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In here, we extend the results of univariate real analysis to multivariate and/or vector-valued functions. In
practice, multivariate calculus is used, and there are many new results that arise in the multivariate case.
The case for continuity and convergence of multivariate functions is very straightforward, since these are
topological properties. However, the definition of the derivative and the integral will need to be generalized.

In continuity, to prove that a limit is something, we just use ϵ-δ. However, to actually compute what the
limit is, we have multiple ways to do this in practice.

1. Just compute the function assuming it is continuous.

2. Take some sort of path p and take the univariate limit.

We can also show that the multivariate limit doesn’t exist by taking two sequences or two path functions
where the limits do not equal each other.
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1 Banach Spaces
Note that both the domain and codomain of a function f : Rn → Rm are vector spaces. However, Euclidean
spaces have a lot of structure on them, and it is nice to identify the essential properties we need from these
sets. It is essential that we work in vector spaces because when we define a derivative, we usually see some
form that looks like

f(x+ h)− f(x)

h
(1)

Note the operations used here. First, we want a notion of addition in the domain (x+ h) and the codomain
f(x + h) − f(x), along with some scalar multiplication when we multiply by 1/h. A vector space precisely
supports these operations and therefore is a natural choice. It is immediate that to define convergence, we
definitely need a topology. We will see later that we want to define multivariate derivatives by adding a
norm to this term, requiring the use of a normed vector space. Completion is clearly essential as we have
seen in single-variable analysis.

Definition 1.1 (Banach Space)

A Banach space is a normed completed vector space.

Note that by extending the dimension, we have essentially lost the ordering ≤ on these spaces, along with
the field properties. Therefore, we will need to adapt our definitions accordingly.

1.1 Coordinate Systems
Frenet frame?
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2 Differentiation

Definition 2.1 (Frechet Derivative)

A function f : D ⊂ Rn −→ Rm is differentiable at x ∈ D if there exists a unique linear map
Dfx : Rn −→ Rm—called the total derivative or Frechet derivative—such that

lim
h→0

∥f(x+ h)− f(x)−Dfxh∥
∥h∥

= 0 (2)

If such a map Dfx exists, then it is unique.

Proof. The only claim to prove is uniqueness if defined.

The reason we want D to be open is that we require that x+ h to also be in D for sufficiently small h, and
we can guarantee this since an ϵ-ball around x is guaranteed to be in D. Just as with the univariate case,
the fundamental increment lemma also holds.

Lemma 2.1 (Fundamental Increment Lemma)

Suppose the derivative of f : [a, b] ⊂ Rn → R at x exists. Then, there exists a function Φ : Rn → R
such that

f(x+ h) = f(x) +Dfxh+Φ(h)∥h∥ (3)

for sufficiently small nonzero h, and
lim
h→0

Φ(h) = 0 (4)

Note that when m = 1, then Dfx is a linear functional, i.e. a dual vector. A simple way to extract derivatives
is to fix all of the input components except for one, and treat f as a single-variable function. This results
in—for now—a completely separate notion of a derivative.

Definition 2.2 (Directional, Partial Derivative)

The directional derivative of a multivariate function f : D ⊂ Rn −→ R at a point a ∈ D in direction
v ∈ Rn is the instantaneous rate of change of f when moving along direction v at a. Formally,

∇vf(a) := lim
h→0

f(a+ hv)

h
(5)

When computing directional derivatives, it is convenient to normalize the directional vector v to be
unit length so that it coincides with the partial derivatives. We don’t technically need to set ||v|| = 1,
but if we have two vectors v and a scaled cv, then the directional derivatives will also be scaled
(∇cvf(a) = c∇vf(a)), so we will only work with unit directional vectors. Some say that this restriction
is undesirable, since it loses the linearity of the function v 7→ ∂vf(a).
If v is a unit basis vector ei, then we define this specific instance to be the partial derivative of f
with respect to argument xi.

∂xif(a) =
∂

∂xi

∣∣∣∣
a

f := lim
h→0

f(a+ hei)

h
(6)

which can be calculated by differentiating the function w.r.t. xi and fixing all other variables. The
partial derivative looks at the function as it is approaching a along an axis, while a directional derivative
looks at the function as it is approaching from any direction in the domain.
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Therefore, we have sort of three (or two) separate notions of derivatives. A natural question to ask is whether
the existence of one derivative implies the existence of another.

Theorem 2.1 (Existence of Derivatives)

Let us have a function f : D ⊂ Rn −→ R and a point a ∈ D.
1. If f is differentiable at a ∈ D, then all of its directional derivatives exist. Furthermore, the total

derivative Dfa applied to the directional unit vector v is equal to the directional derivative at a
in direction v.

Dfav = ∇vf(a) (7)

2. If all directional derivatives exist, then the partials exist (since we can just set the directional
vectors to be the unit vectors).

Therefore, we know that differentiability (i.e. existence of the total derivative) is the strongest. If this is the
case, then the partial and directional derivatives exist. It turns out that if we know the partial derivative

Furthermore, since our vector spaces come with a basis, we can realize Dfx in a matrix form. Furthermore,
we can compute it quite easily!

Definition 2.3 (Jacobian)

Given f : E ⊂ Rn → Rm differentiable at x, the Jacobian of f at x is the matrix realization of the
total derivative, denoted Jfx.

Theorem 2.2 (Partial Derivatives as Image of Total Derivative)

The partial derivative equals the image of the basis vector

∂fj
∂xi

= (Dfxei)j (8)

Corollary 2.1 (Directional Derivatives as Image of Total Derivative)

The directional derivative equals the image of the direction vector.

∇vf(x) = (Dfxv)j (9)

Proof. By linearity.

Corollary 2.2 (Entries of Jacobian are Partials)

The entries of the Jacobian matrix are precisely the partial derivatives.

Proof. Immediate result of the previous corollary.

Analogous to the univariate case, a nice way to visualize the derivative is by looking at the tangent plane.
In general, we have an affine hyperplane. Define this here. Unfortunately, the only types of functions that
we can meaningful visualize are those mapping f : R2 → R.
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Figure 1

So, to prove that a function f : Rn −→ R is differentiable at a, and if so, what its total derivative is, there
are essentially two steps.

1. We find a candidate for M by evaluating the partials.

M =
(
∂x1

f(a) ∂x2
f(a) . . . ∂xn

f(a)
)

(10)

2. We check to see if the limit is true.

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= 0 (11)

If it is, then Dfa = M , and the "tangent plane" of f at a is defined by the equation y = f(a) +Mh.

Example 2.1 (Computing Total Derivative)

The function f(x1, x2) = x2
1+x2

2 is differentiable at (1, 1). We let M =
(
∂x1

f(1, 1), ∂x2
f(1, 1)

)
=
(
2, 2
)

and see that

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= lim

h→0

f(1 + h1, 1 + h2)− f(1, 1)− 2h1 − 2h2√
h2
1 + h2

2

(12)

= lim
h→0

(1 + h1)
2 + (1 + h2)

2 − 2− 2h1 − 2h2√
h2
1 + h2

2

(13)

= lim
h→0

√
h2
1 + h2

2 = 0 (14)

So, Df(1, 1) = (2, 2).

Example 2.2 (Computing Tangent Plane)

Let us find the equation of the tangent plane to f(x, y) = ln(2x + y) at (−1, 3). Our total derivative,
if it exists, is the covector of partials

Df =
(

∂f
∂x

∂f
∂y

)
=
( 2
2x+y

1
2x+y

)
(15)

which is indeed continuous at a neighborhood of (−1, 3) (in fact, in every neighborhood not containing
0). By continuity of partials, f is differentiable at (−1, 3), with Df(−1,3) = (2, 1). The equation of the
plane is then

z = f(−1, 3) +Df(−1,3)

(
x+ 1
y − 3

)
= 2(x+ 1) + 1(y − 3) =⇒ z = 2x+ y − 1 (16)

However, the converse is not true for either statements. You cannot just evaluate all the partial derivatives
and assume that the total derivative exists!
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Example 2.3 (Existence of Directional Derivatives ≠⇒ Differentiability)

The function f : R2 −→ R, defined

f(x1, x2) :=

{
0 for (x1, x2) = (0, 0)

x3
1

x2
1+x2

2
for (x1, x2) ̸= (0, 0)

is not differentiable at (0, 0), but all directional derivatives exist. That is, for any (conventionally) unit
v = (v1, v2), its directional derivative is always well defined to be

∇vf(0, 0) = lim
h→0

h3v3
1

h2(v2
1+v2)2

h
=

v31
v21 + v22

= v31

Now assuming that there is such a linear M , we can find the partials by setting v = (1, 0) and v = (0, 1),
giving

M =
(
∂x1f(0, 0) ∂x2f(0, 0)

)
=
(
1 0

)
But

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= lim

h→0

f(h1, h2)− f(0, 0)− 1 · h1 − 0 · h2√
h2
1 + h2

2

= lim
h→0

h3
1

h2
1+h2

2
− h1√

h2
1 + h2

2

= lim
h→0

− h1h
2
2

(h2
1 + h2

2)
3/2

and taking along the path h = (k, k) gives

lim
(k,k)→0

− k3

(2k2)3/2
= − 1

23/2
̸= 0

Example 2.4 (Existence of Partials ≠⇒ Existence of Directional Derivatives)

Consider the function

f(x1, x2) =

{
x1x2

x2
1+x2

2
if (x1, x2) ̸= (0, 0)

0 if (x1, x2) = (0, 0)

The partial derivatives exist everywhere. Away from the origin we can simply compute

∂f

∂x1
=

x2(x
2
1 + x2

2)− x1x2 · 2x1

(x2
1 + x2

2)
2

=
−x2

1x2 + x3
2

(x2
1 + x2

2)
2

∂f

∂x2
=

x1(x
2
1 + x2

2)− x1x2 · 2x2

(x2
1 + x2

2)
2

=
x3
1 − x1x

2
2

(x2
1 + x2

2)
2

As for the partials at the origin, we must compute using the limit rule.

∂x1f(0) = lim
h→0

f(0+ he1)− f(0)

h
= lim

h→0

f(h, 0)

h
= 0

∂x2
f(0) = lim

h→0

f(0+ he2)− f(0)

h
= lim

h→0

f(0, h)

h
= 0
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However, the directional derivative taken in direction v = (1, 1) gives

∇(1,1)f(0, 0) = lim
h→0

f(0+ h(1, 1))− f(0)

h

= lim
h→0

f(h, h)

h

= lim
h→0

1

2h

which does not have a limit as h → 0. To visualize this, let’s look at the values of f along various lines
in R2.

1. f = 0 at the line x1 = 0 and x2 = 0, which is why the partials are 0.
2. f = 1

2 at the line where x1 = x2, except for the point (0, 0), where f = 0, which is why the limit
in the direction doesn’t exist.

2.1 Rules of Differentiation
Just like single variable calculus, the total derivative behaves in predictable ways: it is linear, product/quo-
tient rules, and the chain rule.

Theorem 2.3 (Linearity of Total Derivatives)

Let f, g : D ⊂ Rn −→ Rm be differentiable at a ∈ D. Then, the total derivative at a is linear w.r.t.
the function arguments.

1. D(f + g)a = Dfa +Dga
2. D(cf)a = cDfa

Furthermore, if f and g are differentiable over D, then
1. D(f + g) = Df +Dg
2. D(cf) = cDf

Note that for the product and quotient rules, our scope is only for scalar valued functions.

Theorem 2.4 (Product Rule)

Let f, g : D ⊂ Rn −→ R be differentiable at a. Then,

D(fg)a = Dfag(a) + f(a)Dga (17)

If f, g are differentiable over D, then

D(fg) = Df · g + f ·Dg

Theorem 2.5 (Quotient Rule)

Let f, g : D ⊂ Rn −→ R be differentiable at a with g(a) ̸= 0. Then,

D
(f
g

)
a
=

Dfag(a)− f(a)Dga
g(a)2

If f, g are differentiable over D and g never vanishes on D, then

D
(f
g

)
=

Df · g − f ·Dg

g2
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Theorem 2.6 (Chain Rule)

Let f : D ⊂ Rn −→ Rm and g : E ⊂ Rp −→ Rn be two functions such that f ◦ g : E ⊂ Rp −→ Rm is
defined on E. Suppose g is differentiable at a ∈ E and f is differentiable at g(a) ∈ D. Then, f ◦ g is
differentiable at a, and

D(f ◦ g)a = Dfg(a) ◦Dga

If g is differentiable over E and f over g(E) ⊂ D, then f ◦ g is differentiable over E, and

D(f ◦ g)(·) = Dfg(·) ◦Dg(·)

Therefore, given the composition of function f ◦ g, we have two methods of finding the derivative matrix of
f ◦ g at point x0. First is to explicitly compute f ◦ g and find its m× p derivative matrix D(f ◦ g), and plug
in a to get D(f ◦ g)a. The second way is to use the chain rule to find the individual total derivatives Dfg(a)
and Dga, and multiply them together.

2.2 Continuously Differentiable Functions
An even stronger condition beyond differentiability is continuous partials, and we often prove continuity of
partials to prove differentiability.

Theorem 2.7 (Continuous Partials =⇒ Differentiability)

Given a function f : D ⊂ Rn −→ R and a point a ∈ D, if all the partials ∂xi
f exist and are continuous

at a, then f is differentiable at a.

Example 2.5 (Differentiability ≠⇒ Continuous Partials)

The function

g(x) ≡

{
x2 sin

(
1
x

)
x ̸= 0

0 x = 0

is differentiable, with derivative at x = 0 to be g′(0) = 0, since g(h) is bounded by h2.

lim
h→0

h2 sin
(
1
h

)
− 0

h
≤ lim

h→0

h2

h
= 0

which makes

g′(x) ≡

{
− cos

(
1
x

)
+ 2x sin

(
1
x

)
x ̸= 0

0 x = 0

But because cos( 1x ) oscillates at x → 0, g′(x) is not continuous at x = 0. Therefore g(x) is differentiable
but not in C1(R).

Definition 2.4 (C1 Space)

The vector space of all functions f : D ⊂ Rn −→ R with continuous partials is denoted C1(D;R) or
C1(D). They are called continuously differentiable.

We can also visualize this theorem. Since the partials are continuous, then the tangent subspace, which is
determined by the span of the tangent vectors determined by the partials, also changes continuously, and
therefore the total derivative within a neighborhood of a exists. Note that from now, whenever we talk
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about differentiating a function f , we will assume that it is C1. This is overkill, since the set of all k-times
differentiable functions is a subset of Ck, but it is conventional to work with Ck functions.

2.3 Extrema and Concavity

Definition 2.5 (Local Extrema)

Given a function f : D ⊂ Rn −→ R, a point x0 ∈ D is a local minimum if there exists a neighborhood
U of x0 such that

f(x) ≥ f(x0) for every x ∈ U

Similarly, x0 is a local maximum if there exists a neighborhood U of x0 such that

f(x) ≤ f(x0) for every x ∈ U

Theorem 2.8 (1st Derivative Test)

If x0 is a local extremum of a differentiable function f , then Dfx0 = 0. That is, x0 is a critical point
of f , i.e. every directional derivative through x0 is 0.

Note that even though the converse of this theorem is not true, we can use the contrapositive to determine
that every point that has a nonzero derivative cannot be a extremum. A function may also have an infinite
amount of critical points (e.g. if they lie in a circle). In order to determine whether a critical point x0 is a
relative maximum, minimum, or neither, we use the second derivative test.

Theorem 2.9 (2nd Derivative Test)

Let x0 be a critical point of C2 function f : Rn −→ R. That is, Dfx0
= 0. Then,

1. x0 is a local minimum if Hfx0 is positive definite.
2. x0 is a local maximum if Hfx0 is negative definite.
3. x0 is a saddle point if Hfx0

is not positive definite nor negative definite.

Visually, this makes sense since given a critical point x0, the derivative matrix would be 0, meaning that the
2nd degree Taylor expansion of f near x0 would be in form

f(x) ≈ f(x0) +
1

2
(x− x0)

THfx0
(x− x0)

If Hfx0 is positive definite, then by definition 1
2 (x−x0)

THfx0(x−x0) > 0 for all x near x0, and so f would
increase in every direction within the neighborhood of x0. The logic follows similarly for negative definite
matrix Hfx0

. If Hfx0
is not positive nor negative definite, then 1

2 (x−x0)
THfx0

(x−x0) could be positive or
negative, depending on which direction vector h = x−x0 we choose for computing the directional derivative.
Therefore, f will increase for certain h and decrease for other h.

Definition 2.6 (Global Extrema)

Given f : D ⊂ Rn −→ R, a point x0 ∈ A is said to be an absolute, or global, maximum if

f(x0) ≥ f(x) for all x ∈ D

and a global minimum if
f(x0) ≤ f(x) for all x ∈ D

Unfortunately, determining whether a point x0 is a local extremum requires us to define an open neighborhood
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around x0. This means that we can only determine local extrema within open sets in Rn. Therefore, we
must modify our procedure when looking for extrema on functions defined over closed bounded sets. We
now describe a method of computing the global extrema. Let f : D ⊂ Rn −→ R be a multivariable function
defined on a closed and bounded set D ≡ U ∪ ∂U , where U is open and ∂U is the boundary of D. To find
the global extrema on D, we find all local extrema of

1. f defined over the interior of U , which is open, by locating all points where Df = 0

2. f defined over ∂U , preferably defined as a composition of the path function p : I ⊂ R −→ ∂U and
f : ∂U −→ R. That is, find the values of t such that D(f ◦ p)(t) = 0 and identify p(t).

We take all these critical points and choose the largest to be the global maximum and the smallest to be the
global minimum.

Definition 2.7 (Convex Set)

A subset D ⊂ Rn is a convex set if for any two points x,y ∈ D, the line segment joining them is also
in D. That is,

{θx+ (1− θ)y | 0 ≤ θ ≤ 1} ⊂ D

Definition 2.8 (Convex Function)

Let D be a convex set. A function f : D ⊂ Rn −→ R is a convex function if

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y)

We can visualize this as the graph of the function in D ⊕ R always being "under" every line segment
connecting

(
x, f(x)

)
and

(
y, f(y)

)
.

If we assume that f is C1 or C2, we can use additional tools to prove convexity. The theorem for C1 functions
is quite intuitive, since for a convex function, the tangent plane on its graph must never be "above" the
graph. In other words, the first order approximation must be a global underestimate of f .

Theorem 2.10 (Convexity of C1 Functions)

Let D be a convex set and f : D ⊂ Rn −→ R be C1. Then, f is convex over D if and only if

f(x0) +Dfx0
(x− x0) ≤ f(x)

for all x0,x ∈ D.

Theorem 2.11 (Convexity of C2 Functions)

Let D be a convex set and f : D ⊂ Rn −→ R be C2. Then, f is convex over D if and only if Hf is
positive semidefinite over all interior points of D (i.e. all eigenvalues of Hfa are nonnegative for all
a ∈ D).

The computation of the Hessian now gives us much more information about the graph of the function of
interest.

12/ 58



Multivariate Real Analysis Muchang Bahng Spring 2025

Theorem 2.12 ()

A function f : D ⊂ Rn −→ R defined on a convex set D is convex if and only if its Hessian matrix Hf
is positive semidefinite for all x ∈ D.

Once we have computed the Hessian, let’s take the eigendecomposition of it. Since Hfa is a real symmetric
matrix, by the spectral theorem, it will have n real eigenvalues λ1, . . . , λn (in descending values) and cor-
responding orthonormal eigenvectors v1, . . . ,vn. Now given the gradient ∇f(a) at a, we can approximate
∇f(a+ h) at a+ h using its total derivative as

∇f(a+ h) ≈ ∇f(a) +D∇fah = ∇f(a) +Hf(a)h

The eigenvalues of Hf(a) will tell us how "fast" the gradient changes at a. That is, given a small displacement
vector h, we can take an orthonormal decomposition of it in the form

h =
∑
i

hivi

and now the approximate gradient can be written as

∇f(a+ h) = ∇f(a) +
∑
i

hiλivi

Therefore, bigger λi’s will contribute to a greater change in f(a), and smaller ones will contribute less. We
can use this information to speed up convergence by scaling along different axes of h when sampling.

2.4 Optimization with Lagrange Multipliers
In many cases we are required to find the local extrema of a function f : D ⊂ Rn −→ R subject to a system
of equality constraints (i.e. subject to the condition that one of more equations have to be satisfied exactly
by the chosen values of the variables) of the form:

g1(x) = 0, g2(x) = 0, . . . , gc(x) = 0

which can be summarized into the constraint g : Rn −→ Rc

g(x) =

g1(x)
...

gc(x)

 = 0

which really just represents a level set of g at 0, i.e. a set described by an implicit representation. In
physics, these types of "well-behaved" constraints are known as holonomic constraints. Here is an example
of a function f : R2 −→ R constrained to the unit circle, where g(x, y) = x2 + y2 − 1 = 0.
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To solve this constraint problem, we use the method of Lagrange multipliers. The basic idea is to convert a
constrained problem into a form such that the derivative test of an unconstrained problem can still be applied.
The relationship between the gradient of the function and gradients of the constraints rather naturally leads
to a reformulation of the original problem, known as the Lagrangian function. That is, in order to find the
maximum/minimum of f subjected to the equality constraint g(x) = 0, we form the Lagrangian function

L(x, λ) ≡ f(x)− λTg(x)

and find the stationary points of L considered as a function of x ∈ D and the Lagrange multiplier λ ∈
R. The main advantage to this method is that it allows the optimization to be solved without explicit
parameterization in terms of the constraints.

Theorem 2.13 (Lagrange Multipliers Theorem)

Let f : Rn −→ R be a C1 function and let g(x) = 0, where g : Rn −→ Rc, be a system of C1

constraint equations: g := (g1, g2, . . . , gc). Let x∗ be an optimal solution to the optimization problem
of maximizing f(x) subject to the constraint g(x) = 0 such that rankDgx∗ = c < n. Then, their exists
a unique vector λ∗ of Lagrange multipliers λ∗

1, λ
∗
2, . . . , λ

∗
c s.t.

Dfx∗ = λ∗TDgx∗

where Dfx∗ can be interpreted as the 1× n Jacobian matrix of f and Dgx∗ as the c× n Jacobian of g.
Since both Dfx∗ and λ∗TDgx∗ are maps from Rn to R, we can invoke Riesz representation theorem to
turn this into gradients:

∇f(x∗) = ∇g(x∗)(λ∗)

which has a matrix realization of
∂f
∂x1

(x∗)
...

∂f
∂xn

(x∗)

 =


∂g1
∂x1

(x∗) . . . ∂gc
∂x1

(x∗)
...

. . .
...

∂g1
∂xn

(x∗) . . . ∂gc
∂xn

(x∗)


λ∗

1
...
λ∗
c



= λ∗
1


∂g1
∂x1

(x∗)
...

∂g1
∂xn

(x∗)

+ λ∗
2


∂g2
∂x1

(x∗)
...

∂g2
∂xn

(x∗)

+ . . .+ λ∗
c


∂gc
∂x1

(x∗)
...

∂gc
∂xn

(x∗)


This equation tells us that at any critical points x∗ of f evaluated under the equality constraints, the
gradient of f at x∗ can be expressed as a unique linear combination of the gradients of the constraints
∇gi(x

∗) (at x∗), with the Lagrange multipliers acting as coefficients. Therefore, finding the critical
points x∗ of f constrained with g is equivalent to solving the system of c + n equations for the n
unknowns in x and c unknowns in λ:

g(x) = 0

∇f(x) = ∇g(x)(λ)

which can be rewritten as

c constraint equations


g1(x) = 0

. . . = 0

gc(x) = 0

n Lagranaian equations


∂f
∂x1

(x∗) = λ∗
1
∂g1
∂x1

(x∗) + λ∗
2
∂g2
∂x1

(x∗) + . . .+ λ∗
c
∂gc
∂x1

(x∗)

. . . = . . .
∂f
∂xn

(x∗) = λ∗
1
∂g1
∂xn

(x∗) + λ∗
2
∂g2
∂xn

(x∗) + . . .+ λ∗
c
∂gc
∂xn

(x∗)
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More abstractly, Dfx∗ is the linear functional in (Rn)∗, and Dgx∗ , which is a linear map from Rn to Rc, can
be interpreted as a map from (Rc)∗ to (Rn)∗ Since λ∗ "lives" in (Rc)∗, Dgx∗(λ∗) ∈ (Rn)∗, which is the same
space that fx∗ lives in.

Let us introduce a visualization for when where is a single constraint g : Rn −→ R. From the properties
of the gradient, ∇f(x0) is orthogonal to the level set of points satisfying f(x) = f(x0) at point x0. Note
that the constraint function g also maps Rn −→ R, and so it has its own level surfaces. We can see that the
point where the contour line of g(x) = 0 tangentially touches the contours of f is the maximum. Since it
intersects it tangentially, the gradient vector at that point ∇g(x0) is parallel to ∇f(x0).

We can visualize this for multiple constraints as well, where ∇f(x0) (the gradient vector of f at x∗) can be
expressed as a linear combination of ∇g1(x0) and ∇g2(x0) (gradient vectors of the constraint functions at
x∗).

From the properties of the gradient introduced before, ▽f(x0) is orthogonal to the level set of points satisfying
f(x) = c at the point x0. But this level set f(x) = c actually intersects the level set determined by g(x) = c
at the point x0 and is indistinguishable from each other at x0. This means that ▽g(x0) is normal the level
set of g(x) = c at x0 ⇐⇒ it is normal to the level set of f(x) = c at x0. But ▽f(x0) is also normal at that
point, so ▽f(x0) must be parallel to ▽g(x0).

2.5 Inverse and Implicit Function Theorems

Theorem 2.14 (Inverse Function Theorem for Multivariable Functions and its Matrix
Realization)

Let f : Rn −→ Rn be a C1 function defined on an open neighborhood of x0 in the domain. If the total
derivative/Jacobian Dfx0 at x0 is invertible, an inverse function of f is defined on some neighborhood
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of y0 = f(x0). Given that we are working with a fixed basis, f can be modeled by the set of n equations

f1(x1, x2, . . . , xn) = y1

. . . = . . .

f2(x1, x2, . . . , xn) = y2

This theorem says that this system of n equations has a unique solution for x1, x2, . . . , xn in terms
of y1, . . . , yn, provided that we restrict x and y to small enough neighborhoods of x0 and y0. This
inverse function f−1 : Rn −→ Rn is also C1, and its total derivative/Jacobian Df−1

y0
at y0 = f(x0) is

the inverse linear map of Dfy0
.

Df−1
y0

=
(
Dfx0

)−1

Example 2.6 ()

Consider the vector-valued function f : R2 −→ R2 defined by

f(x1, x2) =

(
ex1 cos(x2)
ex1 sin(x2)

)
The total derivative/Jacobian matrix is

Jf(x1, x2) =

(
ex1 cos(x2) −ex1 sin(x2)
ex1 sin(x2) ex1 cos(x2)

)
=⇒ det Jf(x1, x2) = e2x1 cos2(x2) + e2x1 sin2(x2) = e2x1

Since the determinant e2x1 is nonzero everywhere, Dfx is nonsingular. Thus, the theorem guarantees
that for every point x0 ∈ R2, there exists a neighborhood about x0 over which f is invertible. However,
this does not mean f is invertible over its entire domain: in this case f isn’t even injective since it is
periodic: e.g. the preimage of (e, 0) contains (1, 0) and (1, 2π).

Remember that given an explicit representation of a set y = f(x), we can easily find the implicit form as
F(x,y) = y − f(x) = 0. What about the other way around? That is, given an implicit representation of
some surface, what conditions must be met so that it can be represented as the graph of a function? The
implicit function theorem is a tool that allows relations between points in Rn to be converted to functions of
several real variables. That is, it states that for sufficiently "nice" points on a n-dimensional surface defined
as F(x,y) = 0 (where F : Rn+m −→ Rm), we can locally pretend that this surface is a graph of a function
g : Rn −→ Rm whose graph

(
x,g(x)

)
is precisely the set of all (x,y) s.t. f(x,y) = 0. When m = 1, it

basically states that if an implicit surface suffices the vertical line test in a neighborhood, then it can be
written as a function.

Example 2.7 (Circle)

Let f : R2 −→ R be defined by f(x, y) = x2 + y2 − 1. The level set at z = 0 would be the set of points
satisfying

x2 + y2 − 1 = 0

the unit circle. The derivative of f with respect to y is 0 at the points (−1, 0) and (1, 0), meaning
that in any neighborhood of these points, we cannot define a function of y with respect to x. This
is true, indeed, since any such function would fail the vertical line test, which can be seen in the red
neighborhood around (1, 0). However, the blue neighborhood of the point (−

√
2/2,

√
2/2) does indeed

define a function of y with respect to x satisfying the vertical line test.
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Theorem 2.15 (Special Implicit Function Theorem)

Let f : Rn+1 −→ R be a C1 function with a point (a, b) ∈ Rn+1 on the level set f(x, y) = 0. If ∂yf(a, b),
which can also be thought of as the 1× 1 truncated Jacobian matrix Dyf(a,b) = ∂yf(a, b) w.r.t. y, of

Df(a,b) =
(
Dxf(a,b) Dyf(a,b)

)
=
(
∂x1f(a, b) . . . ∂xnf(a, b) ∂yf(a, b)

)
is invertible (in this case nonzero), then there exists an open neighborhood Ua ⊂ Rn of a and a
unique C1 function y : U ⊂ Rn −→ R s.t. f

(
x, y(x)

)
= 0 for all x ∈ U . That is, we can find a

y : U −→ R s.t. the graph y(x) within U coincides with the graph of f(x, y) = 0. Moreover, the total
derivative/Jacobian of y : Rn −→ R in U is the 1× n matrix given by the matrix product

Dga = −(Dyfa)
−1Dxfa

Example 2.8 (Circle Example)

Let n = m = 1 and f(x1, x2) = x2
1 + x2

2 − 1. We would like to find out at which points a can this
surface be explicitly represented by a function g : Ua ⊂ R −→ R defining x2 from x1. Its Jacobian is

Df =
(
∂x1f ∂x2f

)
=
(
2x1 2x2

)
The truncated Jacobian w.r.t. x2 is 2x2, which is invertible iff x2 ̸= 0. By the implicit function theorem,
we can locally write the circle in the form x2 = g(x1) for all points where x2 ̸= 0. This is easy to see.
For example, we can choose the point (0.8, 0.6) on the level set, and the appropriate explicit function
is

x2 = g(x1) =
√

1− x2
1

within the neighborhood of x1 = 0.8. For (±1, 0), we cannot since every function defined within a
neighborhood of x1 = ±1 fails the vertical line test. The derivative of g, by the theorem, can be defined
implicitly as

Dg = −(∂x2f)
−1Dx1f = −(2x2)

−1(2x1) = −x1

x2

which leads to the differential equation

g′(x1) = − x1

g(x1)
where we solve for g
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If we would have liked to find a function h : Uax2
⊂ R −→ R defining x1 from x2, then we can redo

everything to find that the truncated Jacobian w.r.t. x1 is 2x1, which is invertible iff x1 ̸= 0, and the
the derivative is

Dh = −(∂x1
f)−1Dx2

f = −(2x1)
−1(2x2) = −x2

x1

which leads to the differential equation

h′(x2) = − x2

h(x2)
where we solve for h

Theorem 2.16 (General Implicit Function Theorem)

Let f : Rn+m −→ Rm be a C1 function with a point (a,b) ∈ Rn+m on the level set f(x,y) = 0. If the
m×m truncated Jacobian matrix Dyf(a,b) w.r.t. y, of

Df(a,b) =
(
Dxf(a,b) Dyf(a,b)

)
is invertible, then there exists an open neighborhood Ua ⊂ Rn of a and a unique C1 function y : U ⊂
Rn −→ Rm s.t. f

(
x,y(x)

)
= 0 for all x ∈ U . That is, we can find a y : U −→ Rm s.t. the graph y(x)

within U coincides with the graph of f(x,y) = 0. Moreover, the total derivative/Jacobian of y is the
m× n matrix given by the matrix product

Dga = −(Dyfa)
−1Dxfa
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3 Higher Order Derivatives
So far, we have talked about derivatives as linear maps. However, this language is a bit too restrictive
because it doesn’t allow us to represent the derivatives of higher order using matrices. It turns out that
these higher order derivatives are tensors, so let’s generalize our definitions. Recall from linear algebra that
a linear map f : V → W is an element of the tensor product space V † ⊗W , where V † represents the dual
space of V . That is,

Hom(V,W ) ≃ V † ⊗W (18)

Definition 3.1 (Frechet Derivative)

A function f : V −→ W is differentiable at x ∈ V if there exists a unique tensor Dfx ∈ V †⊗W—called
the total derivative or Frechet derivative—such that

lim
h→0

∥f(x+ h)− f(x)−Dfxh∥
∥h∥

= 0 (19)

It’s a simple—almost trivial—change, but extremely powerful. Note that if f is differentiable over V , then
the transformation Df : V → (V † ⊗W ) that maps x1 to its Frechet derivative Dfx1

can also be analyzed.
Supposing that it is differentiable, the derivative of it at x is

D2fx := D(Df)x ∈ V † ⊗ (V † ⊗W ) ≃ (V †)⊗2 ⊗W (20)

by the definition above. Intuitively this also make sense: if we want to take the second derivative of f , we
must first specify the point in the domain of Df (our velocity) plus the point in the domain of f itself (our
position) to compute it (the acceleration). Continuing this pattern, we get the following recursive definition.

Definition 3.2 (kth Frechet Derivative)

For k > 1, a function f : V −→ W is k-times differentiable at x ∈ V if
1. f is k − 1 times differentiable at x ∈ V , and
2. there exists a unique rank (k, 1) tensor Dkfx ∈ (V †)⊗k ⊗W—called the kth total derivative

or kth Frechet derivative—such that

lim
h→0

∥Dk−1fx(x+ h)−Dk−1fx(x)−Dkfxh∥
∥h∥

= 0 (21)

where Dk−1fx is the (k − 1)th derivative of f at x.

Generally, multivariate calculus courses do not go into tensor algebra, so these higher order derivatives are
omitted; you only work with the Hessian for scalar-valued functions. But we won’t be scared off and will
present this in full generality, and this gives us two major benefits:

1. We can compute higher order derivative as we have seen.

2. We can compute functions that also input or output tensors, such as matrix-valued functions. This
knowledge becomes very useful for optimization, e.g. when you optimize a neural network with respect
to matrices (in fully-connected layers) and 3-tensors (e.g. convolutions) and is a must-know for building
autograd libraries.

Definition 3.3 (kth Partial Derivative)

Directional derivatives lose meaning in these higher order regimes, and we just work with iterated partials.

19/ 58



Multivariate Real Analysis Muchang Bahng Spring 2025

Definition 3.4 (Hessian)

Given f : E ⊂ V → R twice-differentiable at x, the Hessian of f at x is the matrix realization of the
total derivative, denoted Hfx.

Theorem 3.1 (Entries of Hessian are 2nd Partials)

The entries of the Hessian matrix are precisely the partials.

Hfx :=

∂x1x1(a) . . . ∂x1xn(a)
...

. . .
...

∂xnx1
(a) . . . ∂xnxn

(a)

 and Hf :=

∂x1x1 . . . ∂x1xn

...
. . .

...
∂xnx1

. . . ∂xnxn

 (22)

Proof.

3.1 k-Times Continuously Differentiable Functions

Definition 3.5 (Ck Functions)

A function f : D ⊂ Rn −→ R is said to be a Ck function if all k-times iterated partial derivatives

∂xi1
xi2

...xik
f (23)

exist and are continuous. The vector space of all Ck functions is denoted Ck(D;R), or Ck(D).

Whenever we want to get the kth iterated partial derivative of f , we will assume that f ∈ Ck. Again, this
is overkill, but it is conventional since we don’t really work with the set of functions with existing partial
derivatives. Note that mathematicians throw around the word "smooth" a lot. Usually, it means one of
three things: it is of class C1, C∞, or Ck where k is however high it needs to be to satisfy our assumptions.
For example, if I say let us differentiate smooth f two times, then I am assuming that f ∈ C2(Rn).

Visualizing Ck-functions is easy for low orders. A C0 function produces a graph that isn’t "ripped" or
"punctured," since this is exactly what a discontinuity would look like. A C1 function requires the surface
to be smooth in such a way that there is a well defined affine tangent subspace at every point. This means
that there cannot be any sharp "points" or "edges" on the graph since a tangent subspace cannot be well
defined.

Theorem 3.2 (Clairut’s Theorem)

Given f ∈ C2 at point a, its second iterated partials are equal.

∂xixj
f(a) = ∂xjxi

f(a) for i, j = 1, 2, . . . , n (24)

Proof. For clarity, denote xi, xj as x, y and ignore the rest of the variables. Then, the partial derivatives
∂xyf and ∂yxf at a point (x0, y0) can be expressed as double limits:

∂xyf(x0, y0) = lim
y→y0

∂xf(x0, y)− ∂xf(x0, y0)

y − y0
(25)

where ∂xf : D ⊂ Rn −→ R. We can use the two limit definitions of partial derivatives

∂xf(x0, y) = lim
x→x0

f(x, y)− f(x0, y)

x− x0
and ∂xf(x0, y0) = lim

x→x0

f(x, y0)− f(x0, y0)

x− x0
(26)
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and substitute them to get the two partials

∂xyf(x0, y0) = lim
y→y0

limx→x0

f(x,y)−f(x0,y)
x−x0

− limy→y0

f(x,y0)−f(x0,y0)
x−x0

y − y0
(27)

= lim
y→y0

lim
x→x0

(
f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0)

(x− x0)(y − y0)

)
(28)

∂yxf(x0, y0) = lim
x→x0

limy→y0

f(x,y)−f(x,y0)
y−y0

− limy→y0

f(x0,y)−f(x0,y0)
y−y0

x− x0
(29)

= lim
x→x0

lim
y→y0

(
f(x, y)− f(x, y0)− f(x0, y) + f(x0, y0)

(y − y0)(x− x0)

)
(30)

Now invoking our assumption that f is C2, the two limits, which approach (x0, y0) along different
paths, both exist and are equal to

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0)

(x− x0)(y − y0)
(31)

and therefore ∂xyf = ∂yxf .

Corollary 3.1 (Symmetry in kth Iterated Partials)

Given f ∈ Ck, its kth iterated partials are equal. That is, given any permutation σ,

∂xi1
xi2

...xik
f = ∂xσ(i1)xσ(i2)...xσ(ik)

f for i1, . . . , ik = 1, . . . , n (32)

Proof. By induction.

Corollary 3.2 ()

The Hessian of a C2 function is symmetric.

Let’s talk more about this. By the spectral theorem, we can eigendecompose it.

3.2 Taylor Series
To talk about convergence, the big-O notation is very useful.

Definition 3.6 (Classes of Infinitesimal Functions)

A function α : Rn −→ R is infinitesimal if α → 0 as x → x0. There are multiple "levels" of
infinitesimal functions, i.e. how fast they converge to 0. We can classify them by comparing their
limits to polynomials.

1. α is of class O(1) if

lim
x→x0

α(x)

1
= 0

This means that α(x) tends to 0 infinitely faster than 1 (which just means that it tends to 0).
2. α is of class O(h) if

lim
x→x0

α(x)

||x− x0||
= 0
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This means that α(x) tends to 0 infinitely faster than the linear ||h||, where h = x− x0.
3. α is of class O(h2) if

lim
x→x0

α(x)

||x− x0||2
= 0

This means that α(x) tends to 0 infinitely faster than the quadratic ||h||2, where h = x− x0.
4. α is of class O(hk) if

lim
x→x0

α(x)

||x− x0||k
= 0

This means that α(x) tends to 0 infinitely faster than the kth-order ||h||k, where h = x− x0.
Clearly, O(hk) ⊃ O(hk+1).

Now given a f : D ⊂ Rn −→ R, we present some polynomial approximations of f at x0 ∈ D:

1. If f ∈ C0, the zeroth (constant) approximation is just

P0(x) = f(x0)

This is not interesting at all, since it is just constant. Furthermore, the error term ϵ0(x) = f(x)−P0(x)
is an infinitesimal function as x → x0 and is of class O(1), since

lim
x→x0

f(x)− P0(x)

1
= 0

2. If f ∈ C1, the first (linear) approximation requires us to use our total derivative:

P1(x) = f(x0) +Dfx0
(x− x0)

and we know that the error ϵ1(x) = f(x)− P1(x) is infinitesimal as x → x0 and is of class O(h), since

lim
x→x0

f(x)− P1(x)

||x− x0||
= 0

3. If f ∈ C2, the second (quadratic) approximation requires us to use a quadratic term (i.e. a bilinear
form of h = x− x0) centered at x0. Call it Hx0

: Rn × Rn −→ R, and our estimation is

P2(x) = f(x0) +Dfx0
(x− x0) +

1

2
H(x− x0,x− x0)

which we would like the error term ϵ2(x) = f(x)−P2(x) to be O(h2), or in limit terms, P2 must satisfy

lim
x→x0

f(x)− P2(x)

||x− x0||2
= 0

We show that this form H is precisely the Hessian matrix.

Theorem 3.3 (Hessian)

The second order approximation of a C2-differentiable function f about a point x0 is

f(x) = f(x0) +Dfx0(x− x0) +
1

2
(x− x0)

THfx0(x− x0) +O(h2)

where Dfx0
is the total derivative at x0 and Hfx0

is the Hessian matrix at x0.
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3.3 Matrix Calculus
Now we will take a look at functions that have either an input or output as matrices. Essentially, matrices
are also vectors, so there is nothing new here to learn, but having a concrete set of notation is useful. First,
note that when we talk about a total derivative Dfa, we can interpret this as a linear map that takes in some
small perturbation h and gives us the result Dfa(h). In our column-vector setting, this just corresponded
to left matrix multiplication:

Dfa(h) = Dfah (33)

This is not the case in the matrix setting. Let us compare the following:

1. The derivative of f : R → R at a is a linear function Dfa : R −→ R satisfying f(a + h) ≈ f(a) +
Dfa(h) +O(h2). But linearity reduces Dfa to simply a scalar, and so our condition reduces to

f(a+ h) ≈ f(a) +Dfah+O(h2)

2. The derivative of a path function f : R → Rm is a linear function Dfa : R −→ Rm satisfying f(a+h) =
f(a) +Dfa(h) +O(h2). Linearity implies that Dfa is a rank-1 linear map, which reduces to it being a
column vector, and our condition reduces to

f(a+ h)︸ ︷︷ ︸
m×1

≈ f(a)︸︷︷︸
m×1

+Dfa︸︷︷︸
m×1

h︸︷︷︸
1×1

3. The derivative of a matrix function F : R → Rm×n is a linear map DFa : R −→ Rm×n satisfying F(a+
h) ≈ F(a)+DFa(h). This time, linearity does not reduce it to simple left-hand matrix multiplication.
We could just say that this is a left-hand scalar multiplication, but this doesn’t generalize well, so we
are stuck with just saying that DFa is a linear map.

F(a+ h)︸ ︷︷ ︸
m×n

≈ F(a)︸︷︷︸
m×n

+DFa(h)︸ ︷︷ ︸
m×n

Now let us take a look at when we have matrix inputs.

1. The derivative of f : Rm×n −→ R is a linear function DfA : Rm×n −→ R satisfying f(A + H) ≈
f(A) +DfA(H). We could let DfA be some linear map like M 7→ vTMu, where v,u is fixed. But in
generality, we just have the condition

f(A+H)︸ ︷︷ ︸
1×1

≈ f(A)︸ ︷︷ ︸
1×1

+DfA(H)︸ ︷︷ ︸
1×1

2. The derivative of f : Rm×n −→ Rd is some linear map DfA : Rm×n −→ Rd satisfying f(A + H) ≈
f(A) + DfA(H). Again, we could construct some form that would give us a linear map in terms of
some matrix multiplication, but in generality, we have the condition

f(A+H)︸ ︷︷ ︸
d×1

≈ f(A)︸ ︷︷ ︸
d×1

+DfA(H)︸ ︷︷ ︸
d×1

Now we present some theorems on basic differentiation. Proving these just requires us to expand the function
and compute the derivatives component-wise.
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Theorem 3.4 (Derivative of Affine Map)

Given f : Rn −→ Rm defined f(x) = Ax+ b (where A,b is not dependent on x), its derivative is

Df = A

Theorem 3.5 ()

Given the scalar α defined by
α = yTAx

where y ∈ Rm×1,A ∈ Rm×n, and x ∈ Rn×1, then

∂α

∂x
= yTA : Rn −→ R

and
∂α

∂y
= xTAT : Rm −→ R

Rewritten in the total derivative notation, we can interpret α as a function of both x and y and write

Dα(x,y) =

(
yTA
xTAT

)
: Rn+m −→ R

Theorem 3.6 ()

Given the scalar α defined by the quadratic form

α = xTAx (34)

where x ∈ Rn×1 and A ∈ Rn×n, then

∂α

∂x
= xT

(
A+AT

)
(35)

or in the total derivative notation,

Dαa = aT
(
A+AT

)
: Rn −→ R (36)
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4 Vector Fields

4.1 Gradients

Definition 4.1 (Gradient)

The gradient of a C1 scalar-valued function f is the vector field ∇f : D ⊂ Rn −→ Rn defined

∇f(a) :=

∂x1
(a)
...

∂xn
(a)


The gradient at a point is a tangent vector.

Note that the gradient is a vector field (a bundle of vectors), while the total derivative is a covector field (a
bundle of covectors). Since Rn is an inner product space, we can invoke Riesz Representation theorem and
see that they are related in the way that

Dfav = ∇f(a) · v

where · represents the dot product. At this point, it’s a bit hard to see the difference between these two,
but in more abstract spaces the total derivative generalizes much better than the gradient, which exists for
inner product spaces. From this, we can write a coordinate independent definition of the gradient.

Definition 4.2 (Gradient)

The gradient of a scalar valued function f ∈ C1 is the unique vector field whose dot product with any
vector v at each point is the directional derivative of f along v. That is,

∇fa · v = Dfav for all a ∈ D

Theorem 4.1 (Gradient as Direction of Fastest Increase)

Let f be a real-valued function such that ∇f(x) ̸= 0. Then, at the point x, ∇f(x) points in the
direction along which f is increasing the fastest. Equivalently, −∇f(x) points in the direction along
which f is decreasing the fastest.

Proof. Note that this is a coordinate-independent proof. Given a directional vector v, we can normalize
it since we are only interested in direction. Evaluating it with the total derivative at x gives us Dafv.
But by definition,

∇fa · v = Dfav

which means that

sup
||v||=1

{Dfav} = sup
||v||=1

{∇fa · v}

= sup
||v||=1

{||∇fa|| ||v|| cos(θ)}

= sup{||∇fa|| cos(θ)}
= ||∇fa|| when θ = 0

Therefore, v must point in the direction of ∇fa.

Therefore, we can interpret the gradient evaluated at a point as the tangent vector that points in the direction
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of fastest increase. We can also interpret the gradient ∇f itself as the vector field that determines some
sort of "flow" in the domain Rn. Therefore, if we drop a point in this field, the point will flow through Rn

through a current determined by ∇f and will eventually end up at a local maximum.

Definition 4.3 (Del Operator)

For convenience, we use the del operator to denote the gradient. The del operator ∇ : f 7→ ∇f takes
in a differentiable function and outputs the gradient of it.

4.2 Divergence
Colloquially, the divergence is an operator div that operates on a vector field and produces a scalar field
which provides the quantity of the vector field’s source at each point. Technically, the divergence represents
the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

There is a very nice geometric interpretation for divergence. Imagine that the vector field F represents
fluid flow in Rn. Divergence is then the "measure" of the net amount of fluid flowing in and out of an
infinitesimally small region, labeled at each point. If the net fluid flow is positive (i.e. more fluid is flowing
in than out) at point x0, then divF (x0) > 0. If the net fluid flow is negative (i.e. more fluid is flowing
out than in) at point x0, then divF (x0) < 0. This measure assigns a number to every point in the space
(creating a scalar field). Therefore, each point either acts as a "source" of fluid emanating from it or as a
"sink" that sucks in more fluid than it puts out.

Definition 4.4 (Divergence)

The divergence of a vector field F : Rn −→ Rn is a scalar field defined

divF := ∇ · F =


∂

∂x1

...
∂

∂xn

 ·

F1

...
Fn

 =
∑
i

∂Fi

∂xi

When n = 1, F reduces to a regular function and divF reduces to the ordinary derivative. Some further
properties:

1. By linearity of partials, div is also a linear operator. That is, given two vector fields F,G and
two scalars α, β,

div(αF+ βG) = α divF+ β divG

2. Divergence satisfies the product rule: Given a vector field F : Rn −→ Rn and a scalar function
φ : Rn −→ R.

∇ · (φF) = ∇φ · F+ φ(∇ · F)
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Example 4.1 ()

The divergence of the origin in the left graph is clearly negative since the net flow is out of the point,
while the divergence of the origin in the right graph is positive since the net fluid flow is in.

Lemma 4.1 (Divergence in Cylindrical Coordinates)

For vector field F : R3 −→ R3 expressed in cylindrical coordinates as

F =

Fr

Fθ

Fz


the divergence is

divF = ∇ · F =
1

r

∂

∂r

(
rFr

)
+

1

r

∂Fθ

∂θ
+

∂Fz

∂z

Note that the condition of locality is important, since in general a global cylindrical coordinate system
would be inconsistent.

Lemma 4.2 (Divergence in Spherical Coordinates)

For vector field F : R3 −→ R3 expressed in spherical coordinates (r, θ, ϕ), the divergence is

divF = ∇ · F =
1

r2
∂

∂r

(
r2Fr) +

1

r sin θ

∂

∂θ

(
sin θFθ

)
+

1

r sin θ

∂Fϕ

∂ϕ

4.3 Curl
Colloquially, the curl is a vector operator that describes the infinitesimal circulation of a vector field in
3-dimensional Euclidean space, where the curl at each point is represented by a vector whose length and
direction denote the magnitude and axis as the maximum circulation. That is, if one drops a twig or a ball
with its center of mass at a certain point, the curl measures how much it will spin. In physics, the rotation of
a rigid body in 3-dimensions can be described by a vector ω along the axis of rotation. ω is called the angular
velocity vector, with ||ω|| denoting the angular speed of the body. The curl of this vector field measured at
the center of mass of the body is measured as 2ω. That is, the curl outputs twice the angular velocity vector
of any rigid body. Note that unlike the gradient and divergence operators, curl does not generalize as simply
to other dimensions.

Definition 4.5 (Curl)

The curl of a 3-dimensional Ck vector field F : R3 −→ R3 is an operator

curl : Ck(R3;R3) −→ Ck−1(R3;R3)
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defined

curlF ≡ ∇× F ≡

 ∂
∂x
∂
∂y
∂
∂z

 ≡

∂F3

∂y − ∂F2

∂z
∂F1

∂z − ∂F3

∂x
∂F2

∂x − ∂F1

∂y



Definition 4.6 (Irrotational Vector Fields)

A vector field F is irrotational if
curlF = 0

Visually, this indicates that there are no "whirlpools" everywhere, meaning that any rigid body placed
anywhere, while it may travel along a path, will not rotate around its own axis.

It has been shown that fluid draining from a tub is usually irrotational except for right at the center, which
is surprising since the fluid itself is "rotating" around the drain.

Theorem 4.2 ()

For any C2 vector field F ,
div curlF = ∇ · (∇× F ) = 0

That is, the divergence of any curl is 0.

Proof. Proved by equality of mixed partials.

Definition 4.7 ()

The Laplace operator, or Laplacian, of a function f : Rn −→ R is the divergence of the gradient.

∇2f ≡ ∇ · (∇f) ≡
n∑

i=1

∂2f

∂x2
i

4.4 Conservative, Solenoidal Vector Fields

Definition 4.8 (Conservative Vector Fields)

A vector field F : U ⊂ Rn −→ Rn is a conservative vector field if and only if there exists a scalar field
f : U ⊂ Rn −→ R such that

F = ∇f

on U .

Conservative vector fields appear naturally in mechanics: they are vector fields representing forces of physical
systems in which energy is conserved.

Theorem 4.3 ()

Given a C2-function f : R3 −→ R,
∇× (∇f) = 0

That is, the curl of any gradient vector field is the zero vector.
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Proof. ∇×∇f can be expanded to(
∂2f

∂y∂z
− ∂2f

∂z∂y
,

∂2f

∂z∂x
− ∂2f

∂x∂z
,

∂2f

∂x∂y
− ∂2f

∂y∂x

)
= (0, 0, 0)

by equality of mixed partials.

Definition 4.9 (Solenoidal Vector Fields)

A solenoidal, or incompressible, vector field is a vector field F : Rn −→ Rn such that

divF = ∇ · F = 0

at all point in the field. That is, the field has no sources or sinks.

Example 4.2 ()

The vector field F : (x, y) 7→ (y,−x) is solenoidal.
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5 Riemann and Darboux Integration
We have done integration over closed intervals [a, b]. The natural extension is to define integration over boxes
B =

∏
i[ai, bi]. Essentially the construction is exactly the same.

Definition 5.1 (Partition/Mesh)

Let B =
∏

i[ai, bi] ⊂ Rn be a box. Then, a partition—or mesh—of B is a finite set of points
P = {xij}1≤i≤n,0≤j≤mi

a s.t.

ai = xi,0 ≤ xi,1 ≤ xi,2 ≤ . . . ≤ xi,mi−1 ≤ xi,mi = b ∀i = 1, . . . , n (37)

We denote each box within the partition as

∆J = ∆j1,j2,...,jn =
∏
i

[xi,jk−1, xi,jk ] ∀ji = 1, . . . ,mi (38)

of volume |∆J | :=
∏

i(xi,jk − xi,jk−1
).

aTherefore, for each dimension i, we want to take the interval [ai, bi] and subdivide it into mi + 1 subintervals.

This nearly1 partitions B into a grid of
∏

i mi smaller boxes, and can be seen as a discretization of the
integral which we will construcct.

Definition 5.2 (Riemann Sums with Respect to Partition)

Let P be a partition of B ∈ Rn and let f : B ⊂ Rn → R be bounded. Then, the upper and lower
Riemann sums of f with respect to P are defined

U(P, f) :=
∑
J

sup
x∈∆J

f(x)|∆J |, L(P, f) :=
∑
J

inf
x∈∆J

f(x)|∆J | (39)

a1
x1,1

x1,2
x1,3

x1,4
x1,5

b1 a2
x2,1

x2,2

x2,3

x2,4

x2,5

b2

(a) Lower Riemann sum.

a1
x1,1

x1,2
x1,3

x1,4
x1,5

b1 a2
x2,1

x2,2

x2,3

x2,4

x2,5

b2

(b) Upper Riemann sum.

Figure 2

1since boundaries overlap
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Definition 5.3 (Riemann Integral)

Given that f : B ⊂ Rn → R is bounded, the upper and lower Riemann integrals of f are defined
ˆ
B

f(x) dx := inf
P

U(P, f),

ˆ
B

f(x) dx := sup
P

L(P, f) (40)

If the upper and lower Riemann integrals are equal, then the Riemann integral of f
ˆ
B

f(x) dx (41)

is defined as such. Furthermore, f is said to be Riemann integrable over B.

5.1 Conditions for Integrability

Theorem 5.1 ()

f : B ⊂ Rn → R continuous means f is integrable over B.

However, there are some functions with discontinuities that are in fact integrable.

1. Given that there is a subset N in B with volume 0 over which f is not defined, we can integrate over
B \N . In the one and two dimensional cases,ˆ

B\N
f(x)dx and

¨
B\N

f(x)dA

are well-defined. Visually,

2. The function is defined for all values in the region, but there is a jump in the value of the function.
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Informally, if we can visualize the Riemann sum converging to a well-defined area as the rectangles get
thinner and thinner, then a discontinuous function is integrable. Indeed, all continuous functions (over a
bounded set) are integrable since their Riemann sums are well defined.

5.2 Iterated Integrals and Fubini’s Theorem
The construction of the integral is one step, but we should know how to practically compute such an integral.
We can do this by recursively “reducing” the dimension of the region of the integral until we can work with
one dimension. This is known as Cavalieri’s principle: Let S be a bounded n-dimensional solid in Rn. Define
an n− 1 subspace P in Rn and given the quotient space Rn/P with elements Px, let

S ⊂
⋃

a≤x≤b

Px (42)

That is, S is "in between" affine subspaces Pa and Pb. Given the cross section of S with Px, defined Px ∩S,
denote the integral of this cross section as A(x). Then, colloquially, the volume of S can be represented as the
integral

´ b
a
A(x) dx. This idea basically says that the volume of S is the sum of the areas of its infinitesimal

cross sections.

Figure 3: Visual of Cavalieri’s principle.

Given a solid S ⊂ Rn, it is easy to see that no matter what subspace P we choose–that is, no matter what
orientation we choose to "cut" the solid– the sum of all of its cross sections should be equal to the true
volume of S. In the case when S is a box in Rn, Fubini’s theorem states that whether we cut S up along
the x1-axis, x2-axis, ..., or the xn-axis, the symmetry in volume is always preserved. This theorem is really
just a specific case of this general symmetry in volume.

Theorem 5.2 (Fubini’s Theorem)

Given a function f : Rn −→ R, let

B ≡
n∏

i=1

[αi, βi]

and let p be any permutation of the elements {x1, x2, ..., xn}. Then

ˆ
B

f dV =

ˆ βn

αn

...

ˆ β1

α1

f(x1, x2, ..., xn) dx1...dxn

=

ˆ p(βn)

p(αn)

...

ˆ p(β1)

p(α1)

f(x1, x2, ..., xn) dp(x1)...dp(xn)
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In the two dimensional case, we have
¨

B

f dA =

ˆ d

c

ˆ b

a

f(x, y) dx dy =

ˆ b

a

ˆ d

c

f(x, y) dy dx

and in the three dimensional case, we can use any of the 6 permutations. Computation of these integrals
is simple. You do the innermost integral first with respect to the corresponding variable, while treating the
rest of the variables constant. Evaluating each integral outputs a formula for a higher dimensional cross
section of the solid S. It is clear that computing iterated integrals is really just doing Cavalieri’s principle
repeatedly.

5.3 Integration over Regions between Curves

Definition 5.4 (Simple Regions w.r.t. a Variable)

A bounded region D in Rn is said to be xi-simple if it is bounded by the graphs of two continuous
functions u1, u2 : Rn−1 −→ R of the variables

x1, x2, ..., xi−1, xi+1, ..., xn

That is, D can be expressed in the form

{x ∈ Rn | u1(x1, ..., xi−1, xi+1, ..., xn) ≤ xi ≤ u2(x1, ..., xi−1, xi+1, ..., xn)}

If a region is simple in all of its variables, it is simply called simple. Note that n-dimensional boxes are
simple regions.

Example 5.1 ()

In R2, the region on the left graph is an y-simple region and the region on the right is a x-simple region.
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x x

y y
u1

u2

v1 v2

a b

c

d

We now describe the method of calculating double integrals over elementary regions.

Theorem 5.3 ()

The double integral over a y-simple region D bounded by functions u1 and u2 in R2 and the x-values
a and b (as shown in the left graph of example 2.1) is

¨
D

f(x, y) =

ˆ b

a

ˆ u1(x)

u2(x)

f(x, y) dy dx

The double integral over an x-simple region D bounded by functions v1 and v2 in R2 and the y-values
c and d (shown in the right of graph of example 2.1) is

¨
D

f(x, y) =

ˆ d

c

ˆ v1(y)

v2(y)

f(x, y) dx dy

Example 5.2 ()

Integrating f(x, y) over the unit disk would have the form

ˆ 1

−1

ˆ √
1−x2

−
√
1−x2

f(x, y) dy dx or
ˆ 1

−1

ˆ √
1−y2

−
√

1−y2

f(x, y) dx dy

Note that the unit disk is both x and y simple.

5.4 Change of Basis
Sometimes, integrating a region over a different basis would make the integral computation much more
simpler. In this case, we may be able to transform more complicated regions into elementary regions. We
first introduce a change of basis in 2 dimensions and then generalize it into higher dimensions.

Let R2 have the standard orthonomal basis e1, e2, commonly known as the x, y basis. Now, let us construct
new basis vectors of R2, denoted f1, f2 such that f1, f2 are functions of e1, e2. Since they are both bases
that span R2, we can equally represent e1, e2 as functions of f1, f2.

e1 = g(f1, f2)

e2 = h(f1, f2)

Note that this change of basis does not necessarily have to be linear, as in the context of passive transfor-
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mation in linear algebra. Then, every point (x, y) in the (e1, e2)-basis can be rewritten as

(x, y) = xe1 + ye2

= x g(f1, f2) + y h(f1, f2)

= uf1 + vf2

Note that it is customary to denote x, y as the coefficients in the e1, e2 basis and u, v as the coefficients in
the new f1, f2 basis. This way, we can not only write e1 and e2 as functions of f1 and f2, but we can also
write the coefficents x, y as functions of the coeffiecents u, v! That is,

x = x(u, v)

y = y(u, v)

which is really just a function

B : R2 −→ R2, B(u, v) =

(
x(u, v)
y(u, v)

)
Notice that B changes the u, v coordinates to the x, y coordinates, and B−1 changes the x, y coordinates to
the u, v coordinates.

B−1 : R2 −→ R2, B−1(x, y) =

(
u(x, y)
v(x, y)

)
Note that these coefficients actually change contravariantly, that is, they change inversely with respect to
how the basis vectors are changed. In vector calculus, it is conventional to represent a change of basis with
functions that relate the coefficients x, y with u, v, rather than the bases f1, f2 with e1, e2.

Theorem 5.4 (Integration over Change of Bases in R2)

Let R2 have the standard orthonomal basis e1, e2. Now, let us construct new basis vectors of R2,
denoted f1, f2 such that the coefficients of the vectors in R2 are related by the change of basis function

B =

(
x
y

)
=⇒ B(u, v) =

(
x(u, v)
y(u, v)

)
Given region D ⊂ R2 and S = B(D) is the region transformed by B, the integral of function f(x, y)
over region D can be expressed as

¨
D

f(x, y) dA =

¨
S

f
(
x(u, v), y(u, v)

) ∣∣JB(u, v)
∣∣ dĀ

where
∣∣JB(u, v)

∣∣ is the determinant of the Jacobian matrix of B. Expanding the Facobian determinant
gives ∣∣JB(u, v)

∣∣ = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

Theorem 5.5 (Integration over Change of Bases in R3)

Given that we have the change of basis function

B : R3 −→ R3, B(u, v, w) =

x(u, v, w)
y(u, v, w)
z(u, v, w)


a region D ∈ R3 and S = B(D), the region transformed by B, the integral of f(x, y, z) over region D
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can be expressed as
˚

D

f(x, y, z) dV =

˚
S

f
(
x(u, v, w), y(u, v, w), z(u, v, w)

)∣∣JB(u, v, w)
∣∣ dV̄

where
∣∣JB(u, v, w)

∣∣ is the Jacobian determinant of B.

Example 5.3 ()

Given a real-valued function f defined over the region D ⊂ R2, we can perform a change of basis of
the x, y coordinates into polar ones within a new region S. The change of basis

x = r cos θ

y = r sin θ

S

1

2π

r

θ

T : (r, θ) 7→
(r cos θ, r sin θ) D

Theorem 5.6 (Integration over Change of Bases in Rn)

Let Rn have the standard orthonormal basis e1, e2, ..., en, and let us construct a new basis f1, f2, ..., fn
such that the coefficients of the vectors in Rn are related with the functions

B : Rn −→ Rn, B(u1, u2, . . . , un) =


x1(u1, . . . , un)
x2(u1, . . . , un)

...
xn(u1, . . . , un)


Given that the region D ⊂ Rn is transformed into a new region S = B(D) ⊂ Rn under this basis
transformation, the integral of function f(x1, . . . , xn) over region D can be expressed as

ˆ
D

f(x) dH =

ˆ
S

f
(
x1(u), x2(u), ..., xn(u)

)∣∣JB(u1, . . . , un)
∣∣ dH̄

where the integral on both the left and right hand side represents integration over an n-dimensional
region, x represents the n-tuple (x1, . . . , xn), u represents the n-tuple (u1, . . . , un), and

∣∣JB(u1, . . . , un)
∣∣

represents the Jacobian determinant of function B.

We now describe some common change of basis formulas for polar, cylindrical, and spherical coordinates.
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Theorem 5.7 (Integration in Polar Coordinates)

¨
D

f(x, y) dx dy =

¨
S

f(r cos θ, r sin θ)r dr dθ (43)

Definition 5.5 (Cylindrical, Spherical Coordinates)

In R3, cylindrical coordinates have the following relation to rectangular coordinates.

x = r cos θ (44)
y = r sin θ (45)
z = z (46)

In R3, spherical coordinates have the following relation to rectangular coordinates.

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

Corollary 5.1 (Integration in Cylindrical Coordinates)

˚
D

f(x, y, z) dx dy dz =

˚
S

f(r cos θ, r sin θ, z)r dr dθ dz

Corollary 5.2 (Integration in Spherical Coordinates)

˚
D

f(x, y, z) dx dy dz =

˚
S

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sin θ dρ dθ dϕ

Example 5.4 (Gaussian Integral)

The following is the (un-normalized) probability distribution function of the Gaussian distribution.
ˆ ∞

−∞
e−x2

dx =
√
π

5.5 Improper Integrals
There are generally two types of improper integrals.

1. The region D integrated over is unbounded.

2. The function f that is integrated is unbounded within the region D.

These types of improper integrals are usually evaluated using a limiting process. When the interval I is
unbounded, say (1,∞), the integral can be evaluated as

ˆ ∞

1

1

x2
dx = lim

b→∞

ˆ b

1

1

x2
dx = lim

b→∞

(
1− 1

b

)
= 1
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In case 2, we can add a limit at the point where the function f diverges as such.
ˆ 1

0

1√
x
dx = lim

a→0

ˆ 1

a

1√
x
dx = lim

a→0
(2− 2

√
a) = 2

We now describe how to integrate over a certain path p embedded in a higher dimensional space Rn, possibly
with a scalar or vector field f . We must first go over oriented paths.

Extending the previous case, we use a multivariate limiting process in R2. We will first work with case 2,
when f is unbounded within the region D. Let us define an elementary region D in R2; without loss of
generality, we will make it y-simple, meaning that D can be expressed as

D ≡ {(x, y) ∈ R2 | a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}

We can actually assume that the region in which f is unbounded lies in the boundary ∂D. This is because if
it lied in the interior of D, we could split D into pieces across a path that intersects this region with divergent
values, evaluate the integrals over the pieces separately, and then sum the integrals. For example, in the
rectangular region below, let the dashed line represent the values where the function f diverges. Then, we
can split the region into two rectangular regions shown in the right.

Therefore, assuming that f is unbounded in ∂D, we can construct a new region

Dη,δ ≡ {(x, y) ∈ R2 | a+ η ≤ x ≤ b− η, ϕ1(x) + δ ≤ y ≤ ϕ2(x)− δ}

for some arbitrarily small numbers η, δ > 0, meaning that the integral (reduced to iterated integrals using
Fubini’s theorem)

F (η, δ) ≡
¨

Dη,δ

f(x, y) dA =

ˆ b−η

a+η

ˆ ϕ2(x)−δ

ϕ1(x)+δ

f(x, y) dy dx

is well defined.

Dη,δ

D

Clearly, the function F (η, δ) is a function of two variables η and δ. So, if the limit

lim
(η,δ)→(0,0)

F (η, δ)

is well defined, then so is the improper integral. For it to exist, the iterated limits must both equal to a
well-defined real number L (and to each other). That is,

lim
η→0

lim
δ→0

F (η, δ) = lim
δ→0

lim
η→0

F (η, δ) = L =⇒ lim
(η,δ)→(0,0)

F (η, δ) = L
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It is also worthwhile to note that functions unbounded at isolated points can be evaluated using the methods
above using a change of basis. Consider the example below.

Example 5.5 ()

In the unit disk D ⊂ R2, let the function f be defined as

f(x, y) ≡ 1√
x2 + y2

Clearly, f is continuous at every point except 0 = (0, 0), meaning that
¨

D\{0}
f(x, y) dA

is well-defined. In order to solve the integral over the entire disk, we convert to polar coordinates and
evaluate the limit ¨

D\{0}
f(x, y) dA = lim

δ→0

ˆ 1

δ

ˆ 2π

0

r f(r cos θ, r sin θ) dθ dr

1

2π

1

1

If we are given an unbounded region D ⊂ R2, we can first create a bounded region and expand that region
using a limit to cover all of D.
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6 Surfaces
We can represent a K-dimensional subset S ⊂ RN in multiple ways, where K < N . There are three
conventional ways to do this.

1. We can parameterize it with a function f : D ⊂ Rk −→ Rn to create a parameterized set defined as
the image of an injective f under D. Letting x ∈ Rn and u ∈ Rk, the parameterization is defined

u 7→ f(u) =
(
f1(u), f2(u), . . . , fn(u)

)
2. A function f : Rn −→ Rm of the form y = f(x) creates an explicit representation by defining all

(x,y) ∈ Rn+m satisfying
y = f(x)

3. A level set of the form F(x) = 0 creates an implicit representation by defining all x ∈ Rn satisfying

F(x) = 0

Now if F was scalar valued, then the equation F (x) = 0 defines a hypersurface in Rn with codimension
1. If F is a k-vector valued function, then the implicit surface generally has codimension k, since we
can interpret F(x) = 0 as a system of k constraint equations.

Generally, the change of representations is simple only when the explicit representation y = f(x) is given.
The implicit form is F(x,y) = y− f(x) = 0, and the parameterized form is the map x 7→ (x, f(x)). However,
the explicit representation is very limited in usefulness, because it can only describe sets that are graphs of
functions that pass the vertical line test. The implicit function theorem, stated later, states conditions under
which an equation F(x) = 0 can be solved explicitly for any of the xi’s. The other two representations are
much more versatile, with the implicit representation being slightly more general, but the parametric form
being more useful, since we can directly compute points on the S. Some examples are:

1. a 1-dimensional path/curve in Rn

2. a 2-dimensional surface in R3

3. a k-dimensional set in Rn

If these surfaces are smooth enough, then there must exist geometric tangent vectors, geometric tangent
planes, and geometric orthogonal vectors on them. We say "geometric" to distinguish them from the vectors
in the tangent space Tx0

Rn. It is important to know how to derive them.

Theorem 6.1 (Explicit Representation)

Let us have the surface S ⊂ Rn+1 defined by y = f(x) and a point on the surface (x0, f(x0)).
1. To get the equation of the set of affine points forming the geometric tangent plane, we look at all

points (x, y) satisfying
y = f(x0) +Dfx0

(x− x0)

and to get an arbitrary tangent vector protruding from x0, we look at all vectors (v, w) of form

w = Dfx0
v

i.e. all vectors of form (v, Dfx0v).
2. To get the equation of the orthogonal vector, convert this to the implicit representation g(x, y) =

y − f(x) = 0, and see that the gradient is orthogonal to the tangent plane. So, the orthogonal
vector at x0 is

∇g(x0, f(x0)) =

(
−∇f(x0)

1

)
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Note that indeed, dotting this with an arbitrary tangent vector of the form above gives(
−∇f(x0)

1

)
·
(

v
Dfx0

v

)
= −∇f(x0) · v +Dfx0

v = 0

Given a level set S = {x ∈ Rn | f(x) = c}, a vector v is a tangent vector of S at a if the directional
derivative (if it exists) satisfies

∇vf(a) = 0

If f is differentiable at a, then this condition is equivalent to

Dfav = 0

Intuitively, Dfav answers the question: "If I move infinitesimally in the direction v, what happens to f?"
We would want this direction to preserve the value of f = c, and so the derivative should be 0. Therefore,
we look for the vectors v satisfying Dfav = 0, i.e. the annihilator (Dfa)

0 ⊂ Rn. This result is precisely the
well-known theorem that states that "gradients are orthogonal to level sets." It is intuitive to claim that if
we have some sort of directional vector v, then this v must be "tangent" if the directional derivative towards
v must be 0, essentially staying within the level set of value c.

Theorem 6.2 (Implicit Representation)

Let us have the surface S ⊂ Rn defined by F (x) = 0 and a point a ∈ S.
1. The gradient ∇F (x0) is simply the orthogonal vector at x0.
2. The set of all directional tangent vectors protruding from x0 is defined by the set of directional

vectors v satisfying
∇F (x0) · v = 0

and the set of all affine points forming the geometric tangent plane are all x ∈ Rn satisfying

∇F (x0) · (x− x0) = 0

Proof. This is trivial since we can invoke Reisz representation theorem and see that

Dfav = 0 =⇒ ∇af · v = 0

This theorem now simplifies our derivation of tangent planes of a function f : Rn −→ R. To find the equation
of a tangent plane of y = f(x) at x = a, we can simply write the one-line equation as

y = f(a) +Dfa(x− x0)

However, if we had an implicit function of the form g(x, y) = c, then separating this into an explicit function
of y is hard. Therefore, we can simply treat g itself as a function of the n + 1 variables (x, y), and treat
g(x, y) = c as a level set.

Theorem 6.3 (Parametric Representation)

Let us have f : D ⊂ Rk −→ Rn, with injective f defining a surface f(D) ⊂ Rn. Let us have u0 ∈ D
with f(u0) = x0 ∈ f(D). Our idea is this: we compute k directional derivatives of f in k linearly
independent direction vectors at u0, which will give us k (linearly independent, due to injectiveness of
f , but not necessarily orthogonal) geometric tangent vectors protruding from x0 that span the tangent
space Tx0

. If k = n− 1, then the orthogonal vector is uniquely defined to be the vector spanning T⊥
x0

,
and is k < n− 1, there is no unique orthogonal vector defined.

1. The set of all directional tangent vectors v protruding from x0 is represented by the set of all
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linear combinations of the partials, aka the image of the Jacobian of f

{c1∂u1
f(u0) + . . .+ ck∂uk

f(u0) | c ∈ Rn} = Im

 | . . . |
∂u1

f(u0) . . . ∂kf(u0)
| . . . |

 = ImDfu0

The tangent space is the space of all x ∈ Rn of the form

f(x0) +Dfx0
u for all u ∈ Rk

2. If k = n− 1, the orthogonal vector is the unique vector that is orthogonal to all ∂ui
f(u0), which

can be computed using linear algebra techniques (e.g. kernel of Dfx0
). If n = 3, k = 2, then this

can simply be computed using the cross product.
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7 Integration of Forms

7.1 Line Integrals

Definition 7.1 (Orientations, Simple Curves, Closed Curves)

A path function p : [a, b] ⊂ R −→ Rn determines a curve in Rn with endpoints p(a) and p(b). The
direction the curve p takes, that is from p(a) to p(b) in Rn is called the orientation of p. A path or a
curve with a defined orientation is called an oriented curve.
A simple curve C to be the image of an injective piecewise C1 map c : I ⊂ R −→ R3. Since it is
inejctive, it does not intersect itself, and C is piecewise smooth in Rn. If I = [a, b], then c(a) and c(b)
are the endpoints of the curve. A simple curve with an orientation is called an oriented simple curve.
A closed curve C is the image of piecewise C1 map c : [a, b] −→ Rn such that c(a) = c(b). That is,
the endpoints of C are equal. A simple closed curve is a closed curve that is injective over the interval
[a, b). Note that a closed curve has two possible orientations.

If C is an oriented simple curve or an oriented simple closed curve, then we can unambiguously define line
integrals along them.

Definition 7.2 ()

Let h be an injective function that takes [α, β] ⊂ R to the interval [a, b] ⊂ R. Given an oriented simple
path function p : [a, b] ⊂ R −→ Rn, the composition

ρ = p ◦ h : [α, β] −→ Rn

is called a reparamaterization of p. Note that since h is injective, it takes endpoints to endpoints. If h
preserves the direction in which the path travels, that is, if

(p ◦ h)(α) = a and (p ◦ h)(β) = b

then h is orientation preserving. If

(p ◦ h)(α) = b and (p ◦ h)(β) = a

then h is orientation reversing. Note that a path c having the same image as p does not imply that c
is a reparamaterization of p, since c may not be injective.
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Definition 7.3 (Scalar Line Integral)

Let f : Rn −→ R, which can be interpreted as a scalar field. Now define a C1 path function

c : [a, b] ⊂ R −→ Rn

such that the composition of functions

f ◦ c : [a, b] ⊂ R −→ Rn

is continuous. Then, the path integral, or scalar line integral, of f along the path c. is defined
ˆ
c

f ds =

ˆ b

a

f
(
c(t)
)
||c′(t)|| dt

=

ˆ b

a

f
(
x1(t), x2(t), ..., xn(t)

)
||c′(t)|| dt

If c(t) is only piece-wise C1, we can define the path integral by breaking [a, b] into pieces over with
f
(
c(t)
)
||c′(t)|| is continuous and then summing the integrals over the pieces. That is,

ˆ b

a

f
(
c(t)
)
||c′(t)|| dt =

n−1∑
i=0

ˆ αi+1

αi

f
(
c(t)
)
||c′(t)|| dt

Note that since f is a scalar-valued function, we can interpret a path integral as the sum of infinitesmal
segments of the path c having a weight determined by f at each section. If f is a constant function outputting
1 at every point, then the path integral just outputs the length of the path c in Rn.

L =

ˆ b

a

f
(
c(t)
)
||c′(t)|| dt =

ˆ b

a

||c′(t)|| dt

Definition 7.4 (Vector Line Integral)

Let F : Rn −→ Rn be a vector field on Rn that is continuous on the C1 oriented path c : [a, b] ⊂ R −→
Rn. The line integral of F along c is defined by the formulaˆ

c

F · ds =
ˆ b

a

F
(
c(t)
)
· c′(t) dt

where · represents the dot product of F with c′ over the interval [a, b]. It is also commonly written in
differential notation,ˆ

c

F · ds =
ˆ
c

F · (dx1, . . . , dxn) =

ˆ
c

F1dx1 + F2dx2 + . . . Fndxn
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Similarly with path integrals, we can also define line integrals as the sum of integrals over piece-wise
continuous sections of c. That is, given an oriented curve C made up of several oriented component
curves Ci, i = 1, 2, ..., k, we can paramaterize C by paramaterizing the pieces Ci’s separately. Thus,
we can treat C = C1 + ...Ck and get

ˆ
C

F · ds =
k∑

i=1

ˆ
Ci

F · ds

Note that a vector line integral is a generalization of scalar line integrals, so any results holding for
vector line integrals also holds for their scalar counterpart.

Example 7.1 (Work)

In mechanics, work W is defined as
W = F · d

where F is force and d is displacement. With this knowledge, the reader can easily see that the work
done by vector field F on a particle traveling along a path c from time a to time b can be calculated
by the line integral

W =

ˆ b

a

F
(
c(t)
)
· c′(t) dt

=

ˆ
c

F1dx+ F2dy + F3dz

Theorem 7.1 (Invariance of Path Paramaterizations on Vector Line Integrals)

Let F be a vector field and f be a scalar field, both continuous on the C1 path function p : [a, b] −→ Rn

and let q : [α, β] −→ Rn be a reparamaterization of p. Then,

q is orientation preserving =⇒
ˆ
p

F · ds =
ˆ
q

F · ds

q is orientation reversing =⇒
ˆ
p

F · ds = −
ˆ
q

F · ds

7.2 Conservative Vector Fields
We now introduce a fundamental theorem about line integrals over gradient fields. Recall the fundamental
theorem of calculus and it’s equivalent form.

Theorem 7.2 (Fundamental Theorem of Single Variable Calculus)

Let function ∇g : R −→ R be the gradient of the single variable C1 function g : R −→ R; that is, ∇g
is a conservative vector field on R. Then,

ˆ b

a

∇g(x) dx = g(b)− g(a)

Note that in the single variable case,
d

dx
g(x) = ∇g(x)
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This means that the value of the integral of ∇g only depends on the value of g at the endpoints of the
interval [a, b].

We can extend this to line integrals for functions mapping Rn to R.

Theorem 7.3 (Invariance of Line Integrals in Conservative Vector Fields)

Given that F : Rn −→ Rn is a C1 conservative vector field with ∇f = F for C2 function f : Rn −→ R
and path function p : [a, b] −→ Rn is a piecewise C1 path, then

ˆ
p

F · ds =
ˆ
p

∇f · ds = f
(
p(b)

)
− f

(
p(a)

)
That is, the line integral of any path in a conservative vector field is dependent on the value of f at
the endpoints p(a) and p(b).

In physics, calculating the work done by a force represented by a vector field requires us to know the path
that it travels through.

W =

ˆ
p

F · ds

However, in many cases F is assumed to be conservative, so it is only necessary that we find the displacement
of the particle from its endpoints, resulting in the simplification of the formula.

W =

ˆ
p

∇f · ds = f
(
p(b)

)
− f

(
p(a)

)
Corollary 7.1 (Equivalent Conditions for Vector Field to be Conservative)

The following conditions are equivalent:
1. F : Rn −→ Rn is a conservative vector field.
2. The line integral of F : Rn −→ Rn in curve C is path independent; that is, if C1 and C2 are two

paramaterizations of C, ˆ
C1

F · ds =
ˆ
C2

F · ds

3. Given that C is a closed loop, the line integral of F : Rn −→ Rn across C is 0.
˛
C

F · ds = 0
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4. The curl of F : R3 −→ R3 vanishes

curlF = ∇× F =

∂F
∂x
∂F
∂y
∂F
∂z

×

F1

F2

F3

 = 0

5. The following partial derivatives of F : R2 −→ R2 are equal

∂F1

∂y
=

∂F2

∂x

We can develop a bit of intuition to determine whether a vector field is conservative or not. If vector field F
is conservative, then there exists a smooth scalar field f such that ∇f = F . For each latitude and longitude
on a certain map, we can give it an altitude as a function of those coordinates (picture a map with a bunch
of hills and valleys). The gradient and thus the vector field is all the vectors that point in the direction of
highest ascent. he vector field is all the vectors that point in the direction of highest ascent. Extending the
metaphor the path integral is like starting on at a point and climbing the hills and valleys, creating work
as you go up a hill (proportional to the steepness and thus the dot product of your motion vector with the
gradient vector field in the path integral) and decreasing the work you put in by going down a hill. Since
the path is closed, it is like you are going up and down the same amount overall, so the path integral is zero.
Following this analogy, the vector field determined by this function (marked as arrows in the x, y plane) is
conservative.

If we can construct a closed loop around F where the line integral is nonzero, then it means that we have
ended up at a "higher" or "lower" (altitude) at the same point. This means that rather than being a certain
landscape, there exist different "levels" of values at one point, like a spiraling staircase. For example, look
at the solenoidal vector field below, where we can construct a closed loop (a circle going around the origin
counterclockwise). There is no "surface" that can be defined such that it contains the solenoid.
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Clearly, as a particle travels through the vector field along the path, it does positive work while it has zero
displacement, and clearly, there exists no function that can output both these values as determined by vector
field F .

Theorem 7.4 (Helmholtz Decomposition)

Let F : R3 −→ R3 be a C2 vector field. Then, F can be decomposed into a curl-free component and a
divergence-free component. That is, there exists vector fields A and Φ

F = −∇ · Φ+∇×A

7.2.1 Curvature

Definition 7.5 (Curvature at a Point)

Let c : [a, b] −→ C ⊂ R3 be a unit-speed paramaterization of C, meaning that ||c′(t)|| = 1 for all
t ∈ [a, b], and let p = c(t0) be a point in C. The curvature κ(p) at p is a mapping defined

κ : C −→ R, κ(p) ≡ ||c′′(t0)||

Notice that since we require a unit speed paramaterization of C, we do not need to worry about how
a given curve is paramaterized.

Since the curvature is defined pointwise for each point in curve C, we can integrate over all the curvatures
in C to define the total curvature.

Definition 7.6 (Total Curvature)

The total curvature of a curve c : [a, b] −→ C ⊂ R3 is the scalar line integral
ˆ
C

κ ds

We now present an important theorem in differential geometry.
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Theorem 7.5 (Fary-Milnor Theorem)

Given a unit speed paramaterization c : [a, b] −→ C ⊂ R3, if C is closed (that is, c(a) = c(b)), then
˛
C

κ ds ≥ 2π

and equals 2π only when C is a circle. Furthermore, if C is a closed space curve with
˛
C

κ ds ≤ 4π

then C is "unknotted." That is, C can be continuously deformed without every intersecting itself into
a planar circle. Therefore, for knotted curves C, we have

˛
C

κ ds > 4π

7.3 Surface Integrals
Surface integrals are the 2-dimensional analogue, or the double integral version, of line integrals. It is the
integration of surfaces.

7.3.1 2-Dimensional Paramaterizations of Surfaces

Just like how we create path functions using a paramaterization function p : [a, b] ⊂ R −→ Rn, we can
parameterize surfaces by defining a function

φ : D ⊂ R2 −→ Rn, φ(u, v) ≡

x1(u, v)
...

xn(u, v)


The surface

S = φ(D)

corresponding to the function φ is its image. If φ is differentiable or is of class C1, then we call S a
differentiable or C1 surface, respectively.

For those that are familiar with differential geometry, this makes every paramaterized surface a 2-manifold
induced by the single homeormophism φ. In fact, it is more than just locally homeomorphic; it is globally
homeomorphic.

Definition 7.7 (Tangent Vectors of Surfaces Embedded in R3)

Given surface paramaterization

φ : R2 −→ R3, φ(u, v) ≡

x(u, v)
y(u, v)
z(u, v)


it is visually clear that there can be up to two linearly independent tangent vectors at a point on the
surface S. We can calculate these two vectors by embedding two nonparallel paths in D ⊂ R2 and
taking the derivative with respect to a point traveling through these paths, which would give us a
tangent vector on S. To keep things simple, we take the partial derivatives with respect to u and v.
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Clearly, these paths are functions

∂φ

∂u
≡

 ∂x
∂u
∂y
∂u
∂z
∂u

 : R2 −→ R3

∂φ

∂v
≡

∂x
∂v
∂y
∂v
∂z
∂v

 : R2 −→ R3

where
∂φ

∂u
(u0, v0),

∂φ

∂v
(u0, v0)

represent two vectors in R3 that are tangent to S at the point φ(u0, v0) ∈ R3.

We must make sure that the surface S is smooth in the sense that (informally) there aren’t any wrinkles,
points, folds, or self-intersections in such a way that the tangent plane to the surface is not well-defined.

Definition 7.8 (Regular Surfaces)

To formalize this concept, we say that S is regular, or smooth, at point (u0, v0) if

∂φ

∂u
× ∂φ

∂v
̸= 0

where × is the Euclidean cross product. That is, if the vector that is orthogonal to the two tangent
vectors is well defined at a point, the surface is said to be smooth at that point. Note that ∂φ

∂u is parallel
to ∂φ

∂v if and only if their cross product is 0.
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It is quite clear that (∂φ∂u × ∂φ
∂v )(u0, v0) ̸= 0 =⇒ ∂φ

∂u and ∂φ
∂v are linearly independent. This means that

an entire span of tangent vectors, i.e. a tangent plane, of the surface S at φ(u0, v0) exists. S is said to
be regular if it is regular at all points φ(u0, v0) ∈ S.

In fact, the tangent plane at φ(u0, v0) is the set of points

{φ(u0, v0) +
∂φ

∂u
(u0, v0)c1 +

∂φ

∂v
(u0, v0)c2 | c1, c2 ∈ R}

which is precisely the affine tangent plane spanned by Tu and Tv. Note also that the vector Tu × Tv, if
nonzero, is normal to this plane, which leads to this equivalent definition.

Definition 7.9 (Tangent Planes of Surfaces)

Given a paramaterized surface φ : D ⊂ R2 −→ R3 that is regular at φ(u0, v0), the tangent plane of the
surface S at φ(u0, v0) = (x0, y0, z0) is defined

{(x, y, z) ∈ R3 | (x− x0, y − y0, z − z0) · n = 0}

where n = (∂φ∂u × ∂φ
∂v )(u0, v0).

We finally construct the concept of signed areas before defining surface integration. We have all the tools
we need to calculate surface areas, but remember that integration also covers the concept of signed areas,
which could be negative. In order to define this, we define the concept of orientation on surfaces.

7.3.2 Orientation of Surfaces

Definition 7.10 (Oriented Surfaces)

An oriented surface is a two-sided surface with one side specified as the outside/positive side and the
other side as the inside/negative side. Note that an oriented surface is not guaranteed to have two
sides (e.g. a Mobius strip). To ensure that there exist two sides, S must be regular.
Surprisingly, a paramaterization does not have an intrinsic orientation. Rather, we determine the
orientation ourselves by choosing a unit vector that generally points towards the outside of the surface
S. Again, this choice is arbitrary, but it is customary to choose a vector that generally points "out."
Either way, the orientation (unit) vector at every point φ(u, v) ∈ S, denoted as n, is

n
(
φ(u, v)

)
= ±

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
which can be visually calculated using the right hand rule.
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Definition 7.11 (Orientation Preserving, Reversing Paramaterizations)

Given an oriented surface S with its positive side determined by the direction of unit vector n
(
φ(u, v)

)
,

the paramaterization φ is said to be orientation preserving if

n
(
φ(u, v)

)
=

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
and orientation reversing if

n
(
φ(u, v)

)
= −

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
So, to find whether a paramaterization is orientation preserving or reversing, it suffices to find the cross
product Tu ×Tv and see if it points in the same direction of the normal vector n (which should have already
been determined when deciding the orientation of S).

Given a paramaterization φ and an un-oriented surface S, we can also just construct φ to be orientation-
preserving (or reversing) by defining the normal vector n to be

n
(
φ(u, v)

)
=

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
(

or n
(
φ(u, v)

)
= −

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
)

So rather than finding out whether a paramaterization φ is orientation preserving or reversing by comparing
Tu × Tv with n, we have defined n in a way such that φ must be orientation preserving (or reversing). We
can utilize these tools of paramaterization to now define the surface integral.

7.3.3 Scalar, Vector Surface Integrals

A physical interpretation of a scalar surface integral is the weighted surface area of a certain surface.

Definition 7.12 (Scalar Surface Integrals)

Let f : R3 −→ R be a C1 scalar field defined on a paramaterized surface S ⊂ R3 with paramaterization
φ : D ⊂ R2 −→ R3. That is, φ(D) = S. We define the integral f over S to be

¨
S

f dS =

¨
S

f(x, y, z) dS

=

¨
D

f
(
φ(u, v)

)∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ du dv
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Note that this will require us to transform f , a function of x, y, z, into the function f ◦ φ of u, v.
Additionally, if the paramaterization of the surface S is not defined, then it one must be constructed.
It is also clear that if S is a union of surfaces Si, then its surface integral is the sum of the surface
integrals of the Si’s.

Letting the scalar field f be the constant field equal to 1, the scalar surface integral measures the surface
area of S.

A(S) =

¨
S

dS =

¨
D

∣∣∣∣∣∣∂φ
∂u

× ∂φ

∂v

∣∣∣∣∣∣ du dv
It is easy to see that the orientation of the paramaterization φ does not affect scalar surface integrals, since
the sign of the orientation gets nullified by the absolute value sign over ||∂φ∂u × ∂φ

∂v ||.

Its physical interpretation is to measure the rate at which a fluid (determined by a vector field F ) is crossing
a given surface S. It also has many applications in electromagnetism.

Definition 7.13 (Vector Surface Integrals)

Let F be a vector field defined on surface S, the image of a paramaterized surface φ. The surface
integral of F over S is defined below, which is equivalent to summing up the dot product of the vector
field and the normal vector to the surface.

It can be calculated with the following formulas by converting it into a scalar surface integral where
the scalar field is the value of the dot product of the vector field with the normal vectors of the surface.

¨
S

F · dS =

¨
S

(F · n) dS

=

¨
D

(
F
(
φ(u, v)

)
·

∂φ
∂u × ∂φ

∂v∣∣∣∣∣∣∂φ∂u × ∂φ
∂v

∣∣∣∣∣∣
) ∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ du dv
=

¨
D

F
(
φ(u, v)

)
·
(
∂φ

∂u
× ∂φ

∂v

)
du dv

Since we are now talking about vector fields, the orientation of the paramaterization is now significant.
Visually, if the orientation of the surface S generally aligns with the vector field F , then the integral will
be positive (since two vectors α, β generally pointing in the same direction implies that α · β > 0). The
orientation of the paramaterization, which is dependent on ∂φ

∂u × ∂φ
∂v , determines the direction of the normal

vector n (since it is defined to be (∂φ∂u × ∂φ
∂v )/

∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣. Therefore, changing the orientation of φ will reverse
the direction of n, which will then reverse the sign of the integral since n now points in the opposite direction
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of the vector field F than it previously did (by reversing the sign of the dot products). This is formalized in
the theorem below.

Theorem 7.6 (Invariance of Surface Paramaterizations on Vector Surface Integrals)

Let S be an oriented surface and let φ1 and φ2 be two regular paramaterizations with F a continuous
vector field defined on S. Then, assuming φ1 is orientation preserving,

φ2 is orientation preserving =⇒
¨

φ1

F · dS =

¨
φ2

F · dS

φ2 is orientation reversing =⇒ −
¨

φ1

F · dS =

¨
φ2

F · dS

7.3.4 Surface Integrals over Graphs

Given that we have the graph of a function g : R2 −→ R rather than a general surface, we can paramaterize
it simply as

φ(u, v) ≡
(
u, v, g(u, v)

)

This means that

∂φ

∂u
× ∂φ

∂v
=

− ∂g
∂u

−∂g
∂v
1

 =⇒
∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ =
√
1 +

(∂g
∂u

)2
+
(∂g
∂v

)2
So we can simplify the equation for the surface area S of the graph of g over the region D in the xy-plane,
as

A(S) =

¨
S

dS =

¨
D

∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ dA
=

¨
D

√
1 +

(∂g
∂u

)2
+
(∂g
∂v

)2
du dv

With the same g, we can find the weighed surface area of S over the scalar function f : R3 −→ R with the
formula ¨

S

f dS =

¨
D

f
(
u, v, g(u, v)

)√
1 +

(∂g
∂u

)2
+
(∂g
∂v

)2
du dv

Finally, with the same graph g, the surface integral over the vector field F is
¨

S

F · dS =

¨
D

F
(
φ(u, v)

)
·
(
∂φ

∂u
× ∂φ

∂v

)
du dv

=

¨
D

(
F1(u, v)

(
− ∂g

∂u

)
+ F2(u, v)

(
− ∂g

∂v

)
+ F3(u, v)

)
du dv
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7.4 Integral Theorems
Recall the differential notation for writing line integrals. For 2 and 3 dimensions, it is written asˆ

C

F · ds =
ˆ
C

F · (dx, dy) =
ˆ
C

F1 dx+ F2 dy

ˆ
C

F · ds =
ˆ
C

F · (dx, dy, dz) =
ˆ
C

F1 dx+ F2 dy + F3 dz

7.4.1 Green’s Theorem

Green’s Theorem gives the relationship between a line integral around a simple closed curve C and a double
integral over the plane region D bounded by C.

Theorem 7.7 (Green’s Theorem in R2)

Let there be a 2-dimensional C1 vector field F on R2 defined on a simple oriented closed piecewise-
smooth curve C and its bounded region D ⊂ R2 (that is, C = ∂D). Let the orientation of the path of
C be such that it is traveling counterclockwise, i.e. a point traveling through C would see the region
D to its left, denoted as C+ and the clockwise orientation as C−. Then,

˛
C+

F1 dx+ F2 dy =

¨
D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

By reversing the orientation, it is clear that we have
˛
C−

F1 dx+ F2 dy = −
¨

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

Note that this theorem is expressed in terms of the components of the vector field F .

D

F = (F1, F2)

C+ = ∂D

Green’s theorem has many applications in physics. For example, in order to solve two-dimensional flow
integrals measuring the sum of fluid outflowing from a volume, Green’s theorem allows us to calculate the
total outflow summed about an enclosing area .

Corollary 7.2 ()

Let D be a region for which Green’s theorem applies with positively oriented boundary ∂D. Then, the
area of D can be computed with the formula

A(D) =
1

2

˛
∂D

x dy − y dx
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Green’s theorem can be used to determine the area of centroid of plane figures solely by integrating over the
perimeter.

7.4.2 Stokes’ Theorem

Green’s theorem relates line integrals to double integrals. Stokes’ theorem generalizes Green’s theorem by
relating line integrals to surface integrals of 2-dimensional surfaces embedded in R3.

Theorem 7.8 (Stokes’ Theorem)

Let S be an oriented regular surface defined by paramaterization φ : D ⊂ R2 −→ R3, and let the image
of the boundary ∂D under φ be the boundary ∂S of S. We can interpret ∂S as a path mapping from
R −→ S ⊂ R3.

The orientation unit vector n of S induces the positive orientation of ∂S, denoted ∂S+. Visually, if
you are walking along the curve with your head is pointing in the same direction as the unit normal
vectors while the surface is on the left then you are walking in the positive direction on ∂S.

Given that F is a C1 vector field defined on S, then
¨

S

curlF · dS =

¨
S

(
∇× F

)
· dS =

˛
∂S+

F · ds

If S has no boundary, that is, if the image of p′ = ∂S is not a simple closed curve, then the integral is
0.

The above theorem implies that the vector surface integral of a surface without a boundary (i.e. a closed
graph, such as a sphere) is always 0 along the curl of any C1 field. Geometrically, this means that given a
closed solid S with field ∇× F , the rate of flow of the vector field into S is equal to the flow out of S.
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7.4.3 Gauss’ Theorem

The divergence theorem relates the flux of a vector field through a closed surface to the divergence of the
field in the volume enclosed.

Theorem 7.9 (Gauss’ Divergence Theorem)

Let V be a subset of R3. Denote by ∂V the oriented closed surface that bounds V (with outward
pointing normal orientation vectors), and let F be a C1 vector field defined on a neighborhood of V .
Then, ˚

V

divF dV =

˚
V

(∇ · F ) dV =

‹
∂V

F · dS =

‹
∂V

(F · n) dS

where the two left-most integrals are volume integrals, and the two right-most integrals are surface
integrals. Intuitively, this makes sense; the volume integrals represent the total of the sources in
volume V , and the right hand side represents the total flow across the boundary ∂V .
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8 Sequences of Functions
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