t.
n>N, = |An—A|<§ (509)
3. Therefore, choose N = max{Ny, N2}, and for this N, by convergence of f,(t) — A, we can
choose a § s.t. .
o =t <6 = |falt) = An] < 3 (510)

This essentially bounds the three values, and so by choosing the § in (3), we get

|t—x|<5:>|f(t)—A\§§+§+§:e (511)

Corollary 7.1 (Uniform Limits of Continuous Functions are Continuous)

If (fn) is a sequence of continuous functions on F, and if f,, — f uniformly on F, then f is continuous
on F.

Proof. Using the sequential definition of continuity, we claim that lim; ., f(t) = f(x). We know from
the previous theorem that

23 a2, Jnlh) = g, Jig /8 (512
N——
=1 =fn(@)

where the LHS follows from (f,,) being uniformly convergent, which implies pointwise convergence, and
the RHS follows from f,, being continuous.

However, the converse is not true. A sequence of continuous functions may converge to a continuous function
though not uniformly. Now let’s move onto integration.

Theorem 7.5 (Limits of Integrals are Integrals of Uniform Limits)

Let (f,) be a sequence of Riemann integrable functions on [a,b]. If f, — f uniformly on [a,b], then
f € R([a,b]) and
b b b
lim [ fu(z)dz =/ f(z)de = / lim f,(x)dx (513)
a a n—oo

n—oQ a

Proof. Let €, = sup|fn(x) — f(x)| with the supremum taken over a < xz < b. Then,
fnfengfgfn‘i’en (514)

so the upper and lower integrals of f satisfy
b b b b
[=edes [ faydes [ f@ydo< [ (hve)ds (515)

Hence, we have

b b
OS/ f(:v)dx—/ f(z)dx < 2€,(b—a) (516)

and taking n — oo sets €, — 0.
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Corollary 7.2 (Series Function May be Integrated Term by Term)

If f,, € R([a,b]), and f is defined
f(x) = fal@) (517)
n=1

with the series converging uniformly on [a, b], then

/ab f(z)dx = i /ab fn(z)dx (518)

n=1

Now we move onto differentiation.

Theorem 7.6 (Limits of Derivatives)

Suppose (f,) is a sequence of differentiable functions on [a, b]. If
1. there exists some xg € [a,b] such that (f,(zo))n converges, and
2. (£,) = fon [a,b],

Then (f,,) converges uniformly to a function f, with

f'(x) = lim f(x) (519)

n—oo

@At this point, f’ is just notation since f isn’t even defined.

Proof. Choose N € N s.t. for n,m > N, the following hold

/ €

Fnla) = fml@o)l < 50 10 = £ < 55—

(520)

which is possible due to convergence of f,,(x¢) and uniform convergence of the derivative. Then applying
the mean value theorem to the function (f,, — f,,) gives

|fn(“L) - fm(x) - fn(t) + fm(t)| = (fn - fm)/(C)|IC - t| (521)
for any z,t € [a,b] and ¢ € (z,t). However, (f, — fm)’ is bounded, so

|z — tle

€
_ — < < —
(@) = Ful@) = 1u(0) + )] < 55 < 5 (522)
and therefore we can use the triangle inequality to get
‘f’rb(x) - fm(x)‘ < ‘fn(x) - f’m(x) - f’n(mO) + f'rn(l‘O)| + |fn(x0) - fm(mO)‘ (523)
€ €
< — —_ =
<3 + 5 =€ (524)
and so f, is uniformly Cauchy <= (f,) converges uniformly.
To show the equality of the limit, we fix a point = € [a, b] and define
fa(t) — fu(2) f(t) — f(=z)
pult) = PO g = HO S (525)
for t € (a,b),t # x. Then,
. _pl
lim 6,(1) = fi () (526)
and we can see from the above inequality that
€
[on(t) — o(t)] < (527)

2(b—a)
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for n,m > N. So we can conclude

o(t) = lim @, (t) (528)

n—oo

Proof. Here is an alternative shorter proof of the equality (but not uniform convergence of f,!) where
we assume f,, € C*([a,b]). Let’s call the limit of f/ to be g to avoid confusion. We know that since f/,
is continuous, it’s integrable and by the fundamental theorem of calculus we have

ful@) — ul0) = / " f) de (529)

Since f! — g uniformly and f/ € C?, g is continuous and so we can define the function

f(x) = F(0) + / "t de (530)

But we can see that by uniform convergence, we can swap integrals

f(@)— £(0) = / "ty dt (531)

= / ’ lim f](t)dt (532)
0 n—oo

= lim ' L) dt (533)
n—oo 0

= nhango falz) — fn(0) (534)

which implies that f(x) — f(0) = lim, 00 fn(z) — fn(0) and so f(z) = lim,— fn(x). But since f’ is
continuous, the function f defined above is differentiable, with derivative f’(z) to be whatever function
is in the integral, i.e. g(x). So

fl(@) =g(z) = lim [ (x) (535)

n—oo

7.3 Equicontinuous Families

Note that uniform convergence may not be met due to some counterexamples. In general, there are 3 ways
that uniform convergence can fail to happen.

1. Concentration. Note that ™ as n — oo almost converges except at one point.
2. Translation. Consider f,(x) = sin(x —n). Then by increasing n we are shifting it to +oo.

3. Oscillation. Consider f,(x) = sin(nz). As n increases the function oscillates widely. This is sort of
like the worst [l

We would like uniform convergence, so we want conditions to avoid lack of uniform convergence. Keep
in mind to counterexamples. To avoid translation, work with compact space, or if not compact, have the
functions decay uniformly. To avoid oscillation, we can bound the derivative, which is a restriction on
each function |f/(x)] < M. The Cauchy criterion is too much. To avoid going to infinity, just bound f:
|[frn(x)] < M for allm € Nz € X.

The bounding of derivatives can be a bit strong. We aren’t always working with differentiable functions, so
we introduce a similar concept.

9Tt turns out that this is the same as (2) under the Fourier transform.
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Definition 7.4 (Equicontinuous Family)

A family of functions F on F is said to be equicontinuous if Ve > 0 there exists a § > 0 s.t.

[T -yl <0 = [f(x) - f(y)] <e (536)

forallz,y € E, f € F.

So this doesn’t even depend on f. You can think of this as uniformly continuous for a class of functions that
doesn’t depend on f. The first class of equicontinuous functions you should know are those with bounded
derivatives.

Lemma 7.3 (Functions with Bounded Derivatives Are Equicontinuous)

Fix M > 0. Then
Fo=A{f:0,1] > R[[f(z)] < M} (537)

is an equicontinuous family.

Proof. For any f € F, the MVT |f(z) — f(y)| = |f'(¢)(x — y)]| for some ¢ € (x,y). But since f'(c) is
bounded by M, take 6 = ¢/M.

Example 7.12 ()

F = {sin(nz) }nen is not equicontinuous on [0, 1] since

sin (n%) — sin (nZ)' =1 (538)

for all n. So setting z,, = 5-,yn = =, we have d(xn,y,) — 0 while d(f(z,), f(yn)) > 1. So this is not
equicontinuous.

Definition 7.5 (Pointwise Bounded)

Given a sequence of functions (f,,) over E, we say the sequence is pointwise bounded if it satisfies
each of the equivalent conditions.

1. There exists some function ¢(x) s.t. |fn(z)| < ¢(z) for all z € E;n € N.

2. For every z € E, the sequence (|f,(x)])n is bounded.

Definition 7.6 (Uniformly Bounded)

Given a sequence of functions (f,,) over E, we say the sequence is uniformly bounded if there exists
some M s.t. |fn(z)] < M for all x € E;n € N.

Therefore, uniform boundedness is stronger, since this bound doesn’t even depend on .

Lemma 7.4 (Uniform Boundedness Implies Pointwise Boundedness)

Uniform boundedness implies pointwise boundedness.
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Proof. Take ¢(x) = M.

We may wonder what the conditions are for the converse. The following theorem gives us those conditions.

Theorem 7.7 (Conditions for Uniform Boundedness)

If K is compact, with

Then {f,} is uniformly bounded.

1. f, is continuous on K for each n
2. f, pointwise bounded.
3. fn equicontinuous on K

Proof.

If (f,,) is pointwise bounded on F and E is a countable subset of E, it is always possible to find a subsequence

(f
1

2.

3

S

) that converges for every « € F7. As an intuitive example, suppose
. (fan(q1)) converges

(f3n
- (fon

. (f7n ((J4)) converges

(g2)) converges
(

q3)) converges

So combining the first two, we have that (fs,(g;)) converges for ¢ = 1,2. Continuing on, (f30,,(g;)) converges
for ¢ = 1,2,3. But you can’t do this infinitely. So if you want a single subsequence s.t. all the sequences
converges, we can do

T2, fo, 305 f2105 f23105 - - - (539)

Since

1.
2.
3.

if you take out fo, it is a subsequence of (f3,) which converges for ¢s, and
if you also take out fg, it is a subsequence of (fg,) which converges for ¢, g2, and

if you also take out f3g, it is a subsequence of (f3o,,) which converges for g1, g2, g3

S0 fn, (i) converges for all i. Now let’s formalize this argument.

Lemma 7.5 ()

Let (f,) be a sequence of functions on [0, 1] that’s uniformly bounded. Let {¢m}5°_; be a countable
set of numbers in [0,1]. Then 3 a subsequence (f,,) for which f,, (¢m) is convergent for all m € N.

Proof. Intuitively, if we find a sequence of functions, we want to look at each point—say 1—and look
at (fn(1))n. (fn(1)) is bounded and so contains a convergent subsequence (fy, (1))x. Now with this
subsequence, we look at (f,, (0))r which is bounded and therefore (fnkj (0)); converges, and (fru, (1)),
must converge as a subsequence of convergent (f,, (1))x. Now do this for all ¢’s, and we get a single
subsequence that converges for all of them.

For ease of notation, let f;; denote the jth term of the ith subsequence. Then there exists (fr,1)n s.t.
(fn.1(q1))n converges. Take a subsequence fy, 2 of fr1 s.t. (frn2(g2))n converges. Given (fy x)n, find a
subsequence of it, called (fy, x+1)n for which (fy k+1(qk+1))n converges. Now (f, n)n is a subsequence
of the original one (nth term of nth subsequence) for which (f;,), is eventually a subsequence of
(fn,j)n for any fixed j.
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Now the Ascolli’s theorem gives us conditions to get rid of translation, oscillations, and infinity. To prove the
second statement, we will need a lemma, so we state it now, along with providing a neat trick for constructing
sequences.

Theorem 7.8 (Arzela-Ascolli’s Theorem)

We claim the following.
1. If a sequence of continuous functions f, : [0,1] — R (or more generally, over a compact set)
converges uniformly, then they form an equicontinuous family.
2. If a sequence of functions f, : [0,1] — R is equicontinuous and so uniformly bounded, then it has
a uniformly convergent subsequence.

Proof. Assume (f,) is uniformly convergent. Then it is uniformly Cauchy. To prove equicontinuity,
given a € > 0 we need to find a 6 > 0 for all the functions. Since f,, is uniformly Cauchy, IN s.t. if
n > N, then

sup |fn(z) — fn(2)] <€/3 (540)
z€[0,1]
Consider the first N functions fi, ..., fy. They are all continuous on a compact set and so uniformly

continuous. So for each f;, there exists a §; s.t. |z —y| < § = |fi(x) — fi(y)] < €. So take
§ = g min; d; > 0. So for all 1 <i < N,

lr —yl <0 = |fi(z) — fi(y)] <€/3 (541)
and for n > N,
|fa(z) = fa()] < [fulz) — fn(2) + fn (@) — In(y) + n(y) — faly) <e (542)
<e/3 <e/3 <e/3

For the second part, let £ = QN [0,1]. It is a good thing that E is dense in [0,1]. Let (f,) be an
equicontinuous on [0, 1] and uniformly bounded. Due to the lemma, there exists a (fy, )r so that the
fn, converges pointwise on F (since F is countable). We will now use equicontinuity of (f,, )x to prove
it’s uniformly Cauchy on [0, 1], which will imply that it’s convergent. To make notation easier we will
call f,, = gi. Let € > 0. Since g, is equicontinuous, 3§ > 0 s.t.

[z =yl <0 = |gr(z) —gr(y)] <e (543)

Since E = {q1,qo, ...} is dense in [0, 1], {Bs(q;)}32, is an open cover of [0, 1]. Since [0, 1] is compact,
there exists a finite subcover

N
0,1 ¢ U Bs(as,) (544)
j=1
Since (gk(qij)) converges for each 1 < j < N, there exists M; s.t.
n,m>M; = |gn(Qi_,- - gm(qij))| <e€ (545)
Take M = max; M;. Now if m,n > M, given = € [0,1] J¢; with 1 <i < N so that x € Bs(g;), and so

19n (%) = gm (2)] < |gn(2) — gn (@) + |gn(@i) — gm(@i)| + [gm (@) — gm(x)] < 3¢ (546)

where the first and third inequalities come from equicontinuity, and the middle come from convergence
on E. So by setting §/3 we are done.
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Example 7.13 ()

An important application is in the existence of minimizers/maximizers for optimization problems in-
volving functions. To minimize

J(f) = /0 VIt ) dt (547)

is the length of the curve of f : [0,1] — R. To minimize the length of the curve, we must search over a
set of functions. So to use EVT, you must know what the compact subsets of functions.

Ascolli’s theorem exactly characterizes these compact subsets. These compact subsets of function spaces is
the closure of equicontinuous functions.

Corollary 7.3 ()

A set of functions K C C([0,1]) is compact iff it is, under the supremum metric sup, ¢ 1,
1. closed
2. bounded
3. equicontinuous

The first two are needed for finite dimensions. The third condition is for function spaces.

Theorem 7.9 (Contraction Mapping Theorem)

Let (X, d) be a metric space with J : X — X and let there exist ¢ < 1 s.t.
d(J(x),J(y)) < cd(x,y) for all z,y € X (548)

*

Then there exists a unique z* € X s.t. J(z*) = a*.

7.4 The Stone-Weierstrass Theorem

The Stone-Weierstrass theorem is a bit more general, while the Weierstrass approximation theorem is for
polynomials.

Theorem 7.10 (Weierstrass Approximation Theorem)

If f € C([a,b]), there exists a sequence of polynomials (p,) that converges uniformly to f.

Lemma 7.6 ()

If f:]0,1] — R is continuously differentiable on [0, 1], then
1
lim f(z)sin(nz)dx =0 (549)

n—oo 0

This means that as n — oo, the integral becomes small.

Proof.

Now we prove a stronger version.
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Theorem 7.11 ()

For every f € C([0,1)]),
1
lim / f(z) sin(nz) dz =0 (550)
n— oo 0

Proof. Let € > 0. Then by the Weierstrass approximation theorem[? there exists a polynomial p :
[0,1] — R for which

sup [p(z) — f(x)] <€ (551)
z€[0,1]

Now consider

’ / f(z) sin(nz) dx ‘ / )sin(nx) dx| + "/Ol(f(x) — p(x)) sin(nx) dx (552)
‘ / ) sin(na) dz| + € (553)
< 2 (554)

where the first inequality is the triangle inequality, the second is due to the Weierstrass approximation
theorem, and the third is due to p(z) being infinitely differentiable, and so by the lemma above it is
<e.

%aka, the set of polynomials is dense in the set of continuous functions with the supremum metric. Remember
polynomial interpolation, which is for a finite number of points. This is a little different.

Theorem 7.12 ()

Proof. Suppose for the sake of contradiction that sin(ngz) — g(z) uniformly for subsequence (ny ).
Then g(x) must be continuous on [0,1]. Then

b 1
/ g(x)*dr = lim g(x)sin(ngx)dz =0 (555)

n—o0 0

due to the theorem, which implies that g = 0. But since g(nz) = %1 for some z for all n, we have a
contradiction.

7.5 Approximation of the Identity

Definition 7.7 (Approximation of the Identity)

A family of functions {¢c} parameterized by e is called an approximation of the identity if

1. f Ydy =1
2. 11me—>0]m>5§06( Ydy =0 for all § > 0
3. cpEZOEf'

%This condition is flexible, but it makes things a bit easier for now.
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Example 7.14 ()

Consider the functions f. satisfying f(—e€) = f(e) =0, f(0) = 1/¢, and everything in between linearly
interpolated. Then this is an approximation of the identity.

Example 7.15 ()

Take any ¢ > 0s.t. [ ¢ =1 and define

. 30(”5) (556)

€

which we can think of as squeezing the function horizontally to 0 and making the amplitude very large.

Then we see that ~ ~ 1 o
Y
/ oely) dy = / €¢(€> = / o(z)dr =1 (557)

/:O%Oe(ﬂ?)da::/;o1¢($>dx:/;o<p(y)dy—>0ase—>0 (558)

€ € /e

Fix § > 0. Then

Since ¢ is fixed, we have §/¢ — +00 as € — 0, and so this integral of the tail above converges to 0.

The approximation of the identity (Aol) has an amazing property.

Theorem 7.13 ()

Let {¢c} be an Aol. Assume f: R — R is bounded and continuous. Then

oo

lim ve(y) fy) dy = f(0) (559)

e—0 ) o

Figure 32: The triangle has area 1. Now if you integrate the product of p.(y) and f(y), it’s like taking the
product and multiplying by f. But as ¢ — 0, the triangle’s area is 1, and at the end you just multiply by f(0).

Proof. We have

\ | ewiwan- f(O)‘ _ \ | e 0w - 50) dy\ (560)
)
< ‘ / ) () - F0) dy‘ i ] / eI - S0) | 500
< swp [f@) - FO) 20 [ gy dy (562)
y€[—4,0] ly|>0

where the final step follows from the left integral is less than sup_s 5 [f(y) — f(0)[, and for the right
integral, we have f(y) — f(0) < 2sup|f| < 2M. Since you don’t know the limit exists, you take the
limsup,

nmsup‘ / <pe(y)f(y)dyf(0)‘§ sup |£(y) — F(0)] = 0as 60 (563)
e—0 0 y€[—6,0]
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Corollary 7.4 (Convolution)

If {fc} is an Aol with f bounded and continuous and = € R, we have

o0

lim pe(y) f(z—y)dy = f(x) (564)

e—0 o

This is called the convolution of f with ..

Definition 7.8 (Dirac Delta Function)

pe — g as € — 0, the Dirac delta function. This is a limit.

Theorem 7.14 ()

Consider the functions

(@) = {c,,,(1 —2)" ifze[-1,1] e (/1 (1 a2y dx) ! (565)

0 else 1

Then, )
[ o= [ pn@rae =1 (566)

-1 —0o0

so {¢n,} is an approximation of the identity.

Proof. Note that ¢, is chosen such that f (z)dx =1 and ¢,, > 0. We want to show

/| 590”(1;) dr —0asn— oo forall § >0 (567)
x|>

We claim that ¢, < 104/n. since we wish to upper bound the multiplicative inverse of an integral, it
suffices to lower bound the inverse—i.e. the integral itself.

/1(1—x2)"dx:2/01(1—x /Ufl—x " dx (568)

—1

| \/
\

1 —nx?)dx (569)

where the last inequality follows from the binomial inequality (1 — )" > 1 — sn. Therefore, the final
integral is now computable, so it equals

,/_2<l_ nz3) Uvm oy
U 3

o 3Vm
+oo
/z|>§ on(x)de = 2/5 on(x)dx (571)

o< (4>1 <V (570)

Now we have

1
= en(l — 22" dx
72./5 (1 )" d (572)

1
< 20\/5/ (1—2*)"dx (573)
5
<20y/n(1 —0%)" = 0asn — oo (574)
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Note that we could have claim that the bound be ¢, < (10,/1)*°%° and this would still be true.

Theorem 7.15 (Stone-Weierstrass Theorem)

Let f € C([a,b]). Then Ve > 0, 3 a polynomial p s.t.

d(f,p) = sup d(f(x),p(z)) <e (575)

This is equivalent to saying that R[z] is dense in C(]a, b]), or that for any f € C([a,b]), 3 sequence (p,,)
of polynomials s.t. p,, — p uniformly on [a, b].

Proof. By translation and dilation, it suffices to take [a,b] = [—1,1]. This is because translation/dila-
tions are automorphisms (7). It also suffices to consider only f for which f(—1) > 0 and f(1) = k for
some number k. This is because we can always replace f with f defined by

f(l‘) — f(.’L’) _ ((1+Jl)f<1) +2(1—$L’)f(—1)> (576)

Let’s extend f by 0 outside of [—1,1]. f is now a bounded continuous function R implying that f is
uniformly continuous. Then we can take the integral.

A=) e e —1,1
On (;c) — ) [Q-a?)"da 1 [ ’ ] (577)
0 else

Since f is bounded, uniformly continuous on R, and since {¢} is an approximation of the identity,

/mwmwﬂx—ww—+ﬂm (578)

— 00

and so p, is defined on [—%, %} with p,, — f uniformly.

Now we can use the exact same strategy to prove convergence of Fourier series.

Definition 7.9 (L? Inner Product)

The L? inner product is defined on C([a,b]) as

b
()= [ S ds (579)

where f, g are complex valued.

We know that orthonormal bases behave nicely. We present one particularly important one.

Lemma 7.7 ()

The functions {e"*}, ¢z are orthonormal in C([0, 27]).
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Proof. We have for n,m € Z

) ) 1 2 1 2m ) 1 2m
(e, ™) = —/ eMnfeime dy = —/ eMTeT M dy = 7/ e M g (580)
2m Jo 2m Jo 2m Jy

So if n = m, then (f,g) = 1. If not, then

27
=0 (581)
0

1

_ ei(n—m)w
2mi(n —m)

(f,9)

and we are done.

Lemma 7.8 ()

Define
N .
pn(z)= Y et (582)

k=—N

Then, the family {¢n}%_, forms an Aol. This is called a generalized Aol

With this, we can prove that any sufficiently smooth (i.e. C') functions can be approximated with Fourier
series.
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8 Exercises

8.1 The Real Numbers
Exercise 8.1 (Math 531 Spring 2025, PS2.1)

Prove that the set of all matrices of the form:

a

[Z _b} 7 (583)

with a,b € R forms a field with the usual sum and product operations of matrices. What does this
field resemble? Give extensions to 3 x 3 and 4 x 4 matrices.

Solution 8.1

Exercise 8.2 (Math 531 Spring 2025, PS2.2)

Why can’t the field of complex numbers (with its usual operations) be made into an ordered field?

Solution 8.2

Solution is shown as theorem.

Exercise 8.3 (Math 531 Spring 2025, PS2.3)

Prove there are no finite ordered fields.

Solution 8.3

Solution is shown as theorem.

Exercise 8.4 (Math 531 Spring 2025, PS2.4)

Prove that if  and n are natural numbers, then

" —1l=(-1)1+z+2*+.. +a2" ). (584)
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Solution 8.4

We use the commutative addition and multiplication, plus distributive property in Z.
n—1 n—1 n—1
(x—l)(Zwi>:x2xi—in (585)
i=0 i=0 i=0
n n—1
=Y a2t a (586)
i=1

1=0

n—1 n—1
:J:’L+in—2mi—1 (587)
i=1 i=1

—a"—1 (588)

Exercise 8.5 (Math 531 Spring 2025, PS2.7)

Prove that there is no ¢ € Q for which
@ +q=4 (589)

Solution 8.5

Assume that such a ¢ € Q in canonical form exists. Then by the field properties, since % € qQ,

1 1 17
2
L 590
¢CHg+ =4+7="7€0Q (590)
But by distributive properties, (¢ + 3)> € Q. We claim that there exists no rational 2 = a/b (a,b
coprime) s.t. #2 = 17/4. If there were, then clearly a # 0 and

%’j = 1?7 = 4a® = 170" (591)
= 2|b, and so b =2V for some b’ € N (592)
= a® = 17(V)? (593)
= 17|a and so a = 17d’ for some a’ € Z (594)
= 17(d')* = (V) (595)

which implies that 17|b’, but this contradicts the assumption that a, b are coprime. Therefore g + % ¢
Q= q¢Q

Exercise 8.6 (Math 531 Spring 2025, PS2.8)

Let X be an ordered set with the least upper bound property. Prove that X has the greatest lower
bound property.

Solution 8.6

Shown in theorem above.
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Exercise 8.7 (Math 531 Spring 2025, PS2.9)

Prove that if z,y € Q we have that

| = lyll < = —yl. (596)
Solution 8.7
By subadditivity of the norm we have
lz| <z —yl+yl = |l [yl < |z -yl (597)
lyl <ly—=|+|z| = [yl —lz| <y — | (598)
But [y —z| =| -1z —y)| =|-1| |z —y| = |z — y|, and so
max{|z| — |y|, [y| — ||} < |z —y| (599)

and the LHS is the definition of the norm ||z| — |y|| in Q.

Exercise 8.8 (Rudin 1.1)

If r is rational (r # 0) and z is irrational, prove that r + z and ra are irrational.

Solution 8.8

If we assume that rz = ¢ and r + x = s are rational, then this violates the field axioms of Q since then
x=tr !t and = s + (—r) are rational.

Exercise 8.9 (Rudin 1.2)

Prove that there is no rational number whose square is 12.

Solution 8.9

Assume that there exists a number p/q such that p and ¢ are both not even. Then,
\?
() =12 = p? =12¢* = 3(2¢)? (600)
q

So p much be even p = 2p’. Therefore, p’?> = 3¢?, and ¢ must be odd. This means that p’ must be odd.
We can rewrite the equation

PP—=2¢ = (o' +q0 —q) =2¢° (601)

where the left hand side is divisible by 4 but the right hand side is divisible by at most 2, leading to a
contradiction.

Exercise 8.10 (Rudin 1.3)

Prove that the axioms of multiplication imply the following.
1. If z # 0 and zy = xz, then y = z.
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2. If x # 0 and 2y = z, then y = 1.
3. If v #0 and zy = 1, then y = 2~ 1.
4. If z # 0, then (z71)71 = 2.

Solution 8.10

Listed.
1. xy:xz:%ury:%wz:y:z
2. ay=c0 — tay=1r — y=1
4. (7 Htrt=1l = @ Htrztao=1l2 = (@) t=2

Exercise 8.11 (Rudin 1.4)

Let E be a nonempty subset of an ordered set; suppose « is a lower bound of E and § is an upper
bound of E. Prove that a < 3.

Solution 8.11

Since E' is nonempty, we choose any x € E. By definition, o < x and x < /3, and by transitive property
of orderings, we have a < 3.

Exercise 8.12 (Rudin 1.5)

Let A be a nonempty set of real numbers which is bounded below. Let —A be the set of all numbers

—x, where & € A. Prove that
inf A = —sup(—A) (602)

Solution 8.12

We would like to prove that inf A < —sup(—A) and inf A > —sup(—A). For the first part, we start off
with the definition of the infimum.

infA<zVieA — —infA>-—-axVzxecAd
= —infA>aVze-A
= —inf A > sup(—A)
= inf A < —sup(—A)

For the second part, we start with the definition of the supremum.

sup(—A) > aVr € —A = sup(—A4) > —zVz € A
= —sup(—A)>aVz e A
— —sup(—A) <inf A
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Exercise 8.13 (Rudin 1.6)

Fix b > 1.
1. If m, n, p, q are integers, n > 0, ¢ > 0, and r = m/n = p/q, prove that

(™M™ = (7). (603)

Hence it makes sense to define b” = (b™)'/".

2. Prove that b"t* = b"b® if r and s are rational.
3. If z is real, define B(x) to be the set of all numbers b', where ¢ is rational and ¢ < z. Prove that

b" = sup B(r) (604)
when 7 is rational. Hence it makes sense to define
b* = sup B(x) (605)

for every real z.
4. Prove that b®¥ = b®bY for all real = and y.

Solution 8.13

Proved in theorem above.

Exercise 8.14 (Rudin 1.7)

Fix b > 1, y > 0, and prove that there is a unique real z such that b* = y, by completing the following
outline. (This z is called the logarithm of y to the base b.)

1. For any positive integer n, b — 1 > n(b —1).

2. Hence b — 1 > n(b'/" —1).

3. Ift>1andn> (b—1)/(t—1), then b/ < ¢t.

4. If w is such that b* > y, then b=(1/") < y for sufficiently large n; to see this, apply part (c) with
t=y-b"".
If b* > y, then b~ (/") > 4 for sufficiently large n.
Let A be the set of all w such that b* < y, and show that = sup A satisfies b* = y.
7. Prove that this x is unique.

o o

Solution 8.14

Proved in theorem above.

Exercise 8.15 (Rudin 1.8)

Prove that no order can be defined in the complex field that turns it into an ordered field.

Solution 8.15

Note that if z > 0, then —x < 0 for all x of any ordered field. Since if x > 0 and —z > 0, then z—x > 0,
which is absurd. Therefore, one of either i or —i should be greater than 0. But i? = (—i)? = —1, so
this means that —1 > 0, which implies that 0 < 1. But either 1 or —1 must > 0.
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Exercise 8.16 (Rudin 1.9)

Equip C with the dictionary order. That is, given z =a+bi and w =c+di, z <wifa < c,orifa=c
and b < d. Does this ordered set have a least upper bound property?

Solution 8.16

No it does not. Consider the set S = {a+bi € C|a < 3}. S is bounded by 4, but it doesn’t have a
least upper bound. Given any 3+ bi, this is not an upper bound since we can construct 3+ (b+¢)i € S.
Given any a + bi where a > 3, we can always find a lower bound of form a + (b — €)i that also bounds

S.

Exercise 8.17 (Rudin 1.10)

Suppose z = a + bi, w = u + v, and

1/2 N2
a = <w|2—|—u> and b = (|w|2 u) (606)

Prove that 22 = w if v > 0 and that (2)? = w if v < 0. Conclude that every complex number (with
one exception!) has two complex square roots.

Solution 8.17

We can calculate

;o>
22— (= 0?) + 2abi — u+ Vori = TV v 20 (607)
u—vi fv<0

2

Since if we assume v > 0, then we have z* = w. We also get

v ifu>
22 = (a2 —82) — 2abi—u— Vori— 0 V0 Hv20 (608)
u+wvi ifv<0

and assuming v < 0, we have z? = w. Therefore, every complex number w has both £z as its square

root if v > 0, £% if v < 0, and just one root if z = 0.

Exercise 8.18 (Rudin 1.11)

If z is a complex number, prove that there exists an r > 0 and a complex number w with |w| =1 s.t.
z =rw. Are w and r always uniquely determined by z?

Solution 8.18

If 2 =0, then r = 0 and there is no unique w. If z = a + bi # 0, then define

1
r=lz| = (a®>+b)V? w==z (609)
T

which proves existence. As for uniqueness, assume that there are two forms

z=rw=1r"w (610)
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Then, w = %lw’ = |w| = }%/Hw’\ = 1, which implies that ’/r = 1 and so = /. This means that
w=w.

Exercise 8.19 (Rudin 1.12)

If z1,..., 2z, are complex, prove that

|21+ 22+ ... 4+ zn| < 21|+ ...+ |20 (611)

Solution 8.19

By induction, it suffices to prove |z1 + 23| < |21] + |22]. We have

21+ 22f” = (21 + 22) (21 F 22)
= (21 + 22) (21 + 22)
= 2121 + 2122 + 2921 + 2922
=|z1|* + |22 + 2152 + 2251
= |21|* + | 22| + 2(ac + bd)
< |z1)? + |2 + 2v/a? + 2\ + d? (Schwartz)
= |21 + [22]* + 2|21 ][ 22|

= (|| + |22)?

since both sides are positive, we can take their square root to get the desired result.

Exercise 8.20 (Rudin 1.13)

If z,y are complex, prove that
||z = lyl| < l& —y] (612)

Solution 8.20

Since both sides are nonnegative, we can square both sides. Note that due to Cauchy Schwartz in-
equality, 2|z|ly| > xy + yT since expanding them gives

2V a? 4+ b2\ + d? > 2(ac + bd) (613)

Therefore, the following inequality is true:

z)* + |y|* = 2|z|ly| < 22 + yy — 2y — yz (614)

which reduces to form (|z| — |y|)? < |z — y|?.

Exercise 8.21 (Rudin 1.14)

If 2 is a complex number s.t. |z| = 1, that is such that 2z = 1, compute

1+ 22+ ]1 -2 (615)
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Solution 8.21

Compute.
1+2)1+2)+(1—-2)(1-2)=1+z2+Z+2Z2+1—-2—Z2+22=4 (616)

Exercise 8.22 (Rudin 1.15)

Under what conditions does equality hold in the Schwarz inequality?

Solution 8.22

If they are antiparallel, since
(z,y) = [lz|l[lyl| cos (617)

Exercise 8.23 (Rudin 1.16)

Suppose k >3, x,y € R¥, |x —y| =d > 0, and r > 0. Prove:
a) If 2r > d, there are infinitely many z € R” s.t.

x| =la—yl=1
b) If 2r = d, there is exactly one such z.
c) If 2r < d, there is no such z.
Solution 8.23
Exercise 8.24 (Rudin 1.17)
Prove that
[ +y? + [x —y|* = 20x|* + 2ly[? (618)

Solution 8.24

This is trivial if we simply expand

x+yP+x—y’=&x+y,x+y)+(x—y,x—y) (619)
= (x,x) +2(x,y) + (y,y) + (x,%) = 2(x,y) + (v,¥) (620)
=2(x,x) + 2(y,y) (621)
= 2|x[* + 2y|? (622)

Exercise 8.25 (Rudin 1.18)

If k > 2 and x € R¥, prove that there exists y € R¥ s.t. y # 0, but x-y = 0. Is this also true if k = 17
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Solution 8.25

Let z € R* and ¢ € R¥*, the dual space. By Riesz representation theorem, we can define the canonical
isomorphism ¢ — y between these two spaces as

U(z) = (z,y) (623)

Since y # 0 by assumption, ¢ # 0, and so its rank is at least 1. Since £ maps to R, the rank has to be
1. By rank nullity theorem, we have

dimN({) =k —rank({) =k — 1 (624)

and so there exists nontrivial annihilators ¢ of x, which can be mapped to a nontrivial y € R¥.

Exercise 8.26 (Rudin 1.19)

Suppose a,b € R*. Find ¢ € R* and r > 0 s.t.
|x —a|] = 2|x — b| (625)

if and only if |x — c| = .

Solution 8.26

If we draw out the circle, it must contain two points on the line drawn by connecting A and B. Since
it must be symmetric, its center and radius can then be easily calculated to be

2 1
r=3lb—al. e=3(b—a) (626)

Exercise 8.27 (Zorich 2.2.1)

Using the principle of induction, show that
1. the sum z1 + ...+ x, of real numbers is defined independently of the insertion of parentheses to
specify the order of addition.
the same is true of the product z; ...z,
|1+ .o F x| <z 4.+ 2]
|z1 . x| < x| |2s]
For any n,m € N such that m <n, (n —m) € N.
(I4+2)" > 1+nx for x > —1 and n € N, equality holding for when n =1 or = 0.
(@+0b)"=a"+, Cia"*b' + ... +b" (aka binomial theorem).

ootk N

Solution 8.27

Listed.
1. Let n denote the number of elements in the sum. We prove by strong law of induction. The base
case for when n = 1,2, 3 is trivially true.

T =T (identity)
T1 + T =21 + 29 (identity)
(1 + 22) + 3 = 1 + (T2 + T3) (associativity)

Then, the sum of n = k parameters is defined by k — 2 pairs of parentheses defining the order of
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the sum. These parentheses define a sequence of k — 1 2-fold additions. Now, assume that the
claim is true for

Sp=x1+...x, forn=1,2... k (627)

Then, for a specific sum Sky1 of k+ 1 elements with k — 1 parentheses, we can reduce the sum
to its final 2-fold addition

Sp1 = (14 .o+ @) + (@ig1 + o+ D) (628)

Y1 P2

Since i,k — ¢ + 1 < k, by the strong law ¢; and @9 are independent of the order of sum.

2. Exactly identical to (a).

3. By the triangle inequality |z1 + 2 + 2| < |21| + |z2|. Now, assume for n = k is true. Then, let
Sy, =x1+ ...+ Tk, SO

ht1
|21+ A @ Tep] = 1Sk + T ] < Sk F |zRgal <D Jal

=1

(629)

4. Same as (c).
5. Let us fix m to be any element of N. Then, the base case is for n = m + 1 (which is in N since it
is inductive), so

n—m=(m+1)—m=1eN (630)

Now, given that for some integer n > m + 1, n — m € N is true, we have

(n+1l)—m=n+(1-m) (associativity)
=n+(—-m+1) (commutativity)
=(Mn—-m)+1 (associativity)

where (n —m) 4+ 1 € N by inductive property of N.
6. We prove by induction. For n = 1, it is trivial that (1 +2)! > 1+ 1-2. Now assume that the
claim is true for some k& € N. Then,
A+ =0+2)kQ+2)> 1+ kx)(1+2)
=1+ (k+ 1)z + ka?
>1+(k+ 1)z

where equality holds if 1 =0 = 1¥1 =1 .1 =1orn =1 = trivial case.
7. The base case for n = 1 is trivial since (a + b)! = (é)a + (}) b. We introduce Newton’s identity.

(j ' 1) i (lj) e 1)!0];!_—]' )T ﬂ(kki 7!

J k—j+1
= k!
e )
- k1
Jk—j+ 1)

_ 1) (Rt
()
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Now assuming that the binomial formula holds for some n = k, we have

(a+b)*1 = (a+b)k(a+0b)
k

=(> (;“) ajbk_J) (a+0b)

j=0
k
Z( ) altipk— J_|_Z< ) alpk—i+1
7=0
k—1 k
_ k 0pk+1 k J+170 adTipk—i k jpk—j+1
=0 a’b + I a’™b +Z b +Z a’b
- J
7=0 j=1

E+1\ o541 E+1\ ji1,0 k Grk—j+1
O)ab +k+1a b—&—z 1—|—jab

k+1
(k + 1) QIpE-it
j

=0

(631)

(632)

(633)

(634)

(635)

(636)

Exercise 8.28 (Zorich 2.2.3)

Show that an inductive set is not bounded above.

Solution 8.28

Assume that a X is a nonempty inductive set that is bounded above. By definition, there exists a
number B € R such that max X < B. Then, this means that there exists no numbers in [B, B + 1).
Since X is inductive, this means that there cannot exist any elements of X in the interval [B
and similarly for the interval [B — 2, B), and so on, meaning that if x € X, thenz ¢ [B—k,B—k+1)
for all k € Z. By the Archimidean principle, this implies that X = (), contradicting our assumption.

- LB)v

Exercise 8.29 (Zorich 2.2.4)

Prove the following.

2. The set E,, = {x € N|z < n} is finite.

1. An inductive set is infinite (that is, equipollent with one of its subsets different from itself).

Solution 8.29

Listed.

assumption.

cardinality e, then cardEy1 = eg + 1, which implies finiteness.

1. Assume that an inductive set X is finite = X is bounded above (we can choose upper bound
B = max X + 1). But from 2.2.3, an inductive set cannot be bounded above, contradicting our

2. Tt is trivial that E; = {1} is finite since cardE; = 1. Now, if for some k, Ej is finite with
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Exercise 8.30 (Zorich 2.2.5)

Listed.
1. Let myn € N and m > n. Their greatest common divisor gcd(m,n) = d € N can be found in a
finite number of steps using the following algorithm of Euclid involving successive divisions with

remainder.
m=qin—+r711
n =qor1 + 12
1 =q3r2 + 73
Tk—2 = qkTk—1 + Tk
Th—1 = Qr+17Tk + 0
Then d = 7y,

2. If d = ged(m, n), one can choose numbers p, g € Z such that pm + gn = d.

Solution 8.30

Listed.
1.
2. Letting n = r(, notice that the equations above satisfty for i = 0,1, ...

Ty = QigoTiyl + Tip2 = Ti — QiyoTiy1 = Tiy2 (1)

Note that the second-to-last equation allows us to write r; as a linear combination of r,_5 and
Tk—1: Tk = Tk—2 — qkTk—1- Now by applying , we can reduce the above to a linear combination
of r,_3 and 75_s.

Tk = Tk—2 — qkTk—1
=7Tk—2 = qk(Tk—3 — Qr—1Tk—3)
= (14 qr—1qK)Tk—2 — QTk—3
and repeatedly doing this allows us to reduce rj to a linear combination ggrg + g171. By the ring

properties of Z, the new linear coefficients are also in Z. Reducing one last time using the first
equation in the Euclidean algorithm gives

Tk = qoTo + Q171
=qon + qi(m — qin)
=qgm+ (g —q)n
=pm+qn

Exercise 8.31 (Zorich 2.2.9)

Show that if the natural number n is not of the form &™, where k, m € N, then the equation ™ = n
has no rational roots.
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Solution 8.31

Assume that there is a rational solution 2 = p/q, with p,q € N of the equation. Then,

<P> I (637)
q q”’L

By the fundamental theorem of arithmetic, the exponents of the prime factors of p™ must all be
multiples of m, and so it must be so for the right hand side = x must be of form x = k™ for some
k. This is a contradiction.

Exercise 8.32 (Zorich 2.2.12)

Knowing that = = m - n~! by definition, where m € Z and n € N, derive the “rules” for addition,
multiplication, and division of fractions, and also the condition for two fractions to be equal.

Solution 8.32

We can construct a Q as a quotient space Z x N/ ~, where ~ is an equivalent relation where

(q1,p1) ~ (g2, p2) iff q1p2 = p1g2 (638)

which is the familiar equivalence relation from “simplifying” a fraction. We define addition and multi-
plication as the following

(a,b) + (¢, d) = (ad + be, bd)
(a,b) - (¢,d) = (ac, bd)

which turns out to be algebraically closed in Q. The additive identity is the equivalence class 0 =
{(0,¢) | c € N}, and the multiplicative identity is the equivalence class 1 = {(c,c) |c € N}. It is easy to
check that + is commutative, the additive inverse is —(a,b) = (—a, b), and the multiplicative inverse is
(a,b)~! = (b,a). We can subtract and divide these elements of Q, called “fractions,” as such:

—
8
=
~—~
\
—

¢, d) = (a,b) + (—(¢,d)) = (a,b) + (—¢,d) = (ad — be, bd)
(a,b) = (¢,d) = (a,b) - (¢c,d)™" = (a,b) - (d, c) = (ad, bc)

Exercise 8.33 (Zorich 2.2.13)

Verify that the rational numbers Q satisfy all the axioms for real numbers except for the axiom of
completeness.

Solution 8.33

From continuing the steps of 2.2.14, we can prove Q is an algebraic field (associativity, commutativity of
addition and multiplication, along with distributive property).We can actually define the order relation
<g in two ways:
1. (a,b) < (¢,d) iff ad <gz be, where <y is the order relation on Z (which can be defined much more
simply).
2. Recognizing that Q C R, we define the canonical injection map i : Q — R and by abuse of
language, endow the relation <g as the restriction of <g onto Q. That is, for (a,b), (¢,d) € Q,

(a,b) <g (c,d) iff i(a,b) <g i(c,d) (639)
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The ordering for the 1st step can be checked for consistency.

1. (a,b) < (a,b) since ab < ab (true in Z)

2. (a,b) < (¢,d),(c,d) < (a,b) means that ad < bc and bc < ad = ad = bc (true in Z)

3. (a,b) < (¢,d) < (e, f) implies ad < be,cf < de. Multiplying positive (important that f > 0I)
to the first inequality gives adf < bcf, and multiplying positive b to the second gives bef < bde,
and by interpreting < as the ordering defined on 7Z, we use transitive property of <z to get
adf <bde = af <be < (a,b) < (e, f).

4. For any (a,b), (c,d) € Q, (a,b) < (¢,d) or (a,b) > (¢, d), which is equivalent to ad < be or ad > be,
which is true in Z.

It is easy to prove (a,b) < (¢,d) = (a,b) + (p,q) < (¢,d) + (p,q), and Og < (a,b),(c,d) = 0g <
(a,b) - (c,d). However, Q is not complete. We prove this by showing that the subset X = {x € Q|22 <
2} C Q does not satisfy the least upper bound property. Assume that there is a least upper bound
ceQ. c#vV2 (you should know how to prove irrationality of \/5!), we have either ¢ > v/2 or ¢ < V2.

1. Let ¢ < /2 <= ¢ —+/2 > 0. By the Archimidean principle, there exists a k € N such that

O<%<c—\/§. Then,%e@and@isaﬁeld, soc—%e(@.

1
C—E<C—C+\/§:\/§ (640)
So ¢ is not least and so it must be the case that ¢ < v/2.
2. Let ¢ < /2 <= +/2—c¢ > 0. By the Archimidean principle, there exists a k& € N such that
0< % <V2-c Then,ch% € Q and

1
c+E<c+(\/§—c):c (641)
So ¢ is not an upper bound.
Note that given a well-defined ¢ = sup X and in the case where ¢ < v/2, we have 2 — ¢ > 0, so we can
choose a well-defined ¢ satistying (by Archimidean principle)

2

2—-c
1) in 41 42
0< <m1n{,2c+1} (642)

which gives us

(c+0)? = +6(2c+9)
< +6(2c+1) (6<1)
<+ (2-c)=2

meaning that ¢ is not an upper bound. Similarly for when ¢ > /2.

Exercise 8.34 (Zorich 2.2.15)

Prove the equivalence of these two statements.
1. If X and Y are nonempty sets of R having the property that = < y for every z € X,y € Y, then
there exists c € Rsuch that r <c<yforallz € X andy €Y.
2. Every set X C R that is bounded above has a least upper bound.

Solution 8.34

Let S7 be the first statement and S5 the second.
1. (S = 51). Let X C R be a set that is bounded above, and Y is a set such that z < y for all
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xz € X,y € Y. Then, by LUB principle, there exists ¢ = sup X € R. Now, we claim that ¢ < y for
all y € Y. Assume it doesn’t: then there exists ' € Y such that y’ < c¢. But since we assumed
z<yforallz e X,y €Y, we have z <y for all x € X, which means that 3’ is an upper bound
of X. But 3/ < ¢, contradicting the given fact that ¢ was the least upper bound.

2. (81 = S3). Given a nonempty set X C R, we wish to show the existence of sup X. We are
guaranteed the existence of nonempty set ¥ C R such that x < y for all x € X,y € Y, which
implies that X must be bounded above. Then, by 57, there must exist a ¢ € R such that

r<c<yforallze X,yeY (643)

We claim that ¢ = sup X. It is an upper bound of X since x < ¢ for all z € X. It is least since
the set of all upper bounds of X is Y, and c <y for all y € Y.

Exercise 8.35 (Olmsted 1.15)

Prove Dedekind’s Theorem: Let the real numbers be divided into two nonempty sets A and B such
that (i) if x € A and if y € B, then < y and (ii) if © € R then either z € A or x € B, then there
exists a number ¢ (which may belong to either A or B) such that any number less than ¢ belongs to A
and any number greater than ¢ belongs to B.

Solution 8.35

This is really the same statement as Zorich 2.2.15.a, the original statement of completeness, but with
the extra condition that the sets A = X, B =Y must be disjoint.

Exercise 8.36 (Olmsted 1.7)

If z is an irrational number, under what conditions on the rational numbers a,b, ¢, d is (ax+b)/(cx+d)
rational?

Solution 8.36

Note that a trivial solution is @ = b = ¢ = d = 1 which gives 1. Since

ar+b acx+ ad— ad+ be bc — ad
= = Qa
cr+d cr+d cr+d

(644)

for the above to be rational it is necessary that 1/(cx + d) is rational. But this cannot be the case,
which leaves us with the condition that bc = ad.

Exercise 8.37 (Olmsted 1.8)

Prove that the system of integers satisfies the axiom of completeness.

Solution 8.37

Let S C Z be bounded from above. It must have a maximum element (justify?), call it ¢. Then we
claim that ¢ € Z is the least upper bound. Being the maximum, it is an upper bound, and c is least
since the next smallest element is ¢ — 1, which is less than ¢ € S, and therefore cannot be an upper
bound.
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Exercise 8.38 (Zorich 2.2.16/Olmsted 1.16)

Prove the following.

1. If AC B CR, then sup A < sup B and inf A > inf B.

22 Let ROX #0and RODY #0. fx <yforallz € X,y € Y, then X is bounded above , Y is
bounded below, and sup X < infY.

3. If the sets X, Y in (b), are such that X UY =R, then sup X = infY.

4. If X and Y are the sets defined in (c), then either X has a maximal element or Y as a minimal
element.

5. Show that Dedekind’s theorem is equivalent to the axiom of completeness.

Solution 8.38

Listed.
1. Let

A'={zeR|z>aVae A}
B ={zecR|z>bVbe B)

where we can easily verify that B’ C A’. By definition, we get sup B = min B’ and sup A = min A’.
But since B’ ¢ A’, for any b’ € B’, there exists an a’ € A’ such that o’ < ¥, which implies that
sup B = min B’ < min A’ = sup A.

2. X is bounded above by any element of Y. Y is bounded below by any element of X. By the
completion axiom, there exists a ¢ € R such that

r<c<yforallze X,yeY (645)

Since ¢ is an upper bound of X, sup X < ¢ by definition, and since ¢ is a lower bound of Y,
inf Y > ¢ by definition. Therefore, sup X < c¢ <infY.

3. From completeness there exists a ¢ € R such that xt < ¢ <y forall x € X,y € Y. Y is, by
definition, the set of all upper bounds of X (i.e. every upper bound of X is in Y, unlike ¥
defined in 2.2.16.b). Since ¢ < y for all y € Y, ¢ is minimal and so ¢ = sup X. X is the set of all
lower bounds of Y by definition, so ¢ > z for allzx € X = c¢=infY. So, inf Y = ¢ = sup X.

4. We know that there exists ¢ = inf Y = sup X. Since X UY = R, ¢ must be in at least X or Y.
Ifce X, then c=sup X =max X, and if c€ Y, then ¢ =infY = minY.

5. This is the same statement as Zorich 2.2.15.a (an iff equivalence, not just one way implying).

Exercise 8.39 (Olmsted 1.13)

Let S be a nonempty set of numbers bounded above, and let x be the least upper bound of S. Prove
that x has the two properties corresponding to an arbitrary positive number e:

1. every element s € S satisfies the inequality s < x + €

2. at least one element s € S satisfies the inequality s > = — €

Solution 8.39

Listed.
1. z is an upper bound = s < z for all s € S, which implies that s <z <z + €.
2. By definition,  — € cannot be an upper bound, so x — € > s for all s € S is not true. Therefore,
there must exist one s € S such that s >z — e.
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Exercise 8.40 (Zorich 2.2.18)

Let —A be the set of numbers of the form —a, where a € A C R. Show that sup(—A) = —inf(A4).

Solution 8.40

If A is unbounded below, then —inf A = co and —A is unbounded above, implying that sup A = oo.
Now assume that A is bounded below, then by completeness, it must have a greatest lower bound. Let
us define the set B={b e R|b < aVa € A}. From 2.2.16.b, we have b < inf A < aforalla € A,b € B.
Multiplying by —1 gives —b > —inf A > —a for all a € A, b € B, which is equivalent to saying

a<-—infA<bforallae —A,be -B (646)
by definition of —A, —B. —inf A is clearly an upper bound of —A, and since

B={beR|b<aVac A}
={beR| —b>—-aVac A}
={beR| —b>aVae —A}

implies that —B = {b € R|b > a Va € —A} is the set of all upper bounds of A. So, —inf A is the least
upper bound of —A, i.e. —inf A =sup(—A4).

Exercise 8.41 (Zorich 2.2.21)

Show that the set Q(y/n) of numbers of the form a + by/n where a,b € Q, n is a fixed natural number
that is not the square of any integer, is an ordered set satisfying the principle of Archimedes but not
the axiom of completeness.

Solution 8.41

The order on Q(y/n) can be embedded from the ordering on the reals by defining the canonical injection
map i : Q(v/n) — R and defining for any z,y € Q(v/n),

r <gym ¥ = i(z) <ri(y) (647)

Now, let h > 0 be any fixed real number, and « = (a,b) = a + by/n. By the Archimidean principle, we
can find a k € Z such that

(k —1)h <z < kh for some z € Q(v/n) C R (648)

We now show that Q(y/n) is not complete since it doesn’t satisfy the LUB property. Since there are
infinite prime numbers in N, choose a prime number p that is not a factor of n. Then, we are guaranteed
that pn is not a perfect square, and can define the set

X ={z € Q(Vn)|z < ypn} CQ(Vn) (649)

and assume that ¢ = ¢; + cay/n = sup X exists (c1,c2 € Q). Clearly, ¢ # \/pn € Q(y/n).
1. Assume ¢ < /pn < 0 < ,/pn — ¢ € R. By the Archimidean principle, there exists a k € N
such that 0 < + < /pn — c¢. Then, we can verify that ¢+ 1 = (c1 + £) 4+ c2v/n € Q(y/n) and

1 1
c+%<c+«/pn—c:w/pn:>c+E€X (650)

implies that ¢ is not an upper bound. So we must turn to case 2.
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2. Assume ¢ > \/pn <= c— /pn > 0. By AP, there exists a k € N such that 0 < % < c—,/pn.
Then, we can verify that ¢ — ¢ € Q(y/n) and

1
c— g >e-ctypn=ypn (651)

implies that ¢ — % is an upper bound of X, so c¢ is not least.

Therefore, by contradiction, ¢ does not exist.

Exercise 8.42 (Zorich 2.2.22)

Let n € Nand n > 1. In the set E,, = {0,1,...,n— 1}, we define the sum and product of two elements
as the remainders when the usual sum and product in R are divided by n. With these operations on
it, the set FE,, is denoted Z,,.
1. Show that if n is not a prime number, then there are nonzero numbers m,k € Z, such that
m -k =0, i.e. there exist nonzero zero divisors.
2. Show that if p is prime, then there are no zero divisors in Z, and Z, is a field.
3. Show that, no matter what the prime p, Z, cannot be ordered in a way consistent with the
arithmetic operations on it.

Solution 8.42

Listed.

1. n is composite implies that there exist 1 < m,k < n such that n = mk. These factors m, k are
precisely the zero divisors of Z,, since mk =n =0 (mod n).

2. With p prime, assume that there are nontrivial zero divisors 1 < m,k < p in Z,. Then, mk =0
(mod n) = mk = lp for some [ € N. But this implies that m or k must divide p, which is
impossible since 1 < m, k < p. Then prove field axioms.

3. For any field, we must have 0 < 1, because if not, then

0>1 = 0<1'.1=1"" = 0.-0<17'.171 =1 (652)
So, 0 <1 impliesthat 0 <1<2<...<p—1. But
0+1<(p—-1)+1=0 (653)

is false, so any ordering is impossible.

Exercise 8.43 (Zorich 2.2.23)

Show that if R and R’ are two models of the set of real numbers and f: R — R’ (with f £ 0') is a
mapping such that f(xz +y) = f(z) + f(y) and f(z-y) = f(x) - f(y) for any =,y € R. Prove that f is
an order-preserving isomorphism.

Solution 8.43

Let 0,0" be the additive identity of R, R’, respectively, and 1,1’ the multiplicative identity. We claim
that f(0) = 0’ since

f(0) = f(0+0) (definition of additive identity)
= f(0) + f(0) (homomorphism over +)
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which implies that f(0) + f(0) = f(0) = 0’ 4+ f(0). Since f(0) lives in field R’, its additive identity
—£(0) is well defined, and we get f(0) = f(0) + f(0) + (—f(0)) = 0" + f(0) + (—f(0)) = 0'. We also
claim that f(1) =1’ since

f()y=f(1-1) (definition of multiplicative identity)
= f(1)- f(1) (homomorphism over -)
which implies that f(1)- f(1) = 1"+ f(1). Since f(1) lives in field R’, its multiplicative identity f(1)~*

is well defined, and we get f(1) = f(1)- f(1)- f(1)~t =1"- f(1)- f(1)~! = 1. Now that we have proved
mapping of identities, this implies the mapping of inverses.

0'=f(0)=flx—a)=flz)+ f(-2) = f(-2)=—f(2)
U'=f1)=flz-27") = flx) fa™") = fla™) = fla)~

With these conditions, we have proved that f is a homomorphism of fields. Now we prove that f is a
bijection, but first, we claim that f(x) = 0 = x = 0. Assume that there exists a nonzero z € R
such that f(x) = 0. Then, 27! is well defined, and

which implies that 0/ = 1. So, f(1) =1' =0/, and so for all k € R, f(k) = f(k-1) = f(k)- f(1) =
f(k)-00=0 = f =0, leading to a contradiction of the assumption that f’ # 0'.
1. (f injective). Assume f is not injective, i.e. there exists distinct z1,22 € R s.t. f(z1) = f(x2).
Then, using that fact f(x) =0 = z =0,

0=f(z1) = f(z2) = f(21 —22) = 21 -22=0 = 21 =12 (654)

2. (f surjective). Let y be any nonzero element in R’ (clearly if y = 0’ then its preimage is 0) and
y~! its multiplicative inverse. Assume there exists no x € R satisfying f(x) = y, meaning that
there exist no x satisfying

fl@)y=y-y =1 (655)
But since f maps inverses to inverses, we can choose x = (y~1)~!, which leads to
flx) -yt =( (656)

Finally, we prove that f is order preserving. Assume that x <y <= 0 <y —z , we wish to prove
that
fl@) < fly) <= 0< fly) — f(z) = fly —2) (657)
Therefore, since this preservation of ordering is really the statement 0 <y —z = 0 < f(y — z), it
suffices to prove that 0 <z = 0 < f(z). Now, assume that we have a x such that f(z) < 0’. Adding
it with the equation f(1) =1’ gives us
flr+1) <1 (658)

It is easy to prove that 0 < x <= 0 < z~!. Now assume that 0 > f(z). INCOMPLETE

Exercise 8.44 (Density of Rationals in R)

Prove that for any two distinct a < b € R, there exists an infinite number of rational numbers between
a and b.

148/



Univariate Real Analysis Muchang Bahng Spring 2025

Solution 8.44

Since a < b, then b — a > 0 and by the Archimidean principle, there exists a k € N such that
1
0<E<b—a:>1<kb—ka (659)

which implies that the length of [ka, kb) greater than 1. By the inductive property of Z, there must be
an integer p € [ka, kb). If there were not, then this would imply that [ka+1,kb+1) and [ka —1,kb—1)
had no integers and repeating would mean that there were no integers in R. Therefore,

ka§p<k;b:>a§%<b (660)
for all a,b € R, with p/k € Q. If a is irrational we can replace the < to <, leaving a < £ < b, and if a
is rational, we can construct another rational a + % € (a,b).

Exercise 8.45 (Nested Interval Lemma)

With the fact that R is complete, prove the following.
1. For a sequence of closed nested intervals I; D I D ... of R, there exists a point ¢ € R belonging
to all these intervals.
2. Furthermore, if the hypothesis also satisfies the fact that for any € > 0, there exists a k € N such
that |Ij;| < € (i.e. the length of the intervals decreases to 0), then the point ¢ common to all sets
is unique.

Solution 8.45

Listed.

1. Let I, = [an, by], with a,, < by, finite for all n € N. For all n € N, we have I, = [an, b,] and can
take the two subsets X,, = (—00,a,) and Y,, = (b,,c0), where z < y for every x € X,,,y € Y,,.
We also have the fact that R = X,, U, UY,. Since R is complete, there exists a ¢ such that
r<c<yforallze X,ycY. Butr <c <= c¢ X,andc<y < c¢Y,,soforallneN,
¢ must be in I,,.

2. Since we have proved (a), it now suffices to prove uniqueness of c¢. Let there be two distinct points
c1,c2 € R belonging to these intervals. Without loss of generality, assume ¢; — ¢ > 0, and choose

C1 — C2
€= 3 (661)
Then, there should exist a k € N such that |I| < e. Since I must contain ¢q, it must be a subset
of [e1 — €,¢1 + €] (should be able to see why) and similarly for cs.

C1 — C2o C1 — C2 261 + c2 401 — C2
T _ — =L
k C [01 3 A + 3 } [ 3 ' 3 }
C1 —C2 C1 — C2 —c1 + 462 c1 + 262
I, — = =
k C [Cz 3 @ + 3 } [ 3 B } M

But since ¢; > ¢co = % < 201%, L and M are disjoint = I, as a subset of both, leaves
us with I, = (), contradicting that it is a closed interval.
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Exercise 8.46 ()

Compactness of Closed Interval in R Prove that any system of open intervals covering (i.e. an open
cover of) a closed interval contains a finite subsystem that covers the closed interval. Another way to
state this is by saying that every closed interval of R is compact.

Solution 8.46

A closed interval with a finite open covering is trivially compact since any subcovering is also finite. We
only need to deal with when a closed interval I = [a, b] has an infinite open covering {Ug }aea, which
means that the set of indices A is infinite. Assume that there exists no finite covering of I. Then, we

divide I into two halves

L=l “—M} L= [‘”b,b} (662)

2 2

and define a subcovering for each of them. That is, we can define A; C A and Ay C A such that
{Us}taca, C {Uataca is a covering of I} and {Us}taca, C {Uataca is a covering of I. At least
one of A; or A, must be infinite, since if they were both finite, then we can define a finite covering
{Ua}aca,ua, of I. Choose the interval with the infinite covering and repeat this procedure, which will
result in a nested interval that decreases in length by a half.

I>DLHDLD... (663)

By the nested interval lemma, there exists a unique point ¢ common to all these intervals. But since
¢ € [a,b], the open cover {U} should contain an open interval (¢ — d1,c + J2) containing c. We wish
to prove that this interval is a superset of some [; in the sequence above, contradicting the fact that
I;, has an infinite cover. Since the length of each I; decreases arbitrarily (i.e. we can choose any € > 0
and find a I;, with length less than €), we choose € = % min{dy, d2 }, and we should be able to find some
Ij, that is a subinterval of [c — €, ¢ + €], which itself is a subinterval of (¢ — d1, ¢+ d2).

I, C [c— %min{él,tb},c—k %min{él,éz} C (c—01,¢4 62) (664)

Therefore, (¢ — 61, ¢+ d2) is a finite cover of I}, contradicting the fact that all I;’s have infinite covers.

Exercise 8.47 (Bolzano-Weierstrass Theorem)

Prove that every bounded infinite set of real numbers has at least one limit point. (A limit point p of
set X is a point such that every open neighborhood of p contains an infinite number of elements of X).

Solution 8.47

Let the set of points be denoted X, and let a be the lower bound and b be the upper bound. Then,
X C[a,b] = I. Now divide [a, b] into halves [a, “F2] U [2F2,b]. At least one of the halves must have an
infinite number of points; choose the interval with infinite points as I; and doing this repeatedly gives

the nested sequence
I>D>LHD>hLD... (665)

By the nested interval lemma, there exists at least one point ¢ € R that is in all these intervals.
Furthermore, since |I;| = 3 (b — a) decreases to 0, we can choose a € > 0 and find an interval I;, with
|Tx| < €. We claim that ¢ is a limit point of X. Given an ¢, we wish to prove that there are an infinite
number of points within the e-neighborhood (¢ — €, ¢+ ¢€) of ¢. Since we can find some I, with || <,
we can see that

I C(c—€,c+e) (666)
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and therefore the e-neighborhood of ¢ contains [, which contains an infinite number of points in X.
We can construct another proof that is dependent on the compactness lemma. This construction will be
useful for problem 2.3.4. Let X be a given subset of R, and it follows from the definition of boundedness
that X is contained in some closed interval I C R. We show that at least one point of I is a limit point
of X. Assume that it is not. Then each point # € I would have a neighborhood U(z) containing at
most a finite number of points from X. The totality of such neighborhoods {U(z)} constructed for the
points x € I forms an open covering of X. Since I is closed, it is compact and therefore we can find
a finite subcovering {U;(x)}; of open intervals that cover I and therefore cover X. This open cover
{Ui(z)}; of X is a finite union of sets that each contain at most a finite number of points from X, so
the covering of X contains a finite number of points from X, a contradiction that X contains infinite
points.

Exercise 8.48 (Zorich 2.3.1)

Show that
1. if I is any system of nested closed intervals, then

sup{a € R|[a,b] € I} = a < S =inf{b € R]|[a,b] € I}

and

8= [ la,b]

[a,bleT
2. if T is a system of nested open intervals (a,b), the intersection
M (a0)
(a,b)el

may happen to be empty.

Solution 8.48

Listed.
1. (May be tempted to say that a; < ag < ..., but this assumes that the indexing set I is countable).

We claim that for any two intervals [a,, b,] and [am, by, in T,
an < b,

Assume that a,, > b,,. Then b, > a, > by, > a,, implies that [a,,b,] and [am,, by, are disjoint,
contradicting the fact that they are nested. Now given that X is the set of a,,’'s and Y is the set
of b,’s, we have x < y for all z € X,y € Y. So by 2.2.16.b, we have sup X > inf Y.

To prove the second statement, we show that trying to “expand” the interval [«, 5] will lead to
a contradiction. Since « is the LUB, given any € > 0, there exists a (a;,b;) € X such that
a — € < a; < «, which implies that [a, 8] C [a;,8] C [a — €, ]. Assuming that this extended
interval is the intersection, we should be able to choose any point in [a — €, §] and find that it is
in every element of I. We choose a point in [« — €,a;), which is not in the interval (a;,b;). We
do the same for 8 — B+ e. We also check that “shrinking” the interval [«, 8] — [ + ¢, 8] is no
good, since we can find an element in [a, o + €) that is in every interval in I.

2. Take the system of nested open intervals

Howly ol

1
0,1)3(0,5)2(0,3) -0,

Take their infinite intersection, denote it S, and assume that some ¢ € (0,1) is in S. Since € is
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a real number, by the Archimidean principle there exists a k € N such that % < €. Therefore,
e¢(07%) — & S.

Exercise 8.49 (Zorich 2.3.2)

Show that
1. from a system of closed intervals covering a closed interval it is not always possible to choose a
finite subsystem covering the interval.
2. from a system of open intervals covering a open interval it is not always possible to choose a finite
subsystem covering the interval.
3. from a system of closed intervals covering a open interval it is not always possible to choose a
finite subsystem covering the interval.

Solution 8.49

We show with the interval (0,1) or [0,1]. Using linear transformations it is easy to generalize this to
any other interval (a,b) or [a,b].
1. Consider the infinite covering

2. Consider the infinite covering

1, 13
(071):(0,§)u(§,1)u(1,§)u...

3. Consider the infinite covering

Exercise 8.50 (Zorich 2.3.3)

Show that if we only take the set Q of rational numbers instead of the complete set R of real numbers,
with the definitions of closed, open, and neighborhood of a point r € Q to mean respectively the
corresponding subsets of @, then none of the three lemmas is true.

Solution 8.50

We prove only for the nested interval lemma. We choose the series of nested intervals
1 1
(xf —— V24 )
n n
with n € N. Assume that there is a r € Q such that

rE(fl,\@Jrl) foralln e N
n n

which is equivalent to saying that ’7‘ - \/§| < % for all n € N. Clearly, r # /2, and by the Archimidean
principle, there exists a & € N such that

1
O<E<\r—\/§|
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which contradicts the above.

Exercise 8.51 (Zorich 2.3.4)

Show that the three lemmas above are equivalent to the axiom of completeness.

Solution 8.51

Note that from the proofs, completeness implies nested interval lemma, which implies compactness
of closed intervals, which implies the Bolzano-Weierstrass theorem. So, it is sufficient to prove that
Bolzano-Weierstrass theorem implies completeness to determine equivalence. There are not a lot of
direct proofs, so we prove that Weierstrass implies nested interval, which implies completeness.
1. (Weierstrass = Nested) Assume that we have R with the Bolzano-Weierstrass theorem. Take
the series of nested closed intervals

1= [a,b] O :[al,bl] DIQZ[CLQ,bQ] ...

We see that a < a; < b, so the infinite sequence of monotonically nondecreasing values a; is
bounded. Therefore, it must have a limit point, which we will denote as ¢. We claim that
a; < ¢ for all a;. Since if it were not, then ¢ < a; for some 4, and choosing € = 0.5(a; — ¢), the
e-neighborhood of ¢ will not contain a; for j > i since

c<a; = 0.5¢<0.5a; = c¢c+€=05c+0.5a; <a; <aj41 <...

. With similar reasoning, we can conclude that b; > ¢ for all b;. This implies that a; < ¢ < b; for
all ¢ which is equivalent to saying that ¢ € [a;,b;] = I; for all i € N.

2. (Nested = LUB Principle) Let X C R be a set that is bounded above, with b; any upper
bound. Since X is nonempty, there exists a; € X that is not an upper bound (otherwise, X
would be a singleton set and it trivially has a least upper bound). Consider the well-defined
interval [ag, bg]. Take the mean mg = 0.5(ag + bp), and if my is an upper bound, set it to by (with
a1 = ag) and a; if else (with by = by). Then, we have a sequence of nested intervals

[ao, bo] D [a1,b1] D [az,b2] O ...

of decreasing lengths |I;| = 5 (b — a). All of them must contain a unique common point ¢ € R
by the nested intervals lemma, which implies that

apg<a;<ax <. <L <by<by <o

I claim two things:

(a) ¢ is an upper bound for X. Suppose it were not, then there exists some x € X such that
c < x, and let the distance between them be ¢ = z — ¢ > 0. By AP, we can choose k € N
such that % < €. All the b, are upper bounds of X, so we have x < b,. Subtracting ¢ on
both sides gives

1
O0<xz—c=€e<b,—c< |In|:2—n(bo—ao)
where the last inequality follows from ¢ € I, = [ay, b,], so the maximum distance it can

be from the endpoint b, is |I,,|. The inequality above holds for all n € N, so increasing n
arbitrarily should decrease %(bo — ap) past e. To formalize this, we use the inequality

1 1
— < — foralln e N
2n n

and so we have

1
Egbn70<*(bofa0)
n
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2(50—!10)“

We choose the natural number n = | , which does not satisfy the inequality above

since
1 €

200 —a)je] 0~ W) <

1
<yl = = 2000 - a0)

€
(bo — ap) = 3
This leads to a contradiction.
(b) We now prove that c is least. Assume that c is not least = there exists an upper bound
B such that B< cand x < B forall x € X. INCOMPLETE

Exercise 8.52 (Zorich 2.4.1)

Show that the set of real numbers has the same cardinality as the points of the interval (—1,1).

Solution 8.52

We define the bijective map p: (—1,1) — R

Exercise 8.53 (Zorich 2.4.2)

Give an explicit one-to-one correspondence between
1. the points of two open intervals
2. the points of two closed intervals
3. the point of a closed interval and an open interval
4. the points of the closed interval [0,1] and R

Solution 8.53

Listed.
1. p: (a,b) — (e, d) defined
d—c

pla) = F—(w—a)+c

2. the extension of p defined on (a) to [a, ]
3. From (a) and (b), it suffices to prove a bijection from (0,1) to [0,1]. We extract a countably
infinite sequence from (0, 1), say

x if v & {x;}

0 ifr=x,=2
p(x) = Lo

1 ifor=x=3

Ti_o ifx=ux;fori>2

Colloquially, we extract a copy of N from (0,1) and use the bijection N ~ NU {0, —1} to “shift”
the terms.
4. We compose the bijections p;y : [0,1] — (0,1) and p3 : (0,1) — R.
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Exercise 8.54 (Zorich 2.4.3)

Show that
1. every infinite set contains a countable subset
2. the set of even integers has the same cardinality as the set of all natural numbers
3. the union of an infinite set and an at most countable set has the same cardinality as the original
infinite set.
4. the set of irrational numbers has the cardinality of the continuum
5. the set of transcendental numbers has the cardinality of the continuum

Solution 8.54

Listed.
1. Let A be an infinite set. By axiom of choice, choose ag € A. Then, A\ {ag} # 0 since A is
infinite. By induction, assume you have chosen ag,ai,...,ar € A. Then, since A is infinite,
A\ {ag,a1,...,ar} # 0, so we can choose ar11 € A\ {ao,...,ar}. Thus, we have constructed a

countable subset {ay}ren of A.
2. Given the quotient ring 27, define the bijection p : 2Z — N as

(@) x4+ 2 ifz>0
xTr) =
P —r—1 ifz<0

3. From (a), we can extract a countable set from original set A, call it X. Since the product of
countable sets is countable (N U N is countable), we can define a bijection g : X — X U B.
Therefore, we can define a bijection p: A — AU B as

x ifxe A\X
plr) fzxzeX
4. Q is countable and R is uncountable. So, R\ @ must be uncountable since if it were countable,
then the union of the rationals and irrationals, which is R, would be countable.
5. It suffices to prove that the set of algebraic numbers (numbers that are possible roots of a
polynomial with integer coefficients with leading coefficient nonzero) is countable, since we can
apply (d) right after. The set of all kth degree polynomials with integer coefficients is isomorphic

to Z* through the map
apz® + ap_ 12"+ 4 asr® + arat +ag — (akil,ak*Q, ...,a1,a0)

and the union of these countable sets (minus the 0 map)
P = (UZ’“) \{0} = (z\{0})uz?u...
k=1

is countable. For any element in Z*, there are at most k real roots, and so we can define the set
of roots of an element z € Z* C P as a j-tuple of algebraic numbers, which can have at most

7 = k roots.
T(Z) = (r127r227 ctt rjz)
—_———
i<k

Therefore, the union of all these j-tuples for all z € P

Ure=U U re

zeP k=1 zeZk

is a countable union of a countable union of finite sets, making it countable.
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Exercise 8.55 (Zorich 2.4.4)

Show that
1. the set of increasing sequences of natural numbers has the same cardinality as the set of fractions
of the form 0.a;as ...
2. the set of all subsets of countable set has cardinality of the continuum

Solution 8.55

Listed.
1. Given a sequence of increasing naturals S = (ni,ng,...), we can define a binary expansion
0.1z ... where ; = 1 if and only if ¢ € Nis in S and a; = 0 if not. This is clearly a bijection.
2. The set of all segments of increasing natural is equipotent with 2V, since the elements of each
sequence define a subset of N. Cantor’s diagonalization argument proves that the set of infinite
binary expansions is uncountable, and by (a), this proves that 2" is uncountable.
This is very interesting since N ~ R, but 2Y ~ R, and the set of all infinite g-ary expansions is equipotent
to R too.

Exercise 8.56 (Zorich 2.4.5)

Show that
1. the set P(X) of subsets of a set X has the same cardinality as the set of all functions f : X —
{0,1}.
2. for a finite set X of n elements, card P(X) = 2"
one can write card P(X) = 2°4"4¥  which implies card P(N) = 2¢2"N = card R
4. for any set X, card X < 2¢ard X

©w

Solution 8.56

Listed.
1. An element Y € P(X) is a subset of X by definition. Letting

0 ifzdy
fY(x):{l ifiiY

we can construct the bijective map Y — fy.
2. We can prove this using the identity (which can be proved using induction)

"\ (n

> (1)

k=0

3. Let F(X; {0,1}) be the set of all binary valued functions from X to {0,1}. From (a), card P(X) ~
F(X; {0,1}). Each binary-valued function f is determined by the assignment f(z) for each z € X.
Since f(x) has two possible values, the assignment of f(z) for all z € X has {0, 1}°*4X possible
choices. This gives another bijection F(X; {0,1}) ~ {0, 1}*dX 5o

P(X) ~ {0,1}4X — card P(z) = card({0, 1}crdX) = gcard X

4. If X is finite, then letting n = card X, we can simply prove n < 2" by induction (which we will

not do here). If X is countable, then P(X) is uncountable (from 2.4.4) and so using (c),
card X = cardN < card R = card P(X) = 2614 X

For uncountable sets (and for the two cases mentioned above), we can use Cantor’s theorem,
which states that card X < card P(X), and so using (c), we have card X < card P(X) = 2card X,
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Exercise 8.57 (Zorich 2.4.6)

Let Xq,...,X,, be a finite system of finite sets. Show that

card ( 6 XZ) = anrqu;l - Z card(X;, N X;,) +

i=1 i1 i1 <2

Z card(X;, N X3, N X4,) — oo+ (=)™ Leard(X; N...N X,p)

i1 <iz<ig

= i > (=D card ( ﬁ XZ-J.>

k=11<iy...ip<m j=1

Solution 8.57

Ignoring Russell’s paradox (defining the universe set of all sets), we can use the commutative, associa-
tive, and distributive properties of U,N on the algebra of sets. We prove using induction on m. For
m = 1, we trivially have card X; = card X1, and for m = 2, we claim

card(X; U X3) = card(X;) + card(Xz) — card(X; N X3)
X1 and X5\ X5 are clearly exclusive sets by definition, with X; U X5 = X7 U (X2 \ X1), so
card(X; U X;) = card (X7 U (X2 \ X1)) = card(X1) + card(X; \ X7) (2)

By definition, the set X5 \ X7 and X7 N X5 are disjoint and satisfies Xo = (X3 \ X1) U (X7 N X32) (also
by definition), so
card(Xs) = card(X2 \ X7) + card(X; N X3) (3)

and substituting into gives the claim for m = 2. Assuming that the claim is satisfied for some
m, we have

m—+1 m
card < U Xi> = card ({U XZ} U Xm+1>
i=1 i=1
k m
= card ( U XZ) + card(X,,41) — card ([ U } N Xm+1) (claim for m = 2)
i=1 =1
k m
= ( U XZ) + card(X,;,,41) — card < U (X;n Xm+1)> (distributive prop.)
=1 =1

Vt“ﬁs
-

~
Il
—
—

IN
&

=

(—1)F ! card ( ﬂ Xij) + card(X,ni1)

i1..is<m =1

_i Z (-1 card(ﬂX ﬁXm+1)
k=11<iy...ix<m =1

With a bit of thought, we can see that the kth term of the second summation contributes to adding
another term to the k+ 1th summation term of the first. Therefore, we must try to shift the summation
over by 1 index. Let us simplify this by taking the summations and extracting the first and last term,
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respectively. We have

m k
Z Z (_l)kfl card < m X%) = Z card(X;,)

k=11<i1...ix<m j=1 1<i1.ip<m
m k
k—1
+ (=1)% " card Xi,
k=21<i1...1.<m Jj=1

and

Zm: > (-1 card((k]x meH)

=11<41...ix<m j=1

m k
= Z Z (_l)k—l card ({ﬂ Xij] ﬂXm+1>
k=11<iy...ip<m 7j=1
m—1 k m—+1
= S (~1)Fteard < (X, meH)) +(~1)™ ! card < X])
k=1 1<iy...ix<m j=1 =1

So subtracting the summations gives

k

i Z (—1)** card ( ﬁ Xij) - i Z (—1)* " card ( (X, N Xm+1)> + | X1

k=11<¢1...i,.<m J=1 k=11<41...i,.<m J=1

= Z card(z;) + Z Z (—1)*!card ( ﬂ X ) + card(X,,41)

1<iy...ig<m k=21<i1...ix<m j=1

+ i > (-1)F'card <k_1(Xij N Xm+1>> +(=1)™ card (nﬁl Xj)

k=21<i1...iy<m j=1 j=1

m k
= Z card(X;) + Z Z (—1)F1 [card ( ﬂ Xij)

1<iy..ix,<m+1 k=21<i¢1...1.<m

+ card ([kﬁl X%] n Xm+1> + (—=1)™ card (mﬁl Xj)

j=1 j=1

and since the set of sequences of k terms bounded by m + 1 (of form 1 <4y ...4 < m + 1) is the set
of sequences of k terms bounded by m (of form 1 < i;...i; < m) unioned with the set of sequences of
k terms with max element m + 1 (of form 1 <4y ...ix =m+ 1), we have

> (k! [card ( ﬁ Xz-j) + card (de} N Xmﬂ)] - Y cad ( ﬁ XZ-J.)

1<iy..ip<m j=1 <iy.ip<mA+1l j=1

and therefore, substituting the above and observing that the independent terms are the first and last
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terms of the summation gives

card (WU X) = ) card(X))+ i >, (=1)Fcard ( (k] Xi])

i=1 1<iy...ig<m+1 k=21<i1...ip<m+1 j=1

m—+1
+...+(=1)™card ( ﬂ Xj>
j=1
m—+1

DS <_1>k—1card<élxij)

k=1 1<iy...ip<m+1

Exercise 8.58 (Zorich 2.4.7)

On the closed interval [0,1] C R, describe the sets of numbers z € [0, 1] whose ternary representation
x=0.0q03..., a; € {0,1,2} has the property.

1. (&3] # 1

2.y #land ag #1

3. For all i € N, a; # 1 (the Cantor set)

Solution 8.58

Listed.
1. [0,%) Ul[2,1)
2. 00,5) U5, 2 Ulg, D Uls 1)

3. Made by recursively removing the middle third of every partitioned intervals.

Exercise 8.59 (Zorich 2.4.8)

Show that
1. the set of numbers x € [0,1] whose ternary representation does not contain 1 has the same
cardinality as the set of all numbers whose binary representation has the form 0.5,5; ...
2. the Cantor set has the same cardinality as the closed interval [0, 1]

Solution 8.59

Listed.
1. We can define a bijection 0.cjas ... — 0.5182...asa; =0 < [;=0and a; =1 < §; = 2.
2. The map above defines a bijection between the Cantor set and the set of all infinite binary
expansions in [0, 1], which is uncountable by Cantor’s diagonalization theorem.

8.2 Euclidean Topology

Exercise 8.60 (Math 531 Spring 2025, PS5.1)

We know what it means for a metric space (X, d) to be compact. We say that it is sequentially compact
if every sequence in (X, d) has a convergent subsequence. Prove that a metric space is compact if and
only if it is sequentially compact.
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Solution 8.60

We prove bidirectionally.
1. (—). Assume that X is compact and let (z,,) be a sequence in X. For any € > 0, let

6. = {B.(z) |z € X} (667)

be an open cover of open balls. Then there exists a finite subcover F, C %,. There is a countable
sequence (), with each point in at least one open set in €. By the pigeonhole principle, at least
one open set must be hit infinitely many times, call this B(z*,¢). Now consider for ¢ = % for
n € N.

2. (+).

Exercise 8.61 (Math 531 Spring 2025, PS5.2)

Give an example of a sequence of real numbers z,, for which
|Tpt1 — x| =0 (668)

as n — oo, but z,, is not convergent.

Solution 8.61

Consider the sequence
1
Ty = E - (669)

It is the case that x,+1 — 2, = 1/(n + 1) which tends to 0, but this is a harmonic series which is not
convergent.

Exercise 8.62 (Math 531 Spring 2025, PS5.3)

Let {2, }52, be a sequence of real numbers. Assume that
|Tnt1 — n| < ¢l — Tp_1] (670)

for all n > 1, for some fixed ¢ < 1. Prove that x,, is convergent. Hint: you may want to use the formula
that you proved in a previous homework for 1+ ¢+ c? + -+ + ¢!V,

Solution 8.62

Exercise 8.63 (Math 531 Spring 2025, PS5.4)

Let z,, be a sequence of rational numbers defined recursively by:

xo=1 (671)
1
Tn+1 = P} (672)
when n > 0. The first few terms of this sequence are 1, %, %, ... Prove that the sequence is convergent

and find its limit.
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Solution 8.63

Exercise 8.64 (Math 531 Spring 2025, PS5.5)

As we know, every bounded sequence of real numbers has a convergence subsequence.

1. Let’s say we have two sequences a,, and b, that are bounded. Find a single sequence of indices
{nk} so that both a,, and b,, are convergent. This is called a common convergent subsequence
for a,, and b,,.

2. Show that for any finite number of bounded sequences of real numbers, we can find a common
convergent subsequence.

3. Now suppose have a sequence of bounded sequences. Find a common convergent subsequence.
What does this remind you of?

Solution 8.64

Exercise 8.65 (Math 531 Spring 2025, PS5.6)

Given a sequence of real numbers z,,, we can define the sequence of its means by:

xr1 + o $1+£L'2+£L'3
B s 3 s

x1, (673)
Call the sequence of means y,,. Prove that if z,, — x, then y,, — x. Discuss the examples z,, = (—1)",
Tp =n, T, = (—1)"n, and z,, = (—1)"y/n. The fourth example shows that it is possible to average
out chaotic behavior (so long as it isn’t focused in one direction). The third example shows that this
is impossible if the system becomes too chaotic.

Solution 8.65

Exercise 8.66 (Math 531 Spring 2025, PS4.1)

Let (X, d) be a metric space. Assume that K is compact and F is closed in (X, d). Assume KNF = .
Prove that

inf d 0. 674
it (z,y) > (674)

Show by an example that this number could be zero if K is only assumed to be closed (rather than
compact).

Solution 8.66

KNF =0 = K C F°with F° open. This means that for every x € K C F°¢, there exists a 7, > 0
s.t. B(x,ry) C F¢ < B(z,r,)NF =0.

Now we take the covering { B(z, %) | + € K}, and since K is compact there must be a finite subcovering,
which we denote C' = {B(x;, %) |i = 1,...n}. Denote r* = min{r;}, which is positive since we take
the minimum of a finite number of positive elements.

Now for any # € K and y € F, x must be in some B(z;, ) <= d(z,7;) < § <= —d(z,z;) > —%.
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With the same 4, since B(z;,r;) is disjoint from F', we have d(x;,y) > r;. Therefore, by the triangle
inequality,
ri o r"
d(z,y) > d(wi,y) — d(z;,2) =1; — 573 > ol (675)

and thus we have found a nontrivial lower bound.

Exercise 8.67 (Math 531 Spring 2025, PS4.2)

Consider R with the usual metric. Find an open cover of Q that does not cover R.

Solution 8.67

Q = (=00,v2) U (v2,+00).

Exercise 8.68 (Math 531 Spring 2025, PS4.3)

R is not compact with the usual metric since it is not bounded. Let us, however, define the following
metric on R:

|z —y|
1+ |zD +[y])

Verify that (R, d,) is a metric space. Prove that all subsets of (R, d,) are bounded. Show that R still
isn’t compact with this metric. What is the problem?

du(x,y) = (676)

Solution 8.68

We first verify metric.
1. Since |z —y| > 0,1+ |z| > 1,1+ |y| > 1, du(z,y) > 0. We also see that

de(z,y) =0 <= |z —y|=0 <= =y (677)
2. It is symmetric since

o) = |z — 1y _ ly — x| _ .
@) = T ) - A e @) (678)
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3. It satisfies triangle inequality since

|z —y| ly — 2|

o)+ ) = T+ ) T T D D (679)
- R (050
S
2 (052
= TR I D (653)
- ET BT (684)
= TG (685)
= d,(z,2) (636)

where the inequality comes from |z —y|+ |y — 2| > | — 2|, |z — y| > ||z] — |y|| > |=| — |y|, and
ly — 2| = [lyl =[]l = |yl = |2].
This is bounded since for any =,y € R, we can show that the numerator is bounded by the denominator.
Since both are positive from (1), it suffices to prove |z — y|? < (1 + |z])2(1 + |y|)%.

(L +[2)* X+ [y))? = L+ 20z] + [2*) (L + 2ly] + |yI*) (687)
=1+ 2[a| + 20yl + 4lally| + |=* + [y1* + 2|zlly* + 2ly[[«|* + [«]*[y|*  (688)
> |z]? + [yl* + 2lz|ly] (689)
> |z]* + [y|* — 22y (690)
= |z —y|? (691)
where the first inequality holds since all the terms in the expansion are nonnegative and the second

holds since |z||y| > zy. Therefore, d.(z,y) < 1. R is still not compact since we can construct the set
of open balls B,.(0) around 0 w.r.t. d.. Consider the cover

C = {317%(0)}%1\1@22 (692)

Now assume that there is a finite subcover. Then there must be a maximum index N € N in this cover.
I claim that this does not cover R. Consider the element y = N — 1 € R. The distance is

0— (N — 1) N-1_ 1

@y =armar N1y N N (693)

and so y € €. Hence € is not a cover of R.

Exercise 8.69 (Math 531 Spring 2025, PS4.4)

Consider the set X = RU {Gandalf}. Define a metric d, on X by:

|z —yl
(T+ 121+ [yl

di(z,y) = (694)
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for z,y € R, while
1

d* (Gandalf, J)) = m,

(695)

for all x € R. Verify that d, is a metric on X (you don’t have to do much for this, since you already
did part of it in the previous problem). Prove that (X, d.) is a compact metric space.

Solution 8.69

Exercise 8.70 (Math 531 Spring 2025, PS4.5)

Let X be any set and endow it with the metric d(z,y) =1 if  # y and d(x,2) = 0. Check that this is
a metric. Find all compact sets in (X, d).

Solution 8.70

It trivially satisfies nonnegativity since it’s either 0 or 1, and d(z,z) = 0. It is symmetric as well. As
for triangle inequality this is trivial. All compact sets are finite sets.

Exercise 8.71 (Math 531 Spring 2025, PS3.1)

Determine for each of the following sets, whether or not it is countable. Justify your answers
1. The set of all functions f: {0,1} — N.
The set B, of all functions f: {1,....,n} = N
The set C' = U,enBn
The set of all functions f : N — {0, 1}.
The set of all functions f : N — {0,1} that are “eventually zero” (We say that f is eventually
zero if there exists some N > 1 so that f(n) =0 for alln > N.)
6. G the set of all functions f : N — N that are eventually constant.

U o

Solution 8.71

Listed.
1. Countable since bijective to N x N. We define the bijection as

(ao,al) €ENXN— f(Z) = a; (696)
2. Countable since bijective to N”. We define the bijection as
(a1,...,an) € N" = f(i) = q; (697)

3. Countable since we proved that B, is countable, and a countable union of countable sets are
countable from Rudin Theorem 2.12.

4. Uncountable since we can create a bijection from the set of all sequences (a;) of 0 or 1, which
from Rudin Theorem 2.14 is uncountable.

(ai)ien = f(i) = a; (698)

5. Countable. Call this set B, and call the set of functions f that have their final 1 at index k to be
Aj. Then,

B =Up2 Ag (699)
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where Ag = A; = 1, and |Ay| = 2¥=1 for £ > 2. Since B is the countable union of at most
countable sets, B must be countable.

6. Countable. Call this set B. Let Ay be the set of functions that are eventually constant to value
k. Let Ay; be the set of functions that are always k starting from index ¢ (where 7 is the smallest
element). Since everything is determined to be k at ¢ and beyond, Ay; can be divided up into the
first i — 1 elements of any natural number, followed by a sequence of k’s. Therefore |A;| ~ N~
where ~ means equipotent, and so Ay; is countable. Therefore since countable unions of countable
sets are countable,

A = U Ay is countable — B = Z A}, is countable (700)
i=1 k=1

Exercise 8.72 (Math 531 Spring 2025, PS3.2)

Tell if the following subsets A C R (with the usual metric d(z,y) = |z — y|) are open or closed. Also,

find (7) the limit points of A, (i) the interior of A, (iii) A.

1. A=Q

2. A=(0,1]

3. A={1,5,},..}
4. A={0,1,4, i,...}
5. A=7

Solution 8.72

Listed. We denote A’ as the limit points of A and the interior as A°.
1. Not open nor closed. A’ =R, A°=0. A=R.

Not open nor closed. A’ = [0,1], A° = (0,1). A=[0,1].

Not open nor closed. A" = {0}, A" f. A={0}U A.

Closed. A’ = {0}, A° = Q) A

Closed. A’ ={). A° = =

G N

Exercise 8.73 (Math 531 Spring 2025, PS3.3)

Prove the following statements subsets A, B of a general metric space (X, d).
e AUB=AUB. o
e Show by example that AN B # AN B.

Solution 8.73

For the first part, we show bidirectionally.

1. AUB C AUB. Let x € AUB. If x € AU B, then it must be the case that either z € A C
(AUAY =Aorx € BC (BUDB') = B, which means z € AU B. Now assume not. Then
€ (AU B)'. Therefore, for any r > 0, we know that B(z,7) N (AU B) # 0. Now let us take a
sequence (r, = %)nGN» and for each 7,, we have some element z,, € (AU B). Given that we have
a countably infinite sequence of z,, each which may be in A or B, by the pigeonhole principle
either A or B must be hit infinitely many times. If z,, € A infinitely many times, then x € A,

and analogous for B.
2. AUBCAUB. WLOG let r € A. Ifxr € A, thenz € (AUB) CAUB. If v ¢ A, then z € A’.
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Therefore for every r > 0, B(z,7) N A # (. But this means
0 # (B(x,r)NA)U (B(z,r)NB) = B(z,r)N(AUB) = z€ (AUB) C AUB (701)

For a counterexample, consider the sequences

B = (yn) = *% (702)

A= (x,) =

S

forneN. A= AU{0},B= BU{0}, and so AN B = {0}. However, ANB=( = ANB=40.

Exercise 8.74 (Math 531 Spring 2025, PS3.4)

Consider the set of rationals in canonical form (such that numerator and denominator are relatively

prime) with potential distance:
P1 P2
di(>=, =) =l — q2|- (703)
a1 q2

Is this a metric? Prove that the following defines a metric

do(P 22y = [py = ol + a1 — @ (704)
q1 Q2
Solution 8.74
This is not a metric since 5 3
di|=,-)=1—-1=
1 (1, 1> 0 (705)

when 2/1 # 3/1. For dg, we show that it satisfies the three properties.
1. Nonnegativity. Since it is the sum of 2 absolute values which are norms and therefore nonnegative,
it must be nonnegative by ordered field properties. We see that

D1 :Pz

—=— <= p=prand ¢ =q (706)
q1 q2
= [P —p2l =l —q[=0 (707)
= [p1—p2l+la—q[=0 (708)

2. For symmetricity, note that

P1 D2 P1 P2
dg(,)=|p1—p2+|q1—q2:|p2—p1+|q2—q1=d2(,) (709)
q1 q2 q1 q2

3. For triangle inequality, we see that for any p1/q1,p2/q2,03/q3,

d2<pl, m) = |p1 — p3| + g1 — g3] (710)
q1 g3
= |(p1 — p2) + (p2 — p3)| + (@1 — q2) + (g2 — g3)| (711)
<|p1 —p2| + |p2 — P3| + |¢1 — q2] + g2 — gs| (subadditivity of norm)
_ dQ(m, m) + dz(?{ P3> (712)
qQ1 q2 q2 43
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Exercise 8.75 (Math 531 Spring 2025, PS3.5)

Let M = {x1,...,x3} be a set with three points. Describe the set of all metrics on M. What if M has
four points?

Solution 8.75

If M has 3 points call them 1, x5, x3, then the metric is completely defined by the three values

d(xl,xg) ::d(IQ,Il) (713)
d($2,$3) Zid($3,$2) (714)
d(xz,x1) = d(x3, 1) (715)

where d(z,z) = 0. We must make sure that the triangle inequality satisfies for these 3 numbers.
Therefore we can think of this as the set of all triangles in R? (that are equivalent under translation
and rotation, but not permutation of points).

Similarly for 4 points, we can visualize the metrics as the set of all tetarhedra in R? (since each face
is a triangle, and therefore for any three points the triangle inequality is guaranteed to be satisfied),
equivalent under translation and rotation, but not permutation of the 4 points.

Exercise 8.76 (Math 531 Spring 2025, PS3.6)

Let P be a polynomial of degree n > 1. Prove that if P(0) = 0, then P(z) = zQ(z), for some
polynomial @ of degree n — 1. Deduce that if P(a) = 0, then we can write P(x) = (z — a)Q(x) for
some () of degree n — 1.

Solution 8.76

A nth degree polynomial will have the form
pl)=> et (716)

Since p(0) = ¢y =0 = ¢¢ = 0. This means that

n—1 n—1

p(z) = Zcixi =z Z cip1x where Q(x) = Z Cip1xt (717)
i=1 i=0 i=0

If p(a) = 0, we can construct f(x) = p(x + a), where f is a polynomial since the expansion does not
increase its degree. Since f(z) = p(a) = 0, by above f can be factorized f(z) = zg(x) for some (n—1)th
degree polynomial g, and by substitution this means that p(z) = f(z — a) = (z — a)g(x — a).

Exercise 8.77 (Math 531 Spring 2025, PS3.7)

Consider all polynomials P : R — R of degree less than or equal to n. Call this set P,. Let’s define
potential distances on P,,.

d1(p,q) = |p(0) — q(0)]. (718)
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Show this defines a distance on Py but not on P,, for n > 1. Now consider

N
dn(p,q) = Y Ip(j) — a(j)] (719)
=0

Show that this defines a distance on P, for every n < N. What does the solution say about polynomials
of degree N7

Solution 8.77

If n =0, P, is a set of constant functions P, where each constant function P is determined completely
by its value at any point, e.g. 0. We check the properties.
1. di(p,q) > 0 since we take the norm at the end. We can see that

di(p,q) =0 <= [p(0) — q(0)] (720)
<~ p(0) =¢(0) (721)
= p=q (722)
2. It is clearly symmetric.
d1(p, q) = [p(0) = q(0)| = |¢(0) = p(0)[ = di(g, p) (723)

3. It satisfies the triangle inequality by subadditivity of the norm.

di(p,r) = |p(0) —r(0)] (724)
= [(p(0) — 4(0)) + (¢(0) — r(0))| (725)
< [p(0) = q(0)] + [g(0) — r(0)] (726)
= di(p,;q) +di(g,7) (727)

It doesn’t satisfy for P, because consider p(x) = x and ¢(z) = 2. They are not the same function but
d1(p,q) = |p(0) — q(0)| = 0. For dy defined on P,, for n < N, we verify the properties.

1. This is the sum of norms, so it must be nonnegative. Now we see that if p = ¢, then p(z) =
q(z) = |p(z) —q(x)| =0 = dn(p,q) = 0. For the other way around, suppose dn(p,q) = 0.
Then from problem 3.8, we are solving the linear equation 0 = Vb — V¢, where b, ¢ are the vectors
representing the coefficients of p, ¢, and V is the Vandermonde matrix with a; = ¢. By linearity,
this is equivalent to solving 0 = V(b — ¢), and since we showed that V' is invertible (since a;’s are
distinct), V has a trivial kernel and therefore b —c=0 < b=c = p=gq.

2. Symmetricity is trivial.

2

dn(p,q) =Y Ip(G) — ¢l = la(G) — p()| = dn(g,p) (728)

Jj=0

1M
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3. For triangle inequality,

I
M=

dy(p, ) p(5) — 7(4)| (729)
§=0
N
=" 10G) — a(h)) + (@) — r(H))| (730)
j=0
N
<Y IpG) — gl + la) — ()] (731)
=0
N N
= Ip(i) — gl + > la(i) — r(i) (732)
j=0 j=0
- dN (pa q) + dN (qv T) (733)

This shows that we need to “sample” more points from higher-degree polynomials to get the metric as
they are higher-dimensional.

Exercise 8.78 (Math 531 Spring 2025, PS3.8)

Given distinct numbers ag, ...,any and numbers by, ..., by, prove that there exists a polynomial P of
degree N with the property that
P(CLZ‘) = bi, (734)

for 0 < ¢ < N. The most direct way to solve this problem, in my view, is to write the system equations
you are trying to solve as a linear system for the coefficients of P. This will give you some matrix
M that depends on the numbers ag, ..., ay. The key is to show that the determinant of this matrix is
non-zero. It turns out that the determinant of this matrix is equal to

IT (@ —ay, (735)

0<i<j<N

up to a potential — sign depending on how you defined M. Prove this and deduce the result.

Solution 8.78

We can write the system of equations using the Vandermonde matrix V € RINtDX(N+1) and ¢ is the
vector of coefficients of P.

bg 1 ap a% ce a(I)V Co
by 1 u a% ... a{v c1

b=Ve = | . |=|. . . . (736)
bn 1 apn a?v - a% CN

To calculate the determinant of V', we prove using induction. Clearly for N = 1 we have

1 ap\ _
det (1 a1> =a; —agp (737)

Now assume that this formula holds for some N — 1 € N. Then for N, we can take V and subtract ag
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times the ith column from the (i 4+ 1)st column. This gives us

1 0 0 0
1 a1 —ag a% —apa1 ... a{v — aoaf[—l
2 N N-1
V=|1 a—a a3—apaz ... ay —apa; (738)
2 N N-1
1 ay—ap ay —apany ... ay —apay

When calculating the determinant, we can perform the cofactor expansion by the first row, and then
for each ith row factor out (a; — ag) to get

1 a a{vfl
N 1 ay ... a1
detV =](aj —ao)det |. . = 7 (739)
o Do
1 any ... a%_l

which is the (N —1) x (N — 1) Vandermonde matrix. Therefore, we can apply our inductive hypothesis
to get

N
detV=]J(a; —a0) [] (ej—a)= J[ (aj—a) (740)
j=1 1<i<j<N 0<i<j<N

Note that this has a 0 determinant iff a; = a; for some i # j. Therefore sicne a;’s are distinct, it must
be nonzero. Therefore, this matrix is nonsingular, i.e. invertible, and we can solve the matrix equation
to get

c=V"1 (741)

which from linear algebra is guaranteed to exist and is unique.

Exercise 8.79 (Rudin 2.1)

Prove that the empty set is a subset of every set.

Solution 8.79

It must suffice that if x € @), then x € A for any arbitrary set A. This is vacuously true, since the initial
condition is never met.

Exercise 8.80 ()

Show that the empty function f : ) — X, where X is an arbitrary set, is always injective. If X = (),
then f is bijective.

Solution 8.80

Given distinct 2,y € 0, f(z) # f(y) is vacuously true, but if X # ), then there exists a w € X with no
preimage. If X = (), then the statement for all w € X, there exists an = € () s.t. f(x) = w is vacuously
true.
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Exercise 8.81 (Rudin 2.2)

A complex number z is said to be algebraic if there are integers ag, a1, ..., ay, not all zero, such that
apz" + a1z . 4 an_1z+a, =0. (742)

Prove that the set of all algebraic complex numbers is countable. Hint: For every positive integer N
there are only finitely many equations with

n+ lag| + lai| + ...+ ]an| =N (743)

Solution 8.81

Consider all polynomials s.t. n+ Y. |a;| = N. There is only a finite number of them, and each
polynomial has at most n distinct complex roots. So this set is finite, an unioning over all N € N gives
an at most countable set of roots.

Exercise 8.82 (Rudin 2.3)

Prove there exists real numbers which are not algebraic.

Solution 8.82

From the previous exercise, if there were no no real numbers which are not algebraic, then every real
number is algebraic. This contradicts the fact that the set of all complex numbers is countable.

Exercise 8.83 (Rudin 2.4)

Is the set of all irrational real numbers countable?

Solution 8.83

No. Assume that it is countable. We have Q countable. Then, by assumption, we must have R = QUQ*
be the union of countable sets, which must be countable, contradicting the fact that it is uncountable.

Exercise 8.84 (Rudin 2.5)

Construct a bounded set of real numbers which exactly 3 limit points.

Solution 8.84

We can construct the union of 3 sequences that converge onto the limit points 0, 1, 2.

1 1 1
{ﬁ}nGN U {E + 1}n6N U {g + 2}n€N (744)
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Exercise 8.85 ()

Prove that the union of the limit points of sets is equal to the limit points of the union of the sets.

m m !
U4, = < Ak> (745)
k=1 k=1

Solution 8.85

Exercise 8.86 (Rudin 2.6)

Let E’ be the set of all limit points of a set E. Prove that E' is closed. Prove that E and E have the
same limit points. (Recall that E = EU E’). Do E and E’ always have the same limit points?

Solution 8.86

Listed.

1. Let = be a limit point of E’. Then, for every € > 0, U = B.(x) N E’ # (. Take a y € U. Since
y € B(x), which is open, we can construct an open ball Bs(y) C B.(z). Since y € E’, Bs(y)
must contain elements of E, which means that B.(x) must also contain elements of F, and so z
is a limit point of & = x € E' and E’ is closed.

2. To prove that E/ C E , we know that if = € E’, then for every € > 0, there exists a B2(x) that
has a nontriviaglntersection with E' which means that it has a nontrivial intersection with FUE’.
To prove that E C E’, we know that if y € E', then for every § > 0 there exists a Bs(x) that
has a nontrivial intersection with E. If Bs(z) intersects E then we are done. If Bs(x) intersects
E’, then we can find a y € E' N Bs(x). Since Bs(z) is open, we can construct B.(y) C Bs(z) and
since y € E’, we know that B.(y) contains an element of E, which means that Bs(z) contains an
element of E. Therefore, £’ = .

3. No. Consider the set £ = {1/n},en. E' = {0}, but E” = 0.

Exercise 8.87 (Rudin 2.7)

Let A1, Az, ... be subsets of a metric space.
L. If B, = U, A;, prove that B, = U1 A4; forn=1,2,3,...
2. If B =U2 | A;, prove that B D U2, A;.

Solution 8.87

Listed.
1. We will prove that B,, C U;‘Zlfi and U?lei C B,. If z € B, then z € U, A;. Therefore,
assume that € B],. Then for every € > 0, there exists a B2 (z) s.t.

Bo(x) N B, #£0 = B°(z)n (QA) oy

This means that there exists some ¢ = i(e), a function of ¢, s.t. B2 (z) N A; # (). However, this 4
may change if we unfix e. We have so far proved that just for one € > 0 there exists an i. Now

if we take a sequence of € = 1, %, %, ..., we have a sequence of i(e)’s living in {1,...,n}. By the
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pigeonhole principle, there must be at least one ¢ that is hit infinitely many times, and so we can
choose this 4, that works for all e > 0 = x € A} C U, A;. If 2 € UL, A;, then there exists an
A; st x € A, If x € A;, then we are done. If x € A%, then for every € > 0, there exists a B2(z)
S.t.

B:(J?)QAZ#@ — B:(.’L‘)ﬁ (0A1> 75@
i=1

and so = € B!, C B,,.

2.z e U A = € A; for some i. If x € A;, then 2 € B and we are done. If z € A’ then for
every € > 0 there exists B(x) s.t.

BX(x)NA; #0 = BZ2(z)N (GAi> #0
i=1

and so B(z)NB# () = r € B' CB.

Exercise 8.88 (Rudin 2.8)

Is every point of every open set £ C R? a limit point of E? Answer the same question for closed sets
in R2.

Solution 8.88

Yes for open. Given any x € U open, there always exists an € > 0 s.t.
BZ(x) C B(x) U (746)

and so B?(x) has a nontrivial intersection with U. If U is closed, then no. Note that for closed U, we
have that every limit point is in U, but not every point in U is a limit point. Consider the isolated
point U = {z}. = is not a limit point of U.

Exercise 8.89 (Rudin 2.9)

Let E° denote the set of all interior points of E in X. Prove the following:
(a) E° is always open.
(b) E is open if and ounly if E° = F.
(¢) If G C F and G is open, then G C E°.
(d) Prove that the complement of E° is the closure of the complement of F.
(e) Do E and E always have the same interiors?
(f) Do E and E° always have the same closures?

Solution 8.89

Listed.

1. We assume that E° is not open (this does not mean that E° is necessarily closed!). That is, there
exists an x € E° s.t. we can’t construct an open ball B.(x) C E°. Since z € E° C E, by definition
of an interior point we can construct a B.(z) C E. But from our assumption B.(z) ¢ E°. We
choose a y € Bc(x) \ E°. Since B.(z) is open, there exists a § > 0 s.t.

Bs(y) C B(z)C E
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But the fact that we can construct an open ball around y means that y € E°, leading to a
contradiction.

2. If F is open, then by definition £ C E°. Now E° C FE holds for all sets since E° must be
composed of points from E. If F = E°, then for every z € E, x € E°, so by definition there
exists an € > 0 s.t. Be(x) C E, which means that F is open.

3. Let # € G open. Then there exists an € > 0 s.t. Bc(z) C G, and so B.(z) C E. Since we can
always construct an open ball around z contained within E, x € E° and G C E°.

4. ((E°)¢ C E°) If x € (E°)¢, then there exists no € > 0 s.t. B.(z) C E. Then, for any € > 0,
B(z) ¢ E = B(z)NE‘#0) = z € E°C E°. (B¢ C (E°)°)) If € E°, then x € E° or
x€EY Ifx e E° note E°CE = (E°)°DE° = x€ (E°) lfz e EY thenforalle>0
B(z)NE°#0) = B.(z)¢ E = z € E°.

5. No. Consider the rationals Q C R. Q° = ) but @O = R° = R. It is true and straightforward
to prove that E° ¢ E°. Let € E°. Then there exists an € > 0 s.t. B(z) C E = B.(z) C
EF— z€E.

6. No. Consider Q € R. Then Q =R and Q° = § = 0.

Exercise 8.90 (Rudin 2.10)

Let X be an infinite set. For p € X and g € X, define

1 if
d(p,) = {0 e (47)

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed?
Which are compact?

Solution 8.90

This is a metric since clearly it satisfies symmetry and the fact that d(p, p) = 0. The triangle inequality

d(p,r) < d(p,q) +d(g,r) (748)

is trivially satisfied if p = r, and if p # r, then either p # ¢ or ¢ # r, and so the RHS > 1. An open
e-ball around x € X is either X, when ¢ > 1, or {x} when ¢ < 1. Therefore

Exercise 8.91 (Rudin 2.11)

For x € R and y € R, define

dl(l',:l/) = ([L‘ - y)2
da(z,y) = V/|z =yl
d3($,y) = |$2 yQ‘
d4(x7y) = |.’E - 2y|

|z —y|
ds(,

Determine, for each of these, whether it is a metric or not.
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Solution 8.91

Listed. Positive semidefiniteness and symmetry are easy to check.
1. The triangle inequality gives

di(z,2) < di(z,y) +di(y,2) <= (¢—-2)° <(x—y)° +(y—2)°
= 0<(z-y)ly—2)
which is not satisfied if < y < z, so this is not a valid metric.

2. The triangle inequality gives \/|z — 2| < \/|z — y| + /]y — z|, and since both sides are positive
this inequality is equivalent to squaring both sides to get

|z — 2| < |z —y|+ |y — 2| + 2]z — ylly — 2]

which is true since | — z| < |z — y| + |y — 2| of the Euclidean distance satisfies the triangle
inequality and 0 < \/|z — y|ly — z|.
3. This does not satisfy triangle inequality, as taking 0, 1,2 gives

d3(0,2) =4 > 1+1=ds(0,1) + ds(1,2)

4. This does not satisfy symmetry.
5. For simplicity, let us set A = |x — y|, B = |y — z|,C = |x — z|. Then, we get
C A B
< C<A+B+2AB+ ABC
170114 14 7 CAToTART

where C' < A + B is true by triangle inequality of Euclidean distance, 0 < AB, and 0 < ABC.
Intuitively, we want a metric that doesn’t “blow up" the distance between x and y. More precisely, we
want a valid metric d(z,y) to be O(]z — y|). Having something like a quadratic growth rate (z — y)?
will blow the distance d(z, z) up too much overpowering the individual d(z,y) + d(y, z).

Exercise 8.92 (Rudin 2.12)

Let K C R consist of 0 and the numbers 1/n for n = 1,2,3,.... Prove that K is compact directly from
the definition (without using the Heine-Borel theorem).

Solution 8.92

Every open cover of K must have an open set G s.t. 0 € GG. Since G is open, there exists an open
neighborhood B,(0) C G around 0. By the Archimidean principle, there exists an N € N s.t.

1
N>1 — 4
eN>1 = e> (749)

and so, B(0) contains all points {1/n} for n > N. For the rest of the points 1,1/2,...,1/N, we can
simply construct a finite cover over each of them, hence getting a finite cover.

Exercise 8.93 (Rudin 2.13)

Construct a compact set of real numbers whose limit points form a countable set.
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Solution 8.93

Consider the set

o {(110)+ (11())+k :ne {O}uN,keN}U{O} (750)

This is clearly bounded by 0 and 1.1. Let us represent the elements of this set by (n, k). We can show
that
(nhkl) > (n27k2) (751)

if n1 < mg or ny = ny and k; < kg. Therefore, to prove closedness, we must prove that every limit
point is a point in £. We can do this by proving that a point not in E cannot be a limit point. Choose
any x ¢ E. Then, due to the ordering, we can see that there exists a (n, k) s.t.

1 n 1 n+k 1 n 1 n+k+1

and so we can take e = min{k — A, B — k} and show that B.(z) does not contain A nor B, and so
has an empty intersection with F. Therefore, it cannot be a limit point of F and is closed. Since FE is
bounded and closed in R, it is compact. Its limit points contain 1,0.1,0.01,...,0 (simply by fixing n
and letting k — oo, and so E’ is infinite. We have just shown that since E is closed, E' C E. But F is
countable, so E’ is countable.

Exercise 8.94 (Rudin 2.14)

Given an example of an open cover of the segment (0, 1) which has no finite subcover.

Solution 8.94

Consider

(o,1/2)u<© [1—211.,1—21.1“)) (753)

i=1

Exercise 8.95 (Rudin 2.15)

Solution 8.95

Exercise 8.96 (Rudin 2.16)

Regard Q, the set of all rational numbers, as a metric space, with d(p, ¢) = |p — ¢|. Let E be the set of
all p€ Qs.t. 2 < p? < 3. Show that F is closed and bounded in Q but is not compact. Is E open in

Q?

Solution 8.96

E is clearly bounded by 0 and 2 since 02 < 2 < p? < 3 < 22. It is closed and we can show this by
showing that E° is open. Let € E°. Then, 22 < 2 or 22 > 3.
1. 22 <2 < —V2< 2 <V2. Nowlet e= min{ﬁ —r,r+ \@} > 0. Then by the Archimidean
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property there exists an € Ns.t. 0 < % < e. Therefore, the image of B/, (z) C Q will map onto
0,2).

2. 562 >)3 — z>+V3orz < —3. Ifx > \/g, then by AP there exists an € Ns.t. x—% >4V/3 =
(x—2)2 > 3. If 2 < —V/3, then by AP there exist n € Nsit. 24+ 1 < -3 = (z+ 1)?> 3.
Either way, the image of B, (x) will map within £°.

It is not compact because E is not closed in R. The limit points of E in R is [\/5, \/g] U [,\/37 ,\/5}’
which contains irrationals and is clearly not a subset of E. Since it is not closed in R, it is not compact
in R, and it is not compact in Q C R. It is open because

E=((V2,V3)U(-V3,v2))UQCR (754)

which is the union of open (\/57 \/ﬁ) U (—\/g, \/ﬁ)) and subset Q C R, and so it is open.

Exercise 8.97 (Rudin 2.17)

Let E be the set of all € [0,1] whose decimal expansion consists of only the digits 4 and 7. Is E
countable? Is F dense in [0,1]? Is E compact? Is E perfect?

Solution 8.97

Exercise 8.98 (Rudin 2.18)

Is there a nonempty perfect set in R which contains no rational number?

Solution 8.98

Exercise 8.99 (Rudin 2.19)

Listed.
1. If A and B are disjoint closed sets in some metric space X, prove that they are separated.
2. Prove the same for disjoint open sets.
3. Fix p € X, § > 0, define A to be the set of all ¢ € X for which d(p,q) < . Define B similarly,
with > in place of <. Prove that A and B are separated.
4. Prove that every connected metric space with at least two points is uncountable.

Solution 8.99

Listed.

1. This is trivial with the fact that the closure of the closure of A is the closure of A.

2. Let A, B be open. We wish to show that if z € A’, then z € B. Assume x € B. Then there exists
€>0st. B(x)CB. Bt BNA=0 = B.(z)NA=0andsox ¢ A, which is a contradiction.

3. Clearly, AN B = (). Not let z € A = there exists ¢ > 0 s.t. Bc(zr) CA = B(z)NB =
() = x € B’. We can prove similarly to show that xt € B = z ¢ A’

4. Assume X is countable (solutionis very similar for finite). Then, we can enumerate a X = {x;}2;.
We wish to show that X can be decomposed into the union of an open ball and the interior of
its complement as shown in (3). We fix p € X. Then, we take the set D = {d(p,z)}»p C R.
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Since D is a countable subset of R, there must exist some o > 0 s.t. o ¢ D. This a partitions
the distances into two sets, and we can define

X ={¢e X |d(p,g) <a}U{qge X [d(p,q) >}

and by (3), these two sets are separated, which means that X is not connected, leading to a
contradiction.

Exercise 8.100 (Rudin 2.20)

Are closures and interiors of connected sets always connected? Look at subsets of R2.

Solution 8.100

The interiors are not always connected. Consider the two closed balls By ((1,0)) and B;((—1,0)) as
subsets of R2. They are connected but their interiors, which are the two open balls, are not connected.
As for closures, they are always connected. Let W be connected. Then for any partition AU B = W,
AN B # ) WLOG. Consider W = W U W’ and take any partition W = C U D. Then, label A =
CNW,A*=CnW ,B=DnNW,B*=DnNW'. This implies that C = AU A*, D = B U B*, and
AU B =W (which is connected). Then, we can show that

CND=(AuA*ND)=(AuA*)ND = (AN D)U(A*N D)
=(ANB)U(ANB*)U(A*N D)

which cannot be empty since by connectedness of W, AN B # (. Therefore, W is connected.

Exercise 8.101 (Rudin 2.21)

Let A and B be separated subsets of some R¥. Suppose a € A,b € B and define
p(t) =1 —t)a+td (755)

for t € R. Put Ag =p~1(A), Bo = p~*(B).
1. Prove that Ay and By are separated subsets of R.
2. Prove that there exists a to € (0,1) s.t. p(tg) € AU B.
3. Prove that every convex subset of R* is connected.

Solution 8.101

Exercise 8.102 (Rudin 2.22)

A metric space is called separable if it contains a countable dense subset. Show that R¥ is separable.

Solution 8.102

Consider the set QF C R¥. Tt is a finite Cartesian product (and hence, a countable union) of countable
Q, and so it is countable. Q¥ is dense in R* since given any 2 € R¥, we claim z is a limit point of QF.
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Given any € > 0, we can construct BS(z). For each coordinate z;, by density of rationals in R we can
choose a ¢; € Q s.t. 0 < d(x;,¢;) < €/k. Then, using triangle inequality, we can take the distances
between each coordinate changed from z; to ¢;. Let ¢* be the vector z with the components x1, ...,z
changed to q1,. .., qk, respectively.

_ € €
d(z,q) = d(z,q") + d(q', ¢%) Jr...er(q}C Lar) < % + ...+ T=¢ (756)

and so ¢ € B°(z). Hence the intersection of Q* and B?(z) for any € > 0 is nontrivial, so x is a limit
point of QF.

Exercise 8.103 (Rudin 2.23)

A collection {V,} of open subsets of X is said to be a base for X if the following is true: For every
z € X and every open set G C X such that z € GG, we have x € V,, C G for some «. In other words,
every open set in X is the union of a subcollection of {V,,}. Prove that every separable metric space
has a countable base.

Solution 8.103

Since X is separable it contains a countable dense subset, call it S. Then for every = € S, we can
look at the set of all open balls with center x and rational radii, call it B. Then B is countable. Now
consider an open set U. By definition, for every = € U, there exists an € > 0 s.t. Be(x) C U. By AP,
we can find an € Ns.t. 0 < 2 < ¢, and therefore we can find an open ball B € B s.t. B(z) C U. We
claim that
W= |]J B)=U (757)
zeU
If € U, then by construction it is contained in B(x) C UzeyB(x), and so U C W. If x € W, then it
is in B(z), which is fully contained in U and so W C U. Therefore every open set can be constructed
by a countable union of open balls in countable B.

Exercise 8.104 (Rudin 2.24)

Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Solution 8.104

We fix 6 > 0. Choose z1 € X. Then choose z2 € X s.t. d(z1,z2) > J, and keep doing this until we
choose zj41 € X s.t. d(zjq1,2;) >0 foralliel,. .. j.
1. We claim that this must stop after a finite number of steps. Assume it doesn’t. Then by
s

assumption V' = {x;}72, should have a limit point in X, denote it 2. Choose § > 0. Then,

By /2 () NV # (). This intersection can only have one point since if it had two z’, 2, then since
both are in Bj/(x), then
0
.5
T3
and since they are both in V| then d(2’,z”) > §, which is a contradiction. Since there is a finite
number of points in Bj/o(x) of V, 2 cannot be a limit point. So this must terminate at some
finite J < oo.
2. Denote W = {x;}/_,. Then, Bs = {Bs(z) | * € W} must cover X, since if it didn’t, there would
exist a y € X s.t. d(y,x) > 0 for all z € W, and we can add another element in W.

d(a',2") < d(a', x) + d(x,2") <

oS
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3. Consider 6 =1,1/2,1/3,... and construct the same cover

<%>k' = {Bl/k(xk,) ‘ 1= 1,...,Jk,}

which is finite. Therefore, # = U2 | %), must be countable.

4. We claim that countable {zy;},; is dense. Consider any € X. For every ¢ > 0, we can find an
arbitrarily large n € N s.t. 0 < % < €. Since 4, is an open cover, there must exist some x,,; s.t.
x € By /p(2ni), which by symmetry implies that 2,; € By, (z) C Be(x). Therefore, there always
exists an x,; in every B¢(x), and so B.(z) N {z;} # 0 = =« is a limit point of {xy;} and so it
is dense.

Exercise 8.105 (Rudin 2.25)

Prove that every compact metric space K has a countable base, and that K is therefore separable.

Solution 8.105

For every n € N, let us consider an open covering .%,, = { By, (zn) | ¥, € K}. Since K is compact, it
has a finite subcovering
G = {Bi/n(Tni) |i=1,...,k(n)} (758)

Now consider the union ¢ = U} ;%,, which is countable. We claim that ¢ is a base. Consider any
open set U. Then for every x € U, we want to show that z is contained in a By, (x,;) C U. Since
U is open , there exists a € > 0 s.t. Be(x) C U. Now by AP, there exists an € Ns.t. 0 < % < 5.
Therefore By, (7) C Be(x). Since ¢ is an open covering, there must exist some By /, (7,;) that contains
x. Now we wish to show that B/, (xn;) is fully contained in U. Let y € By, (2n;). Then, by triangle

inequality,
1 1
d(yvx) = d(yvxnz) + d(xnm $) < E + E <e€ (759)

and therefore x € B/, (zni) C Be(x). Therefore, for every x € U, we can construct an open ball of ¢
containing x and contained in U, proving that this is a base.

We claim that the set of all & = {z,,;},,; forms a countable dense subset. This is clearly countable
since ¢ is countable. We must prove that the closure of & = K. Let z € K. Given any ¢ > 0, we wish
to show that B.(x) N & # (). Since B.(z) is open, it can be covered by a subcollection of ¢, and so
their centers must be in B.(z), proving that B.(x) N & # (). Therefore, x is a limit point of Z.

Exercise 8.106 (Rudin 2.26)

Solution 8.106

Exercise 8.107 (Rudin 2.27)

Solution 8.107
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Exercise 8.108 (Rudin 2.28)

Solution 8.108

Exercise 8.109 (Rudin 2.29)

Prove that every open set in R is the union of an at most countable collection of disjoint segments.

Solution 8.109

Let U C R be open. Then for all z € U there exists € > 0 s.t. (z — ¢, +¢) C U. Now since R is
separable (by exercise Rudin 2.22), it has a countable dense subset Q. Consider all segments of rational
radius and rational centers

B={(q—p,q+p) CR|q,pecQ} (760)

This is clearly countable. We claim that every open U can be expressed as the union of a subset
of 8. Now by AP, there exists n € N s.t. 0 < % < §, so0 for all z € U, there exists n € N s.t.
(x — %,:E-l— %) C U. Now since Q is dense in R, 2 € Q) = (x — %,x—i— %) NQ # (. Say r is in this
intersection. Then, by symmetry of metric, z € (r — %, r+ %) Therefore, for all x € U, we have found
an open ball in & that contains z. Now, we must show that this actually is fully contained in U. This

is easy, since if y € By, (r), then
d(y,x) < d(y,r) +d(r,z) <

+-<e (761)

S|

1
n
and so By, (r) is complete contained in the e-ball around x, which is a subset of U. So for all z € U,
we found an open set U, € % covering x and fully contained in U, which means that U,cyU, = U.
Now for some intervals By, By € %, if By N By # (), take their union, which is another segment, and
keep doing this until B; N B; # 0 for all ¢, j. The cardinality of this new pruned set will be less than
or equal to #, which is countable, and so this must be at most countable.

8.3 Sequences in Euclidean Space

Exercise 8.110 (Math 531 Spring 2025, PS4.6)

Consider the set of all bounded sequences of real numbers. That is, we consider sequences {z,} for
which

sup |z | (762)
neN

exists. For example, the sequence {1,2,3,...} does not belong to the set, but the sequence
{1, —%, %, L ...} does. Call this set X. Endow it with a metric:

d({zn}, {yn}) = sup T — Ynl. (763)

Explain why this is a metric. Make sure to explain why the supremum on the right hand side exists.

Solution 8.110
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Exercise 8.111 (Math 531 Spring 2025, PS4.7)

Consider the metric space (X, d) from the previous problem. Is B;({0}) a compact set? Here, {0} is
just the sequence of zeros: {0,0,0,0,...}.

Solution 8.111

Exercise 8.112 (Rudin 3.1)

Prove that convergence of {z,} implies convergence of {|z,|}. Is the converse true?

Solution 8.112

If {z,} converges to z, then for all € > 0, there exists a N € N s.t. |z, —z| < € if n > N. We use the
inequality ||z| — |2|| < |#, — 2| to show that then for every e > 0 there exists a N € N s.t.

Hxn‘ - |$|’ <z —z[ <e

and so {|x,|} converges to |z|.

Exercise 8.113 (Rudin 3.2)

Calculate

lim vn24+n—n

n—oo

Solution 8.113

We can compute

vVn2+n+n n
lim vn24+n—n= lim(Vn?24+n—-n) — = lim ———
n— o0 n~>oo( ) w/n2—|—n+n n~>oo,/n2+n_|_n

where

A

n n n n
= < < < =— ==
" n24+2n+1+n" 2n+1 7 VnZ4+n+n " Vn2+n 2n 2

C,, is ultimately constant. It suffices to prove that A,, limits to % by showing that

n n/n 1

m+1 2n+1)/n 2+1

n

where {1} is infinitesimal.

Exercise 8.114 (Rudin 3.3)

If s; = v/2 and
Spn+1 = 24 VSn
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for n =1,2,..., prove that {s,} converges and that s, <2 for n =1,2,....

Solution 8.114

We can show that s, < 2 by induction. s; = v/2 < 2, so the base case is proved. Now, given that

Sp <2,/ <2 = 24 /5, <2+V2<4 = Sn+1 = v/2+ +/Sn < 2 and we are done.

Exercise 8.115 (Rudin 3.4)

Find the upper and lower limits of the sequence {s,} defined by

S2m—1
5 Somt1 = 5+ Som-
2 2

51 =0; Sop =

Solution 8.115

Exercise 8.116 (Rudin 3.5)

For any two real sequences {ay}, {b,}, prove that

limsup(ay, + b,) < limsup a,, + limsup by,

n—oo n—oo n—oo

provided the sum on the right is not of the form co — co.

Solution 8.116

Exercise 8.117 (Rudin 3.6)

Investigate the behavior (convergence or divergence) of Xa,, if

() 4y = Vit 1 - Vi

(b) an = (VA +1—va)/n:
(©) an = (Y- 1"
(d) a, = ﬁ, for complex values of z.

Solution 8.117

Exercise 8.118 (Rudin 3.7)

Prove that the convergence of ¥a,, implies the convergence of
>
n b

if a, > 0.

183/



Univariate Real Analysis Muchang Bahng Spring 2025

Solution 8.118

Exercise 8.119 (Rudin 3.8)

If Ya,, converges, and if {b,} is monotonic and bounded, prove that Ya,b, converges.

Solution 8.119

Exercise 8.120 (Rudin 3.9)

Find the radius of convergence of each of the following power series:

Solution 8.120

Exercise 8.121 (Rudin 3.10)

Suppose that the coefficients of the power series > a,z™ are integers, infinitely many of which are
distinct from zero. Prove that the radius of convergence is at most 1.

Solution 8.121

Exercise 8.122 (Rudin 3.11)

Suppose a,, >0, s, = (11 + -+ ay, and Ya, diverges.
(a) Prove that ) 1 dwergeb
(b) Prove that

AN +1 AN +k SN
L Tk 51—

SN+1 SN+k SN+k

and deduce that ) %= diverges.
(¢) Prove that

an< 1 1

Sn - Sn—1 Sn

and deduce that ) % converges.
(d) What can be said about

Gp Qp
O a5 9
Zl—l—nan A Zl+n2an
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Solution 8.122

Exercise 8.123 (Rudin 3.12)

Suppose a, > 0 and Ya,, converges. Put

oo
Tn = E Q-
m=n

(a) Prove that

am an n
R e
T’ffl, Tn lr’l'YL

if m <n, and deduce that > #= diverges.
(b) Prove that

QAn

Vn

< Z(ﬁ Y 7"n+1)

and deduce that > % converges.

Solution 8.123

Exercise 8.124 (Rudin 3.13)

Prove that the Cauchy product of two absolutely convergent series converges absolutely.

Solution 8.124

Exercise 8.125 (Rudin 3.14)

If {s,} is a complex sequence, define its arithmetic means o,, by

so+s1+---+s
On = 1”1 " (n=0,1,2,...).

a) If lims, = s, prove that limo,, = s.

b) Construct a sequence {s,} which does not converge, although limo,, = 0.

(c) Can it happen that s, > 0 for all n and that lim sup s,, = oo, although limo,, = 07
d) Put a, = s, — sp—1, for n > 1. Show that

1 n

Assume that lim(na,) = 0 and that {0, } converges. Prove that {s,} converges. [This gives a
converse of (a), but under the additional assumption that na, — 0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo, |na,| < M for all n, and
limo, = o. Prove that lim s,, = o, by completing the following outline:
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If m < n, then

For these i,

(n—i)M < (n—m-—1)M
i+1 m+ 2 ’

|sn — si| <
Fix € > 0 and associate with each n the integer m that satisfies

n—e
m< ——<m-+1.
1+¢

Then (m +1)/(n—m) < 1/e¢ and |s,, — s;] < Me. Hence

limsup |s, — o] < Me.
n—oo

Since € was arbitrary, lims,, = o.

Solution 8.125

Exercise 8.126 (Rudin 3.15)

Definition 3.21 can be extended to the case in which the a, lie in some fixed R¥. Absolute convergence
is defined as convergence of X|a,|. Show that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47,
and 3.55 are true in this more general setting. (Only slight modifications are required in any of the
proofs.)

Solution 8.126

Exercise 8.127 (Rudin 3.16)

Fix a positive number «. Choose z1 > v/, and define xq, x3, 24, . . ., by the recursion formula

1 «@
Tnt+1 = 5 Tn + ; .
n

(a) Prove that {z,} decreases monotonically and that lim z,, = /a.
(b) Put &, = z, — /a, and show that

en _ _a

En+1 = — <
T 0, T 2V

so that, setting 8 = 2/«

€1

B

on
En+1 <ﬁ( ) (n=1,2,3,...).
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(c) This is a good algorithm for computing square roots, since the recursion formula is simple and
the convergence is extremely rapid. For example, if « = 3 and x; = 2, show that 1/8 < % and
that therefore

g5 < 410710 g5 <4-107%2.

Solution 8.127

Exercise 8.128 (Rudin 3.17)

Fix o > 1. Take 1 > /o, and define

o+ Ty a—x%

LTn+1l = 1+x :Jjn+1_~_7x-
n n

) Prove that 1 > x3 > x5 > ---.

) Prove that xo < x4 < g < ---.

) Prove that lim z,, = \/a.

) Compare the rapidity of convergence of this process with the one described in Exercise 16.

(

(a
(b
(

Solution 8.128

Exercise 8.129 (Rudin 3.18)

Replace the recursion formula of Exercise 16 by

«
Tpt1 = Ty + ;xn

where p is a fixed positive integer, and describe the behavior of the resulting sequences {z,,}.

Solution 8.129

Exercise 8.130 (Rudin 3.19)

Associate to each sequence a = {a,,}, in which «, is 0 or 2, the real number

z(a) = Z %.
n=1

Prove that the set of all z(a) is precisely the Cantor set described in Sec. 2.44.

Solution 8.130
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Exercise 8.131 (Rudin 3.20)

Suppose {p,} is a Cauchy sequence in a metric space X, and some subsequence {p,,} converges to a
point p € X. Prove that the full sequence {p,} converges to p.

Solution 8.131

Exercise 8.132 (Rudin 3.21)

Prove the following analogue of Theorem 3.10(b): If { E,, } is a sequence of closed nonempty and bounded
sets in a complete metric space X, if E,, D E, 11, and if

lim diam F, =0,
n—oo

then (N E,, consists of exactly one point.

Solution 8.132

Exercise 8.133 (Rudin 3.22)

Suppose X is a nonempty complete metric space, and {G,} is a sequence of dense open subsets of X.
Prove Baire’s theorem, namely, that (]° G,, is not empty. (In fact, it is dense in X.) Hint: Find a
shrinking sequence of neighborhoods F,, such that E,, C G,,, and apply Exercise 21.

Solution 8.133

Exercise 8.134 (Rudin 3.23)

Suppose {p,} and {g,} are Cauchy sequences in a metric space X. Show that the sequence {d(pn,qn)}
converges. Hint: For any m,n,

d(pna Qn) < d(pnvpm) + d(pmv Qm) + d(va (In)'v

it follows that

|d(pna Qn) - d(pma Qm)|

is small if m and n are large.

Solution 8.134
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Exercise 8.135 (Rudin 3.24)

Let X be a metric space.
(a) Call two Cauchy sequences {p,}, {¢,} in X equivalent if

nh—{%o d(pn,qn) = 0.

Prove that this is an equivalence relation.
(b) Let X* be the set of all equivalence classes so obtained. If P € X*, Q € X*, {p,} € P, {qn} € Q,
define

A(P’ Q) = nh_{Iolo d(p’m QH);

by Exercise 23, this limit exists. Show that the number A(P, Q) is unchanged if {p,} and {g,}
are replaced by equivalent sequences, and hence that A is a distance function in X*.

(c¢) Prove that the resulting metric space X* is complete.

(d) For each p € X, there is a Cauchy sequence all of whose terms are p; let P, be the element of X*
which contains this sequence. Prove that

A(Py, Py) = d(p,q)

for all p,¢ € X. In other words, the mapping ¢ defined by ¢(p) = P, is an isometry (i.e., a
distance-preserving mapping) of X into X*.

(e) Prove that o(X) is dense in X*, and that ¢(X) = X* if X is complete. By (d), we may identify
X and ¢(X) and thus regard X as embedded in the complete metric space X*. We call X* the
completion of X.

Solution 8.135

Exercise 8.136 (Rudin 3.25)

Let X be the metric space whose points are the rational numbers, with the metric d(z,y) = |z — y|.
What is the completion of this space? (Compare Exercise 24.)

Solution 8.136
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8.4 Limits and Continuous Functions

8.5 Differentiation of Single-Variable Functions
8.6 Riemann Integration

8.7 Sequences of Functions

8.8 Multivariate Functions

8.9 TBD

Exercise 8.137 (Math 531 Spring 2025, PS6.1)

Give a direct proof that
= 1
—_— 764
; 1k (764)

converges and find the exact value of the series.

Solution 8.137

This is a telescoping series.

1 1 1 1 1
> - Zk et A R (765)

n=1

and so the nth partial sum is 1 — % — 1 asn — oo.

Exercise 8.138 (Math 531 Spring 2025, PS6.2)

Suppose that a, is a sequence of non-negative real numbers and suppose that ZOO @, CONVETrges.
Prove that there exists a sequence b,, with lim,, ., b, = +00 so that Z 1 apby is stlll convergent.

Solution 8.138

Let us take r, = Z::n an. Since a, is nonnegative, r, = 0 < a,, = 0 for all m > n. In this case
set
1 ifm<n
(b)) = { ) (766)
m ifm>n

and

ianziam:iamm:iambm<+m (767)
n=1

m=1 m=1 m=1

So we may assume r,, > 0. Now define (b,) = ( ) By the Cauchy criterion, r,, — 0 as n — 400, so

Tn

b, — +00. But we claim that “" < 2(3/Trn — +/Tnt1) since
A, Vin
\/r(\/rn + /Tot1) = an + ay \/7;1 < 2ap, =2(rp —Tn+1) (768)

Since the series Y (\/Trn — +/Tnt1) converges to /71, it follows by the comparison test that Z

converges.
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Exercise 8.139 (Math 531 Spring 2025, PS6.3)

Prove that 3, SiUTE”) Convcrgogﬂ Hint: Use summation by parts and the fact that sin(z) =
(i) a2 whore 1 7T

%Here, we are going to assume that we know a little bit about trigonometric functions!

Solution 8.139

We can see that

N N ;
X 1 _ el’ﬂ 2
’ImZem = sin(n)| < |e* | <TTa < 400 (769)
n=1 n=1
and so the partial sums form a bounded sequence, implying that > w is convergent.
Exercise 8.140 (Math 531 Spring 2025, PS6.4)
Fix ¢ € (0, 00).
e Assume z, is a sequence of numbers with x,, — 0. Prove that
= 1. (770)
e Deduce that, if z,, — x, then
& — ", (771)

for any =z € R.

Solution 8.140

Zn — 0 as n — oo means that V6 > 0, AN € N s.t. |x,| < é for all n > N. Now take ¢ > 0. Then we
wish to show that IM € Ns.t. [1—c¢"| < e for alln > M. We choose 6 = min{—log,(1—¢),log.(1+€)}.
Then 3M s.t.

z, € (—log,(1 —¢€),log.(1+¢€)) < |zn] <d (772)

for n > M by convergence z,, — 0. Since f(x) = ¢* is monotonically increasing, this is equivalent to

flay) =™ (773)

Exercise 8.141 (Math 531 Spring 2025, PS6.5)

For every z € C, verify that the series

o0 n

E(z)=Y % (774)

n=0

converges. Prove that for every z,w € C we have that E(z)E(w) = E(z + w). Deduce that, for ¢ € Q,
we have that F(q) = e?. Deduce that E(z) = €%, for all z € R.

Solution 8.141
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Exercise 8.142 (Math 531 Spring 2025, PS6.6)

Let X be a complete metric space. Suppose that f: X — X is such that d(f(z), f(y)) < 3d(=,y) for
all z,y € X.

(a) Prove that f is continuous

(b) Pick any z¢ € X. Define a sequence of points {x,} in X by:

Tn41 = f(xn)~ (775)

Prove that {z,} converges. Hint: use a previous homework assignment.
(c¢) Denote the limit of {x,} by . Prove that f(z) = .
(d) Prove that if f(y) =y and f(z) = x then x = y.

Solution 8.142

Exercise 8.143 (Math 531 Spring 2025, PS6.7)

Does there exist a continuous function f : [0,1) — R that is onto? If so, construct one from scratch. If
not, prove such a function cannot exist.

Solution 8.143

Exercise 8.144 (Math 531 Spring 2025, PS7.1)

If a function f : [0,1] — R is continuous, it is uniformly continuous. This means that, given € > 0,
there exists d(e) > 0 so that

d(z,y) < d(e) = d(f(z), f(y)) <e (776)

Prove that if f(x
Prove that if f(x

) =1 for all z, we can take d(¢) = +oc.
) = Mz, we can take 0(¢) = Qﬁ
):
):

(

(
Prove that if f(z) = \/z, we can take §(e) = 5.
Prove that if f(z) = ;5, we can take d(¢) = .
Prove that if f(z) = 2%, for some N € N, then we can take 6(e) =

You cannot use differentiation for Problem 1. Do everything from scratcl

£
N
1.

Solution 8.144

Exercise 8.145 (Math 531 Spring 2025, PS7.2)

Let X be a general metric space. A function f: X — Y is called compact if the image of every closed
ball B,.(z) is compact in Y. Prove that any continuous f : R™ — R" is compact. Give an example of
a discontinuous function f: R — R that is compact.

Solution 8.145
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Exercise 8.146 (Math 531 Spring 2025, PS7.3)

Prove that if f : R — R sends connected sets to connected sets and compact sets to compact sets, then
it is continuous. Hint: Assume that f : R — R sends every connected set to a connected set. Assume
also that f is discontinuous at some = € R. Find a compact set K so that f(K) is not compact.

Solution 8.146

Exercise 8.147 (Math 531 Spring 2025, PS7.4)

e Let X be a general metric space and assume K C X is compact. Let f : K — K and assume
that

d(f(x), f(y)) < d(z,y) (777)

for all z # y € K. Show that there exists z € K with f(z) = «.
e Find a function f : [0,00) — [0, 00) with the property that | f(z)— f(y)| < |x—y], for all non-equal
x,y € [0,00), but for which there is no point z € [0, 00) for which f(x) = .
Hint for the first part: define the function g : K — R by g(x) = d(f(x),x). First prove that g is
continuous. Then deduce that g must attain its minimum at some x*. Then show g(f(z*)) < g(x*)
unless f(z*) = z*. Conclude that f(z*) = z*.

Solution 8.147

Exercise 8.148 (Math 531 Spring 2025, PS7.5)

Coming back to Problem 1 above, assume that f is differentiable on [0, 1] and that |f/(z)| < M for

every z € [0,1]. Prove that we can take d(¢) = 7.

Solution 8.148

Exercise 8.149 (Math 531 Spring 2025, PS7.6)

A function f: X — X is said to be Holder continuous of degree o for some « € (0, 00) if there exists
M > 0 so that

d(f(z), f(y)) < C-d(z,y)". (778)

Prove that if f is Holder continuous of degree o > 0, then f is continuous. Give an example of a
function on R that is Holder continuous of degree % but not of degree 1. Prove that continuously
differentiable functions [0, 1] are Holder continuous of degree 1. Prove that the only functions on R
that are Holder continuous of degree larger than 1 are constants.

Solution 8.149
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Exercise 8.150 (Math 531 Spring 2025, PS7.7)

Suppose that f: [0,2] — [0, 2] is twice differentiable. Suppose f(0) =0, f(1) =1, and f(2) = 2. Prove
that there exists ¢ € (0,2) so that f”(c) = 0.

Solution 8.150

Exercise 8.151 (Math 531 Spring 2025, PS7.8)

Suppose that f is differentiable on [0, 1] satisfies:
f'(@) = f(x). (779)

Prove that f is automatically infinitely differentiable.
Let M = max{f(x) : x € [0,1]}. Why does M exist? Similarly, let M(e) = max{|f(z)| : z €
[0, €]}

e Prove that for all z € [0, €], we have that

[f(@)] < M(e)x +|f(0)]. (780)

Deduce that if f(0) = 0, we have that

M (;) 0. (781)

1.

Similarly, deduce that M(c) = 0 for all ¢ € [0,
= f(x) while f(0) =0, it follows that f(z) = 0 for all

What you have just proved is that if f/(z)
x.
Assume that F : R — [0, 00) is differentiable and

|E'(t)| < CE(t). (782)

Prove that if E(0) = 0, then E(t) = 0 for all ¢.

Solution 8.151

Exercise 8.152 (Math 531 Spring 2025, PS8.1)

Prove that if f: [0,1] — R is differentiable and f’ > 0 on [0, 1], then f is strictly increasing on [0, 1].

Solution 8.152

Exercise 8.153 (Math 531 Spring 2025, PS8.2)

Explain why if 2(t) represents the position of a particle at time ¢, 2/(¢) is called the velocity of the
particle, '/ (t) is called its acceleration, and z'”(t) is called its jerk.
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Solution 8.153

Exercise 8.154 (Math 531 Spring 2025, PS8.3)

A function f: R — R is said to be T periodic if f(t 4 T) = f(t), for all £ € R. Now, given a function
f defined on [0,T), we can always extend f to be T periodic in the following way. First, we can write

R = | [T, (n+1)T). (783)
nez
Then define for t € [nT, (n+ 1)T) : 3
7(#) = f(t —nT). (784)

e Show that f defined this way is T" periodic.

e Suppose f is continuous on [0, 7). Does this mean that its extension f will also be continuous on
R? What condition do you have to add?

e Suppose f is continuously differentiable on [0,7"). What conditions do you have to put on f to
ensure that f is continuously differentiable? How about k-times continuously differentiable?

Solution 8.154

Exercise 8.155 (Math 531 Spring 2025, PS8.4)

Assume f: R — R is differentiable and |f'(x)| < H% Prove that

lim f(z) (785)

Tr—r 00

exists. You are not allowed to use integration. Hint: How do you prove convergence without knowing
what the limit is?

Solution 8.155

Exercise 8.156 (Math 531 Spring 2025, PS8.5)

In a previous homework assignment, we defined the function

E(x) =Y ”:L—T (786)

We proved it is continuous, satisfies F(z +w) = E(z)E(w) for all z,w € C, and then deduced that for
all © € R, we have that E(z) = e”.

e Prove that E'(0) = 1. Hint: write w = Yt

n
n!

=3 2" Then prove that

n=1 n!

e Tnfl
. (787)

lim

e By studying the difference quotient, prove that E’(x) = F(x) for all z € R. This is much easier
than the preceding point.

195/



Univariate Real Analysis Muchang Bahng Spring 2025

e Prove that lim, , E(z) = co and lim,,_ E(x) = 0.
e Prove that F : (—o00,00) — (0,00) is 1-1 and onto.
e Let L=FE"1:(0,00) = (—00,00). Prove that

v =1

: (788)

for all ¢t € (0, 00).

Solution 8.156

Exercise 8.157 (Math 531 Spring 2025, PS8.6)

For each k € N, consider Zjvzl 4*. Tt turns out that this can be expressed as a polynomial of degree

k+1in N. For example,
N
> i%=N, (789)
j=1

is a polynomial of degree 1 in N. Similarly,

N
. N(N+1) N® N
23—72 —74—?, (790)

is a polynomial of degree 2 in N. If we write:

ij:a0+a1N+a2N2+...+ak+1Nk+1, (791)
j=1

what is the value of aj41? Hint: divide by N**! and take the limit as N — oo.

Solution 8.157

Exercise 8.158 (Math 531 Spring 2025, PS9.1)

Fix F C R and take a sequence of functions f, : £ — R. Assume that every subsequence of f,, has a
subsequence converging uniformly to f : E — R. Prove that f, — f uniformly.

Solution 8.158

Exercise 8.159 (Math 531 Spring 2025, PS9.2)

In the following, each bullet point is a separate question. Give examples of sequences of functions
fn : £ — R for which:
e £ =10,1] and |fn(z)] < 1 for all n € N and = € E, but f, has no uniformly convergent
subsequence.
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e F =0,1] and all the f,, are differentiable and |f; (x)| < 1 for all  and n, but f,, has no uniformly
convergence subsequence.
o E=R, |fu(z)|+|f.(z)] <1 for all z and n, but f, has no uniformly convergent subsequence.

Solution 8.159

Exercise 8.160 (Math 531 Spring 2025, PS9.3)

Assume we have a twice differentiable function f : [0,00) — R. Assume that f”(z) > 0 for all
x € [0,00), while f/(0) > 0. Prove that lim,_ o f(z) = +o00.

Solution 8.160

Exercise 8.161 (Math 531 Spring 2025, PS9.4)

We proved that the function E : C — C defined by:
Sz
E(z) = Z T (792)

satisfies E(z + w) = F(z)E(w). Let us now investigate the real and imaginary parts of F(it), where
t € R. Let us call the real part C(¢) and the imaginary part S(t).

e Prove that F(Z) = E(z), for every z € C.

e Deduce that |E(it)| =1 for all t € R and thus:

Ct)* + S(t)* =1, (793)

for all t € R.

e Prove that C(—t) = C(t) for all t and that S(—t) = —S(¢t) for all ¢.

e Prove that C(0) =1 and S(0) = 0, while C’(¢t) = —S(t) and S’(t) = C(t), for all t € R.

e Deduce that C”(t) = —C(t) and prove that there must be some ¢ > 0 for which C(¢) = 0. (Hint:
Use Problem 3)

e Prove that there is a smallest ¢, > 0 for which C(t.) = 0.

e Define 7 = 2t, so that C(5) = 0. Since S is increasing on [0,t,], deduce that S(§) = 1.

e Now use the formula E(z + w) = E(z)FE(w) to deduce that

C(t+2r) = C(t), S(t+2m)=S(t), (794)

for all ¢t € R.
e It is now reasonable to unveil that C' and S are none other but our old friends: cos and sin.

Solution 8.161
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Exercise 8.162 (Math 531 Spring 2025, PS9.5)

Let us take X to be the set of continuous functions on [0, 3]. As shown in class, X can be made into a
complete metric space with the distance function:

a(f,9) = sup |f(z)—g(z)] (795)
z€[0,3]
Let us also define J : X — X by: N
J(f)x)=1 —l—/o f(t)dt. (796)

Prove that indeed J : X — X.
Prove that for every f,g € X, we have that

d(f,9)- (797)

N =

d(J(f),J(9)) <

Deduce that there is a unique f, € X for which J(f.) = f«, using Homework 6, Problem 6.
Define the sequence f, by f, = J(fn_1) for n > 1, while fo = 1. Find a nice formula for f,.
What then is f,? (Look at Homework 6, Problem 6 again).

Solution 8.162

Exercise 8.163 (Math 531 Spring 2025, PS9.6)

e Prove that .

lim sin(nt)dt = 0. (798)

n—oo J
e Let f:[0,1] — R be continuously differentiable. Prove that

lim 1 f(t) cos(nt)dt = 0. (799)

n—oo 0

Solution 8.163

Exercise 8.164 (Math 531 Spring 2025, PS9.7)

Prove that the curve v : [0, 1] — R? defined by:

~y(t) = (t,tsin(%)) (800)

is not rectifiable. Hint: show that if we restrict the curve to [e, 1], then the resulting curve is rectifiable
and its length can be computed readily using the formula:

1 1 1 1
/h/(t)|dt2/ Heos(7)ldt 1. (801)
Next, prove that
1
11 11
|l cos 2 |dt > log - 2
/6 7l cos 3ldt = Togp 18 o (802)
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for all € > 0 small. Then conclude that ~ isn’t rectifiable.

Solution 8.164
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