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In math, we are first taught to solve simple equations like x2 − 2x + 4 = 0 for a certain number x, but in
real world applications, we must now solve for some function f satisfying an equation

L(f) = 0 (1)

where L is some operator on functions. This is usually difficult, and many times a solution does not exist.
However, we can find approximate solutions, say

L(f) = 1/2

L(f) = 1/4

L(f) = 1/8

. . . = . . .

and approximate the solution as
f = lim

n→∞
fn (2)

Given that this limit exists, we can usually define f pointwise using a point-wise limit

f(x) = lim
n→∞

fn(x) for all x (3)

but the function in total is very ugly and not Riemann integrable. The classic non-Riemann integrable
function is the

f(x) = χR\Q(x) :=

{
1 if x ∈ R \Q
0 ifx ∈ Q

(4)

Since Q is countable, we can enumerate Q = {qn}∞n=1 and define the sequence of functions

fn = 1− χ{qj}n
j=1

(x) (5)

that start off with the constant function 1 and then "removes" points in Q, setting their image to 0. It is
clear that since we are removing points, every function in the sequence has an integral (from 0 to 1) of 1,
and therefore the integral of f should also be 1.∫ 1

0

fn dx = 1 =⇒
∫ 1

0

f dx =

∫ 1

0

lim
n→∞

fn dx = lim
n→∞

∫ 1

0

fn dx (6)

What is crucial for mathematicians to work with is the capability to take the limit from inside the integral
to outside the integral. The problem is that f is not a Riemann integral function.

Definition 0.1 (Riemann Integrable Function)

Given a function f : [0, 1] −→ R, let us consider some partition of [0, 1] into intervals P =
{I0, I1, . . . , IN}, then, for each I ∈ P , we can take the supremum MI = supx∈I f(x) and infimum
mI = infx∈I f(x) and bound f by the upper and lower Riemann sums.

∑
I∈P

mI |I| ≤
∫ 1

0

f dx ≤
∑
I∈P

MI |I| (7)

where |I| is the length of interval I. If we take all possible partitions, the bound should still hold.

m = sup
P

{∑
I∈P

mI |I|
}
≤
∫ 1

0

f dx ≤ inf
P

{∑
I∈P

MI |I|
}
= M (8)

and if the lower bound is equal to the upper bound m = M , then the integral is this number and f
is considered Riemann integrable.
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Now since Q is dense in R, for every interval I in every partition P will have mI = 0 and MI = 1 for
the Riemann function, meaning that the lower bound will always be 0 and the upper bound will always
be 1. So,

∫ 1

0
χR\Q(x) can take on any value in [0, 1], which isn’t helpful. The fact that we can’t integrate

this really simple function is a problem. For nice functions, we can partition it so that the base of each
Riemann rectangle is a nice interval, while the base of the Riemann function is an "interval with holes." The
problem really boils down to measuring what the "length" of this set is. So the problem with the Riemann
integral isn’t the integral itself, but the fact that we can’t give a meaningful size to the set R \ Q. Now
mathematicians in the 19th century thought that as long as we solve this problem, we should be good to go,
but Banach and Tarski proved that there exists sets that cannot be measured with their famous paradox,
which says that you can take any set P , disassemble it into a finite set of pieces, and rearrange it (under
isometry and translations) so that it has a different size than the original P . So, we have to exclude some
sets that are not measurable. The collection of sets that we can measure is called the σ-algebra.
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1 Sigma Algebras
In here, we will develop a deeper formalism of set theory and topology, now that we have the tools of analysis.

1.1 Set-Theroetic Limits
Let’s talk about sequences of sets (An)n.

Definition 1.1 (Monotone Sequence)

A sequence of sets (An)n is called
1. (strictly) increasing if An ⊊ An+1.
2. nondecreasing if An ⊆ An+1.
3. (strictly) decreasing if An ⊋ An+1.
4. nonincreasing if An ⊇ An+1.

Definition 1.2 (Limsup and Liminf of Sets)

Given a sequence of sets (An)n, the limsup and liminf of them can be defined in the equivalent
ways.

1. The liminf is the set of points that are missing in only a finite number of sets, and the limsup
is the set of points that are in an infinite number of sets.

lim inf
n→∞

An :=

∞⋃
n=1

∞⋂
m=n

Am (9)

lim sup
n→∞

An :=

∞⋂
n=1

∞⋃
m=n

Am (10)

2. The liminf and limsup are the set of points x where the liminf and limsup of the indicator
function function evaluated at x equals 1.

lim inf
n→∞

An := {x ∈ X | lim inf
n→∞

1An
(x) = 1} (11)

lim sup
n→∞

An := {x ∈ X | lim sup
n→∞

1An(x) = 1} (12)

Both liminf and limsup always exist for any sequence of sets.

Proof.

DeMorgan’s law.

Lemma 1.1 (Monotonicity)

For any sequence of sets
lim inf
n→∞

An ⊆ lim sup
n→∞

An (13)

Lemma 1.2 (Complements)

lim inf
n→∞

An =

(
lim sup
n→∞

Ac
n

)c

(14)
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Proof.

Definition 1.3 (Limit of Sets)

1.2 Borel Hierarchy

Definition 1.4 (Fσ Sets)

A Fσ-set is a subset of a topological space that is a countable union of closed sets.

Definition 1.5 (Gδ Sets)

A Gδ-set is a subset of a topological space that is a countable intersection of open sets.

Lemma 1.3 ()

The complement of a Fσ set is a Gδ set.

1.3 Sigma Algebra
Now, given any set X, we can construct its power set 2X . But we can’t naively just give a measure to
every A ∈ 2X , since for certain spaces, this causes nasty contradictions shown through the Banach-Tarski
Paradox.1 A nice set of subsets of X to work with is the σ-algebra of X.

Definition 1.6 (σ-Algebra)

A σ-algebra on a set X is a collection of subsets of X, denoted A ⊂ 2X that contains ∅, X itself,
is stable under a countable union, and is stable under complementation. This pair (X,A) is called a
measurable space.

Lemma 1.4 (Additional Property of σ-Algebras)

A commonly known property of any σ-algebra A is that it is stable under countable intersections,
too.

A1, A2, . . . ,∈ A =⇒
∞⋂
k=1

Ak ∈ A (15)

Proof.

We can utilize the fact that
∞⋂
k=1

Ak = X \
∞⋃
k=1

Ac
k (16)

A σ-algebra is similar to the topology τ of topological space. Both A and τ require ∅ and X to be in it. The
three differences are that (i) τ does not allow compelmentation, (ii) τ allows any (even uncountable) union

1Given any two bounded subsets A and B of Rn where n ≥ 3, both of which have a nonempty interior, there are partitions
of A and B into a finite number of disjoint subsets, A = A1 ∪ . . . ∪Ak, B = B1 ∪ . . . ∪Bk, such that Ai and Bi are congruent
for every i ∈ [k].
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of sets (condition is strengthened), and (iii) τ allows only finite intersection of sets (condition is weakened).
Now in order to construct σ-algebras, the following theorems are useful since they allow us to construct
σ-algebras from other σ-algebras. It turns out that the intersection of σ-algebras is a σ-algebra, but not for
unions.

Theorem 1.1 (Intersection of Sigma Algebras is a Sigma Algebra)

Let {Ak} be a family of σ-algebras of X. Then, ∩Ak is also a σ-algebra of X.

Proof.

Clearly, ∅, X is in ∩Ak. To prove complementation,

A ∈
⋂

Ak =⇒ A ∈ Ak ∀k =⇒ Ac ∈ Ak ∀k =⇒ Ac ∈
⋂

Ak (17)

To prove countable union, let {Aj}j∈J be some countable family of subsets in ∩Ak. Then,

Aj ∈
⋂

Ak ∀j ∈ J =⇒ Aj ∈ Ak ∀k∀j =⇒
⋃

Aj ∈ Ak ∀k =⇒
⋃

Aj ∈
⋂

Ak (18)

This allows us to easily prove the following theorem, which just establishes the existence of σ-algebras.

Theorem 1.2 (Unique Smallest Sigma Algebra)

Let F ⊂ 2X . Then there exists a unique smallest σ-algebra σ(F ) containing F , called the σ-algebra
generated by F .

Proof.

Let us denote M as the set of all possible σ-algebras B of X. M is nonempty since it contains 2X .
Then, the intersection ⋂

B∈M
B (19)

is the unique smallest σ-algebra.

With this guarantee, we can now define what it means for a set of subsets to generate a σ-algebra.

Definition 1.7 (σ-Algebra Generated by a Set)

Given a collection of sets C , the σ-algebra generated by C is the unique smallest σ-algebra containing
C , denoted σ(C ).

This gives us a convenient way to construct σ-algebras. The general method is to identify a collection of
“important” subsets that we would like to be included in the σ-algebra, and then just generate it.

Definition 1.8 (Borel σ-algebra)

The Borel σ-algebra of a topological space (X,T ) is the σ-algebra generated by the topology T ,
denoted B(X) := σ(T ). An element of the Borel algebra is called a Borel set.

Note that the Borel algebra contains:

1. all open sets,

2. all closed sets due to closure under complements,
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3. all Gδ sets due to closure under countable unions,

4. all Fσ sets due to closure under countable intersection.

Definition 1.9 (Measure Space)

A measure set is a tuple (X,A), where X is an arbitrary space and A a σ-algebra.
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2 Measures
The introduction of the σ-algebra seemed quite arbitrary, but bear with me as it will make sense very soon.
In general, we want to define a measure µ : 2X → [0,+∞] that satisfies two properties.

1. Null empty set. µ(∅) = 0.

2. Countable Additivity. For all countable collections {Ak}∞k=1 of pairwise disjoint subsets Ak ⊂ 2X ,

µ

( ∞⊔
k=1

Ak

)
=

∞∑
k=1

µ(Ak) (20)

The first condition is important because it allows us to take finite disjoint unions. That is, since µ(A1∪A2) =
µ(A1 ∪A2 ∪ ∅ ∪ . . .), we have

∞∑
k=1

= µ(A1) + µ(A2) (21)

Disjointness is clearly important since if it wasn’t, then µ(A) = µ(A ∪A) = 2µ(A), which is absurd.

It turns out that this second property is highly restrictive, and in fact some measures cannot be even defined.
But this is self-contradictory, as it turns out that that we can create partitions of weird sets and rearrange
them to get paradoxes (the most famous being the Banach-Tarski paradox). Therefore, we need to find a
certain subset A ⊂ 2X that is consistent with this definition of measure.

1. We want to define a function µ∗ : 2X → [0,+∞] that has a slightly less restrictive form of property 2.2
We should always be able to construct such a function, which we will call the outer measure.

2. Then, we want to use this outer measure to define sets that should like in A. We call these measurable
sets. It will turn out that A must be a σ-algebra.

3. Finally, we take the restriction of the outer measure to only measurable sets, and this defines our
measure: µ = µ∗

∣∣
A.

3

Definition 2.1 (Measure)

Given a measurable space (X,A), a measure is a function µ : A −→ [0,+∞]a satisfying
1. Null empty set µ(∅) = 0.
2. Countable additivity: For all countable collections {Ak}∞k=1 of pairwise disjoint subsets Ak ∈ A,

µ

( ∞⊔
k=1

Ak

)
=

∞∑
k=1

µ(Ak) (22)

Remember that we are allowed to take countable unions inside our σ-algebra, so this makes
sense.

This immediately implies that given A,B ∈ A, then A ⊂ B =⇒ µ(A) ≤ µ(B). The triplet (X,A, µ)
is called a measure space.

2How we implement such a function is a different question, though.
3Old but good explanataion: Now let’s try to construct a measure λ on the Borel σ-algebra B(R) that assigns length, i.e.

λ([a, b]) = b−a. We will do so by constructing outer measures λ∗ : 2R −→ R that acts on the power set of R s.t. λ∗([a, b]) = b−a.
But this turns out to have its own problems and contradictions, so once we construct such a λ∗, we will "throw away" all the
sets that don’t behave nicely under λ∗ and just use its restriction on the Borel algebra. It turns out that the sets that do
behave well under λ∗ is bigger than the Borel algebra, call it Mλ∗ . So, we have B(R) ⊂ Mλ∗ ⊂ 2R. We will do this in full
generality in the following way. We take any space X and construct an outer measure µ∗ on its power set 2X . Then, we
construct the σ-algebra of well-behaved sets Mµ∗ ⊂ 2X , and define our measure µ on Mµ∗ . When defining our outer measure,
the condition that the outer measure of a disjoint union of subsets is equal to the sum of the outer measure of the subsets is a
bit too restricting, so we use a softer condition.
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Let’s go through each of these three steps in detail.

2.1 Outer Measure

Definition 2.2 (Outer Measure)

Given a space X, an outer measure is a function µ∗ : 2X → [0,+∞] satisfying either the two
properties.

1. Null Empty Set. µ∗(∅) = 0.
2. Countable Subadditivity. For arbitrary subset A,B1, B2, . . .,

A ⊂
∞⋃
k=1

Bk =⇒ µ(A) ≤
∞∑
k=1

µ(Bk) (23)

or equivalently, the three properties.
1. Null Empty Set. µ∗(∅) = 0.
2. Monotonicity. If A,B ⊂ X, then

A ⊂ B =⇒ µ∗(A) ≤ µ∗(B) (24)

3. Countable Subadditivity. For any countable collection of subsets {Ak} of X,

µ∗
(⋃

k

Ak

)
≤
∑
k

µ∗(Ak) (25)

Proof.

Prove that the two definitions are equal.

Okay, so what are some examples of outer measures that we can define on R, or in general Rn? Well one
approach would be to generalize the concepts length/area/volume. Such that for “simple” sets A where we
know what the area is, the outer measure of A should coincide with the area of A. Let’s first start by defining
what a “simple” set is.

Definition 2.3 (Elementary Set)

An elementary set E ⊂ Rn is defined recursively as follows.
1. An interval I ⊂ R is one of the sets (a, b), [a, b), (a, b], [a, b] for a, b ∈ R.
2. For n > 1, an elementary set E ⊂ Rn is E = I1 × . . .× In for intervals I1, . . . , Ik.

Definition 2.4 (Size)

The size of an elementary set E = I1 × . . .× In ⊂ Rn is defined recursively as
1. The length of an interval I is ℓ(I) = b− a.
2. The size of E is s(E) =

∏n
i=1(bi − ai).

aWe usually introduce this by taking the codomain to be either [0,+∞] or (−∞,+∞), which is the signed measure.

9/ 24



Measure Theory Muchang Bahng Fall 2022

Definition 2.5 (Lebesgue Outer Measure)

Given any set A ⊂ R, the Lebesgue outer measure is defined

λ∗(A) = inf

{ ∞∑
k=1

ℓ(Ik)

∣∣∣∣ A ⊂
∞⋃
k=1

Ik

}
(26)

Intuitively, it is just the infimum of the sums of lengths of the intervals that cover A.a

It’s a hard definition, but a natural one, since we’re taking all these intervals and trying to make them as
snug as possible to define the outer measure of an arbitrary set. As always, let’s begin with the simplest
case in the real line. The following definition suffices.

Lemma 2.1 (Lebesgue Outer Measure is an Outer Measure)

The Lebesgue outer measure λ∗ on R is indeed an outer measure.

Proof.

We prove the three properties. The first two are trivial. For the third, we wish to show that
λ∗(∪An) ≤

∑
λ∗(An). For each n, find a specific cover {Ink

}∞k=1 of An such that it “just covers”
enough (this is possible since λ∗ is an infimum) such that for any ϵ > 0,∑

k

ℓ(Ink
)− ϵ

2k
≤ λ∗(Ak) (27)

Then, ⋃
An ⊂

⋃
n,k=1

Ink
=⇒

∑
n,k=1

ℓ(Ink
) ≤

∞∑
n=1

λ∗(An) + ϵ (28)

and since ϵ is arbitrary, we are done.
The first condition is trivial. As for 2, if I have A ⊂ B ⊂ R and have a covering of B, then I also
have a covering of A, and so the infimum corresponding to the covering of B must be greater than
or equal to the infimum of that corresponding to the covering of A. For 3, we want to prove that the
outer measure of the union of Ak’s is less than or equal to the sum of the outer measures of the Ak’s.
We pick ϵ > 0 and have some covering {(akj , bkj )}∞j=1 ∈ CAk . So we have

λ∗(Ak) ≤
∞∑
j=1

bkj − akj (29)

We want the inequality to go the other way around, but we can’t do that. But note that λ∗(Ak)
is the infimum of all coverings {(akj , bkj )}∞j=1 of Ak, and so we can choose a covering that is as close
to λ∗(Ak), and then add a term of ϵ to λ∗(Ak) to make it greater than this covering. This is an
important step of the proof that is used often!

ϵ

2k
+ λ∗(Ak) ≥

∞∑
j=1

bkj − akj (30)

Now,

A =

∞⋃
k=1

Ak ⊂
∞⋃
k=1

∞⋃
j=1

(akj , b
k
j ) (31)

aI use the notation µ∗ to represent general outer measures, and λ∗ to represent specifically the Lebesgue outer measure.
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and we can see that {(akj , bkj )}∞j,k=1 ∈ CA is a countable covering of A (since the countable union of
a countable union is countable), implying that

λ∗(A) ≤
∞∑
k=1

∞∑
j=1

(bkj − akj ) ≤
∞∑
k=1

(
λ∗(Ak) +

ϵ

2k

)
= ϵ+

∞∑
k=1

λ∗(Ak) (32)

and so setting ϵ arbitrarily small we have λ∗(A) ≤
∑∞

k=1 λ
∗(Ak).

Not only is it an outer measure; it also satisfies the property that we wanted, along with the bonus property
of translation invariance!

Theorem 2.1 (Lebesgue Outer Measure Coincides with Interval Length)

λ∗ satisfies the property that for any interval I ⊂ R, λ∗(I) = S(I).

Proof.

Let I = [a, b]. Take I1 = [a− ϵ, b+ ϵ].
1. For an upper bound, we see λ∗(I) ≤ b− a+ 2ϵ, where 2ϵ → 0.
2. For a lower bound, suppose

∞⋃
n=1

In ⊃ [a, b] (33)

By Heine-Borel, we can extract a finite subcollection I1, . . . , In that still covers [a, b]. Under
(ak, bk) so that ak is increasing.
(a) Consider (a1, b1). If b1 > b, we are done.
(b) Otherwise, b1 ∈ (a2, b2). If b2 > b, then

b2 − a2 + b1 − a1 ≥ b2 − a1 > b− a (34)

(c) If not, then we keep going until we get to (an, bn). If bn > b, then

bn − an + bn−1 − an−1 + . . .+ b1 − a1 ≥ bn − a1 > b− a (35)

Corollary 2.1 (Translation Invariance)

λ∗ is translation invariant. That is, for any A ⊂ R,

λ∗(A) = λ∗(A+ x) (36)

where A+ x := {a+ x ∈ R | a ∈ A}.

Theorem 2.2 (Countable Sets have Outer Measure 0)

Any countable set of R has Lebesgue outer measure 0.

Proof.

Just enumerate A = {x1, . . .}. Then, we set Ik =
(
xk − ϵ

2k
, xk + ϵ

2k

)
. Then,

∞∑
k=1

ℓ(Ik) = ϵ (37)
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We can also generalize this further by introducing a increasing, continuous function F : R → R and defining
the outer measure to be

λ∗(A) = inf
CA

∞∑
j=1

(
F (bj)− F (aj)

)
(38)

In Rn, this construction is exactly the same, since we can take rectangular prisms, which we know the
area/volume of, make a countable covering of some arbitrary set A ⊂ Rn, and then find the infimum of the
volume of this set. But we can’t apply the outer measure on power sets since there exists some sets that do
not behave like how we want it to behave under a measure. For example, there exists disjoint A,B ⊂ (0, 1)
s.t. A ∪B = (0, 1), but λ∗(A) + λ∗(B) > 1.

2.2 Measurable Sets

Definition 2.6 (Carathéodory’s criterion)

Given outer measure µ∗ on X, a set E ⊂ X is called µ∗-measurable if for every set A ⊂ X,

µ∗(A ∩ E) + µ∗(A ∩ Ec) = m∗(A) (39)

In general it says that no matter how nasty a subset A is, E should be nice enough that we can cut E into
two pieces C and D. Due to the definition of the outer measure, we are guaranteed to have µ∗(C ∪ D) ≤
µ∗(C) + µ∗(D). The sets with which this inequality is strict is not measurable, and the measurable sets
specifically satisfy

1. equality

2. for countable sets.

One should note that in particular, if E is µ∗-measurable and A is any set disjoint from E, then we must
have

µ∗(A ∪ E) = µ∗((A ∪ E) ∩ E) + µ∗((A ∪ E) ∩ Ec) (40)
= µ∗(E) + µ∗(A) (41)

which solves a bit of the theorem on measures. In practice, we will often prove that µ∗(A∩E)+µ∗(A∩Ec) ≤
m∗(A), since the properties of outer measure implies ≥.

Example 2.1 ()

Take X = R and have B = (−∞, b]. Then Bc = (b,∞), and B divides R into a right side and a left
side. If we take any subset A ⊂ R, then B is nice enough to divide A into a left and a right side.

Now we want to establish some nice properties.

Theorem 2.3 (Outer Measure 0 Sets are Measurable)

For any outer measure µ∗ on X, E ⊂ X with µ∗(E) = 0 implies that E is µ∗-measurable.

Proof.

Take any A. Then (A ∩ E) ⊂ E and (A ∩ Ec) ⊂ A. So by monotonicity,

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(E) + µ∗(A) = µ∗(A) (42)

and this by definition means that E is measurable.
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Now let’s talk about constructing measurable sets.

Theorem 2.4 (Finite Unions are Outer Measurable)

A finite union of µ∗-measurable sets is µ∗-measurable.

Proof.

It suffices to prove for E1, E2, and the rest follows by induction. Fix any A. Then

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ Ec
1) (43)

= µ∗(A ∩ E1) + µ∗((A ∩ Ec
1) ∩ E2

)
+ µ∗((A ∩ Ec

1) ∩ Ec
2

)
(44)

But

(A ∩ Ec
1) ∩ Ec

2 = A ∩ (E1 ∪ E2)
c (45)

(A ∩ Ec
1) ∩ E2 = (A \ E1) \ E2 (46)

So, (A ∩ E1) ∪
(
(A \ E1) ∩ E2

)
= A ∩

(
A ∩ (E1 ∪ E2)

c
)
.

So we have proved that the set of all measurable sets is closed under finite unions. By definition it works
for finite intersections. This makes it into an algebra, but we want to upgrade this to a σ-algebra by proving
closure under countable unions. We will need the lemma.

Lemma 2.2 ()

Suppose E1, . . . , En are disjoint. Then,

µ∗
( n⋃

j=1

Ej

)
=

n∑
j=1

µ∗(Ej) (47)

Proof.

We already did this for 2 sets, and just use induction.

Now we prove lemma, which is more general (arbitrary intersections than finite?).

Lemma 2.3 ()

Suppose A is any set, Ej disjoint and measurable. Then,

µ∗
(
A ∩

( n⋃
j=1

Ej

))
=

n∑
j=1

µ∗(A ∩ Ej) (48)
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Proof.

By induction, n = 1 is true. Then,

µ∗
(
A ∩

( n⋃
j=1

Ej

))
= µ∗

((
A ∩

( n⋃
j=1

Ej

))
∩ En

)
+ µ∗

((
A ∩

( n⋃
j=1

Ej

))
∩ Ec

n

)
(49)

= µ∗(A ∩ En) + µ∗
(
A ∩

( n−1⋃
j=1

Ej

))
(50)

=

n∑
j=1

µ∗(A ∩ Ej) (51)

by the induction hypothesis.

Theorem 2.5 (Countable Unions are Outer Measurable)

Suppose E1, E2, . . . are a countable collection of measurable sets. Then, E = ∪∞
j=1Ej is measurable.

Proof.

They key is to look at disjoint sets. WLOG, one can assume Ej are disjoint. Indeed, we can define
new sets

E′
n := En \

( n−1⋃
j=1

Ej

)
(52)

that are measurable, with ∪E′
n = ∪En. Now, fix any set A. Define sets Fn = ∪n

j=1Ej . Then,
µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F c

n). Then, F c
n ⊃ Ec =⇒ µ∗(A ∩ F c

n) ≥ µ∗(A ∩ Ec). Through the
previous lemma, we have

µ∗(A ∩ Fn) = µ∗
( n⋃

j=1

(A ∩ Ej)

)
=

n∑
j=1

µ∗(A ∩ Ej) (53)

Then,

µ∗(A) ≥
n∑

j=1

µ∗(A ∩ Ej) + µ∗(A ∩ Ec) (54)

for every n, therefore also with ∞. But

∞∑
j=1

µ∗(A ∩ Ej) ≥ µ∗(A ∩ E) (55)

If follows that µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec).

Corollary 2.2 (Measurable Sets form a σ-Algebra)

The set of all µ∗-measurable sets of X form a σ-algebra.

With this, we can construct a lot of measurable sets.

14/ 24



Measure Theory Muchang Bahng Fall 2022

Lemma 2.4 (Sets of Measure 0 have no Effect)

Suppose µ∗(E) = 0 and A is any set. Then, µ∗(A ∪ E) = µ∗(A).

Proof.

We have
µ∗(A ∪ E) = µ∗((A ∪ E) ∩ E

)︸ ︷︷ ︸
=0

+µ∗ ((A ∪ E) ∩ Ec
)︸ ︷︷ ︸

⊂A

≤ µ∗(A) ≤ µ∗(A) (56)

But A ∪ E ⊃ A, so µ∗(A ∪ E) = µ∗(A).

So we can always drop an outer-measure 0 set and it won’t affect the outer measure of the original set.

Theorem 2.6 ()

Every interval (a,+∞) is measurable.

Proof.

Take any set A, and WLOG a ̸∈ A (since we can take the point out without affecting outer measure).
Suppose {Ik}∞k=1 is a cover of A s.t.

µ∗ >

( ∞∑
k=1

ℓ(Ik)

)
− ϵ (57)

Then,
1. I ′k := Ik ∩ (a,+∞) will cover A1 = A ∩ (a,+∞), and
2. I ′′k := Ik ∩ (−∞, a) will cover A2 = A ∩ (−∞, a).

Therefore, µ∗(A1) ≤
∑

k ℓ(I
′
k), µ

∗(A2) ≤
∑

k ℓ(I
′′
k ). Also,

ℓ(Ik) = ℓ(I ′k) + ℓ(I ′′k ) =⇒ µ∗(A1) + µ∗(A2) ≤
∑
k

ℓ(Ik) ≤ µ∗(A) + ϵ (58)

for every ϵ > 0. Since this is true for every ϵ > 0, we are done.

Theorem 2.7 (λ∗-measurable Sets)

TFAE in R with the Lebesgue outer measure. E is measurable.
1. ∀ϵ > 0, ∃ open set O ⊃ E s.t. µ(O \ E) ≤ ϵ.
2. ∀ϵ > 0, ∃ closed set F ⊂ E s.t. µ∗(E \ F ) < ϵ.
3. ∃ a Gδ set G s.t. E ⊂ G and µ∗(G \ E) = 0.
4. ∃ a Fσ set F s.t. F ⊂ E and µ∗(E \ F ) = 0.

So essentially, we can construct measurable sets with “nice” sets.

Proof.

Listed.
1.

For R, we can create our Lebesgue outer measure λ∗ on it, which generates the Lebesgue σ-algebra Mλ∗ .
This turns out to be bigger than the Borel σ-algebra B(R), but there is little difference in which one we
choose when we actually integrate.
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Theorem 2.8 ()

A set E ⊂ R is Lebesgue measurable implies that it is also Borel measurable.

B(R) ⊂ Mλ∗ ⊂ 2R (59)

Lemma 2.5 ()

If E ⊂ R and λ∗(E) = 0, then E ∈ Mλ∗ , i.e. E is Lebesgue outer-measurable.

Proof.

We must prove that E satisfies the Carathéodory’s criterion. For all E ⊂ R, we know that λ∗(A) ≤
λ∗(A ∩ E) + λ∗(A ∩ Ec) by definition of outer measure. Now, since λ∗(E) = 0 and A ∩ E ⊂ E, this
means that λ∗(A ∩ E) = 0 also. Furthermore, A ∩ Ec ⊂ A, meaning that λ∗(A) ≥ λ∗(A ∩ Ec), and
we get

λ∗(A) ≥ λ∗(A ∩ E) + λ∗(A ∩ Ec) (60)

which proves equality.

2.3 Measures

Theorem 2.9 ()

The restriction of an outer measure µ∗ to the set of all µ∗-measurable sets A, denoted µ = µ∗
∣∣
A, is

measurable.

Now there are nice properties that we want Lebesgue measures to have: completeness, regularity, and
translation invariance.

1. Completeness: Given sets A ⊂ B ⊂ C with µ(A) = µ(C) and A,C ∈ A, this implies that B ∈ A. This
basically says that if you a set that is squeezed in between two measurable sets of equal measure, then
the middle set will also be measurable.

2. Regularity: Given sets A ⊂ B ⊂ C, regularity talks about whether I can approximate B well. Most
nice measures have this property.

sup
A compact

µ(A) = µ(B) = inf
C open

µ(C) (61)

3. Translation invariance: Lebesgue measure is translation invariant. µ(x+A) = µ(A) for all x ∈ Rn on
B(Rn).

Definition 2.7 (Almost Everywhere)

Given a measure space (X,A, µ), a subset A ∈ A is said to be a µ-null set if µ(A) = 0. If some
property holds for all points x ∈ X except on a null set, then we say that the property holds almost
everywhere.

Example 2.2 (Rational Function)

The function f(x) = 1√
|x|

is less than ∞ almost everywhere.

Let us first look into some properties of measures, which all seem natural.
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Theorem 2.10 ()

If A1 ⊂ A2 ⊂ A3 ⊂ . . ., then

µ

( ∞⋃
k=1

Ak

)
= lim

k→∞
µ(Ak) (62)

Proof.

This is the first time we introduce limits. With the fact that µ(Ak) must be nondecreasing, we can
use real analysis and see that it is bounded by ∞, meaning that it must have a limit. But why does
this limit equal to the left hand side? We can see that

µ

( ∞⋃
k=1

Ak

)
= µ(A1) +

∞∑
k=2

µ(Bk) (63)

= µ(A1) + lim
k→∞

∞∑
k=2

µ(Bk) (64)

= lim
k→∞

µ(A1 ∪B2 ∪ . . . Bk) = lim
k→∞

µ(Ak) (65)

where Bk = Ak \Ak−1.

Now a similar theorem, but with a little twist to it.

Theorem 2.11 ()

If A1 ⊃ A2 ⊃ A3 ⊃ . . ., then

µ

( ∞⋂
k=1

Ak

)
= lim

k→∞
µ(Ak) (66)

if µ(A1) < ∞.

Proof.

The µ(A1) < ∞ is a necessary condition, since if we take Ak = [k,∞) on the real number line, then
we have ∩∞

k=1Ak = ∅, but the limit of the measure is ∞. Well we can define Bk = Ak \ Ak+1 and
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write ∩∞
k=1Ak = A1 \ ∪∞

k=1Bk, which means that

µ

( ∞⋂
k=1

Ak

)
= µ

(
A1 \

∞⋃
k=1

Bk

)

= µ(A1)− µ

( ∞⋃
k=1

Bk

)

= µ(A1)−
∞∑
k=1

µ(Bk)

= µ(A1)− lim
K→∞

K∑
k=1

µ(Bk)

= lim
K→∞

(
µ(A1)−

K∑
k=1

µ(Bk)

)

= lim
K→∞

µ

(
A1 \

K⋃
k=1

Bk

)
= lim

K→∞
µ(AK)

Now the first line uses the fact that if A ⊂ B, then µ(B \ A) + µ(A) = µ(B), and with the further
assumption that µ(A) < ∞, we can subtract on both sides like we do with regular arithmetic.

18/ 24



Measure Theory Muchang Bahng Fall 2022

3 Measurable Functions and Integration
Now that we’ve discussed measurability of sets, we need to talk about measurability of functions, and then
we can integrate over them.

3.1 Measurable Functions

Definition 3.1 (Measurable Function)

Given a measurable space (X,A), f : (X,A) −→ R is measurable if

f−1(A) ∈ A for all A open (67)

where f−1(A) denotes the preimage of A.

Note that if we take Rn, it can have either its Borel σ-algebra B(Rn) or its Lebesgue σ-algebra Mλ∗ .
Therefore, a function f : Rn −→ R is said to be Lebesgue measurable (Borel measurable) if for every
E ∈ B(R), f−1(E) ∈ Mλ∗ (f−1(E) ∈ B(Rn)). Since B(Rn) ⊂ Mλ∗ , all Borel measurable functions are
Lebesgue measurable. It follows that any continuous function f : Rn −→ R is Borel (and hence Lebesgue
measurable).

There are many ways to prove measurability, which we will list below.

Theorem 3.1 (TFAE)

The following are equivalent.
1. f is measurable
2. f−1(U) ∈ A for all U ∈ B(R
3. f−1((−∞, t)) ∈ A ∀t ∈ R.

This immediately implies that monotonic functions on R are measurable. For example, take f : [a, b] −→ R
that is nondecreasing. Then, we would like to show that the preimage of every half-interval (−∞, t) under
f is in B(R). Well if we assume f(a) ≥ t, then f(x) > t ∀t ∈ [a, b], and so its preimage is ∅. If f(a) < t,
having f(b) < t also leads to the preimage being [a, b] (which is the entire space and is in B(R)), and having
f(b) > t implies that the preimage is [a, f−1(t)].

The following theorem is useful, since we don’t want to manually check measurability of every single new
function we create.

Theorem 3.2 (Sloppy Version)

Given measurable functions f, g, the following standard operations on them create new measurable
functions:

1. f + g is measurable
2. f · g is measurable
3. αf is measurable
4. f/g is measurable on {x | g(x) ̸= 0}
5. f ∨ g := max(f, g) is measurable
6. f ∧ g := min(f, g) is measurable

Theorem 3.3 ()

Given a sequence of measurable functions f1, f2, . . ., we have

lim
k→∞

fk (68)
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is measurable where it exists.

3.2 Simple Functions
Remember that Riemann integration is characterized by the approximation of step functions, which are
the "building blocks" of Riemann integrable functions. To define the Lebesgue integral, we will consider a
generalization of step functions called simple functions. A function will be Lebesgue integrable if it can be
approximated by these simple functions in some appropriate way.

Definition 3.2 (Simple Functions)

For A ⊂ X (any subset, not just in some σ-algebra), the characteristic, or indicator function of
A is the function χA : X −→ R defined

χA(x) =

{
1 if x ∈ A

0 if else
(69)

A function ϕ : R −→ R is called a simple function if it is a finite linear combination of characteristic
functions.

ϕ =

n∑
i=1

aiχAi (70)

Lemma 3.1 (Measurability on Simple Functions)

Now, let (X,A) be a measurable space. Then,

ϕ =

n∑
i=1

aiχAi
: (X,A) −→ R (71)

is measurable if all Ai are measurable, i.e. Ai ∈ A for all i.

Proof.

Let T be an open set in R. Then, for characteristic function χA,

χ−1
A (T ) =


∅ if 0, 1 ̸∈ T

A if 1 ∈ T, 0 ̸∈ T

X \A if 0 ∈ T, 1 ̸∈ T

X if 0, 1 ∈ T

(72)

and so χA must be measurable if A ∈ A (which also by definition implies that Ac = X \ A ∈ A). If
χAi is measurable, then the linear combination of measurable functions is also measurable.

Also observe that the coefficients need not be unique, since we can write

1 · χ[0,1] + 1 · χ[0.5,1] = 1 · χ[0,0.5] + 2 · χ[0.5,1] (73)

If the Ei’s are disjoint, then this decomposition is unique and is called the standard representation of ϕ.
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Example 3.1 (Step Function as Simple Function)

For a, b ∈ R, with a < b, let f : [a, b] −→ R be a step function. That is, there exists a partition
a = x0 < x1 < . . . < xn = b and constants c1, c2, . . . , cn ∈ R s.t. f(x) = ci for all x ∈ (xi−1, xi) and
each i = 1, . . . , n. Then, f is equal to the following simple function, taken over all open intervals and
the points xj at the boundary of each interval.

f =

n∑
i=1

ciχ(xi−1,xi) +

n∑
j=0

f(xj)χ{xj} (74)

If we ignore the behavior of f on the partition points xj ’s, then f agrees almost everywhere with the
simple function

n∑
i=1

ciχ(xi−1,xi) (75)

If the Ai’s above are just intervals in R, then ϕ reduces to a step function. But the entire problem with
intervals is that they are too coarse. We can’t work with them, so we generalize them to all measurable
sets in (X,A). The Riemann integral is built on an approximation scheme of a function, which we usually
want to be continuous to satisfy this approximation, and so, if we want to build an approximation scheme
for Lebesgue integrals, we want a similar scheme, i.e. if we take a sequence of simple measurable functions,
I can get arbitrarily close to any measurable function f . This is exactly what we show below.

Theorem 3.4 ()

If f : (X,A) −→ [0,∞] is measurable, there are simple measurable functions fk : (X,A) −→ [0,∞)
s.t.

fk ≤ fk+1 and f = lim
k→∞

fk (76)

where the inequalities and limits are pointwise.

Proof.

We give a general picture of this proof for a function f : R −→ [0,∞]. We can first divide the codomain
of the graph below into segments of t = 1, 2, . . ., and take the preimage of all these units under f to
get f1. More specifically, At

1 = f−1([t,∞]) for all t. By measurability of f , At
1 is measurable, and we

can assign f1 = χA1
1
+ χA2

1
≤ f .

Doing this again with finer subintervals of the codomain gives us, with f2 = χA1
2
+χA2

2
+χA3

2
+χA4

2
≤ f .
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and in general, we have fk =
∑∞

j=1
1

2k−1χAj
k
. But we said a simple function is a finite sum, and if

∞ is in the range of f , then this becomes a problem. We can quickly fix this by just truncating the
summation at a certain point in the codomain (f1 only considers intervals up to 1, f2 up to 2 and so
on), ultimately giving us

fk =

k2k−1∑
j=1

1

2k−1
χAj

k
(77)

3.3 Lebesgue Integral
Finally, we can learn how to integrate. We require the positiveness condition on f below because our
previous theorem on approximating arbitrary functions with simple measurable functions fk requires that it
be positive, too.

Definition 3.3 (Lebesgue Integral of Positive Simple Functions)

If f =
∑n

k=1 ckχAk
is a positive simple Lebesgue measurable function on measure space (X,A, µ),

then the Lebesgue integral of f is ∫
f dµ =

n∑
k=1

ckµ(Ak) (78)

This Lebesgue integral agrees with the Riemann integral for step functions. Let c1, . . . , cn ∈ [0,∞) and
a = x0 < x1 < . . . < xn = b be a partition. Let f : [a, b] −→ [0,∞] be a step function taking the value ci on
the interval (xi−1, xi) for i = 1, . . . , n. Then the Riemann integral of f is simply∫

f(x) dx =

n∑
i=1

ck|xi − xi−1| (79)

The Lebesgue integral is ∫
f dµ =

n∑
i=1

ciµ((xi−1, xi)) +

n∑
j=0

f(xj)µ({xj})

=

n∑
i=1

ck|xi − xi−1|

which agrees with the Riemann integral. In the Riemann integral, we write dx to indicate the variable that is
being integrated over, but in the Lebesgue integral, we write dµ, the measure which we are integrating over.
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Therefore, there are many possible values that can come out of a Lebesgue integral of a certain function,
while a Riemann integral outputs only one value if exists.

Example 3.2 ()

Consider the simple function (consisting of one characteristic function) χQ∩[0,1]. Q∩[0, 1] is a Lebesgue
measurable set of R, and we have χQ∩[0,1] ≥ 0, so its Lebesgue integral is given by the above definition:∫

R
χQ∩[0,1] dλ = 1 · λ(Q ∩ [0, 1]) = 0 (80)

Definition 3.4 (Lebesgue Integral on Positive Measurable Functions)

If f : (X,A, µ) −→ [0,∞] is measurable, then∫
X

f dµ = sup
{∫

g dµ
∣∣∣ g simple , g ≤ f

}
(81)

Unlike Riemann integration, which looks at both the supremum and infimum of integrals of simple functions,
Lebesgue integration only looks at the supremum, given that f is nonnegative, so for all these f , the Lebesgue
integral always exists. Defining Lebesgue integration for all real-valued functions, requires a simple extension.

Definition 3.5 (Lebesgue Integral)

Given a function f : (X,A, µ) −→ R, we can split f into a positive and negative part:

f = f+ − f− (82)

where f+ = max(f, 0) and f− = max(−f, 0). Then, the Lebesgue integral of f is∫
f dµ =

∫
f+ dµ−

∫
f− dµ (83)

given that at least one of these integrals is finite. If one is infinite and the other is finite, then we can
call it infinite. If we have both infinite integrals, then the integral doesn’t exist. It has the properties:

1. Monotonicity:

g ≤ f =⇒
∫

g dµ ≤
∫

f dµ (84)

2. Scalar Multiplication: ∫
cf dµ = c

∫
f dµ (85)

3. Addition: ∫
f + g dµ =

∫
f dµ+

∫
g dµ (86)

Since |f | = f+ + f−, f is also Lebesgue integrable if∫
|f | dµ < ∞ (87)

since by triangle inequality, we have ∣∣∣∣ ∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ (88)
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Definition 3.6 ()

The set of all functions f : (X,A, µ) −→ R that are Lebesgue integrable is denoted L1(X,A, µ;R),
or for short L1(X,A, µ).

Theorem 3.5 ()

Suppose f : (R,A, µ) −→ R is 0 almost everywhere. Then f is Lebesgue integrable with∫
R
f dµ = 0 (89)

If g : R −→ R is such that f = g µ-almost everywhere, then∫
R
f dµ =

∫
R
g dµ (90)

3.4 Monotone Convergence Theory
From now on, we will assume that all spaces X are measure spaces (X,A, µ) and all functions f are mea-
surable functions. The huge problem with Riemann integrals is that this theorem doesn’t hold, but it is the
case for Lebesgue integration.

Theorem 3.6 (Monotone Convergene Theorem (MCT))

Given a nondecreasing sequence of measurable functions f1 ≤ f2 ≤ f3 ≤ . . . : X −→ [0,∞], its limit
limk→∞ fk always exists (since fk is nondecreasing), is measurable, and∫

lim
k→∞

fk dµ = lim
k→∞

∫
fk dµ (91)

This allows us to integrate the limit of nice functions fk by integrating these fk first and then finding
what the values converge to.

3.5 Riemann vs Lebesgue Integral

Theorem 3.7 ()

f : R −→ R is Riemann integrable iff it is continuous λ almost everywhere. If so, then f is Lebesgue
measurable and ∫

[a,b]

f dλ =

∫ b

a

f dx (92)

for all a < b ∈ R.
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