
Python Muchang Bahng Fall 2024

Python

Muchang Bahng

Fall 2024

Contents
1 Lexical Analysis 4

2 Types 5
2.1 Dunder Methods . 5
2.2 Encapsulation . 8
2.3 Inheritance and Method Resolution Order . 8
2.4 Interfaces and Abstract Base Classes . 13
2.5 Interfaces and Abstract Base Classes . 14
2.6 Type Hints . 14
2.7 Protocols . 14
2.8 Type Checking . 14
2.9 Metaclasses . 17
2.10 Factories . 17

3 Primitives 18
3.1 String Manipulation . 18
3.2 Typecasting . 19

4 Data Structure 20
4.1 Lists . 20
4.2 Hash Maps . 21
4.3 Heaps . 23

5 Names and Values 24
5.1 Mutating vs Rebinding . 24
5.2 Assignments are Everywhere . 27
5.3 Object Caching . 28
5.4 Default Arguments are Evaluated when Function is Defined 29
5.5 Item Assignment with Walrus Operator . 29

6 Loops 30
6.1 While Loops . 30
6.2 Iterators and Iterables . 30
6.3 Generators . 33

7 Function Closures and Variable Scopes 35

8 Composing Classes 36

9 Decorators 37

1/ 44

Python Muchang Bahng Fall 2024

10 Raising Exceptions 42

11 Package Management 43

12 Inspect 44

2/ 44

Python Muchang Bahng Fall 2024

After coding in Python for about 4 to 5 years, I realized that my coding practices have not changed,
and I should try to grow on them. These notes have four purposes. Learn some intermediate Python
through different syntax, methods, and classes. Learn how Python and its data structures are implemented,
specifically CPython (C notes are previously done). Establish best practices by going through different case
studies of codebase design. Learn the APIs of some broad Python packages, mostly in the standard library
that are pretty up in the dependency tree.

All of these can be found in either:

1. The official Python language reference, which describes the exact syntax and semantics of the Python
language.

2. The official Python standard library, which describes the standard library (the built-in modules) that
is distributed with Python.

3. The Index of Python enhacement proposals (PEP), which is a series of design documents providing
information to the Python community. It is used to describe new features of Python and its processes
of development.

Definition 0.1 (Object)

Every object has an identity, a type, and a value.

Theorem 0.1 ()

In CPython, id(x) is the memory address where x is stored.

3/ 44

https://docs.python.org/3/reference
https://docs.python.org/3/library/index.html
https://peps.python.org/

Python Muchang Bahng Fall 2024

1 Lexical Analysis
When we have code in a .py file and run it, the lexical analyzer generates a stream of tokens to be
inputted into a parser.

Theorem 1.1 ()

All UTF-8 characters can be parsed by the lexical analyzer.

Question 1.1 ()

Which characters aren’t?

Definition 1.1 (Logical and Physical Lines)

There are two types of lines in Python.
1. A logical line is represented by the token NEWLINE.
2. A physical line is a sequence of characters terminated by an end-of-line (EOL) sequence.

1 x = [1, 2, 3, 4] # one logical line on one physical line
2 x = [1, 2, # one logical line on two physical lines
3 3, 4]

4/ 44

Python Muchang Bahng Fall 2024

2 Types
The development of the Python type hierarchy is a bit involved and requires you to know both implementation
details and history. During the early days of Python 2, the language had both types and classes. Types were
built-in objects implemented in C, and classes were what you built when using a class statement. These
two were named differently because you couldn’t mix these; classes could not extend types. However, this
difference was artificial and ultimately a limitation in the language implementation. Starting with Python
2.2, the developers of Python have slowly moved towards unifying the two concepts, which the difference
completely done in Python 3. Built-in types are now labeled classes, and you can extend them at will. Since
we are working in Python 3, they are interchangeable.

Theorem 2.1 (Types and Classes)

In Python 3, types and classes mean the same thing.

Let’s do a bit of review on classes.

Definition 2.1 (Class)

A class is a template for creating objects, which support attributes to store some state and methods
that may or may not modify the state. The object that is created from a class is called a class
instance.

1 class ClassName:
2 ...

Example 2.1 (Animal Class Definition)

A class can be instantiated with the following.

1 class Animal:
2 def __init__(self, name):
3 self.name = name
4

5 def speak(self):
6 return f"{self.name} makes a sound"

Figure 1

2.1 Dunder Methods
It is important to have good tools to analyze the class itself and the instance. These are mainly stored in
dunder (double underscore) methods, also called magic methods.

5/ 44

Python Muchang Bahng Fall 2024

Definition 2.2 (Class and Type Information)

Functions Description
hasattr(obj, "attr_name") checks if an object has a specific attribute
isinstance(obj, ClassA) checks if an object is an instance of a class

issubclass(ClassA, ClassB) checks if one class is a subclass of another
type(obj) returns the type/class of an object
dir(obj) lists all attributes and methods of an object
vars(obj) returns the __dict__ of an object

obj.__dict__ dictionary containing the object’s attributes
obj.__class__ reference to the object’s class

ClassA.__name__ name of the class
ClassA.__module__ module where the class was defined
ClassA.__bases__ tuple of base classes
ClassA.__mro__ method resolution order tuple

__getattr__(self, name) called when attribute doesn’t exist
__setattr__(self, name, value) called when setting attributes

__delattr__(self, name) called when deleting attributes
__getattribute__(self, name) called for all attribute access

Table 1: Class instances (objects) are marked with obj and Class definitions with ClassA.

Definition 2.3 (Documentation and Metadata)

Attributes Description
obj.__doc__ docstring of the class or method

obj.__annotations__ type annotations dictionary

Table 2: Documentation and metadata attributes for classes and objects.

Definition 2.4 (Object Lifecycle)

Methods Description
__init__(self, ...) constructor method
__new__(cls, ...) object creation method (called before __init__)

__del__(self) destructor method

Table 3: Methods that control object creation and destruction.

Definition 2.5 (String Representation)

Methods Description
__str__(self) informal string representation (used by str())
__repr__(self) official string representation (used by repr())

Table 4: Methods for string representation of objects.

6/ 44

Python Muchang Bahng Fall 2024

Definition 2.6 (Comparison and Hashing)

Methods Description
__eq__(self, other) equality comparison (==)
__lt__(self, other) less than comparison (<)
__gt__(self, other) greater than comparison (>)
__le__(self, other) less than or equal (<=)
__ge__(self, other) greater than or equal (>=)
__ne__(self, other) not equal (!=)

__hash__(self) hash value for the object

Table 5: Methods for object comparison and hashing.

Definition 2.7 (Container-like Behavior)

Methods Description
__len__(self) length of the object

__getitem__(self, key) get item by index/key (obj[key])
__setitem__(self, key, value) set item by index/key (obj[key] = value)

__delitem__(self, key) delete item by index/key (del obj[key])
__iter__(self) makes object iterable

__contains__(self, item) supports ’in’ operator

Table 6: Methods that make objects behave like containers.

Definition 2.8 (Mathematical Operations)

Most of the math operators in Python (+, -, ...) actually call some dunder method. We can define
these dunder methods in order to use mathematical operations on class objects, e.g. a + b.

7/ 44

Python Muchang Bahng Fall 2024

Methods Description
__add__(self, other) called when we evaluate self + other
__sub__(self, other) called when we evaluate self - other
__mul__(self, other) called when we evaluate self * other

__truediv__(self, other) called when we evaluate self / other
__floordiv__(self, other) called when we evaluate self // other

__mod__(self, other) called when we evaluate self % other
__pow__(self, other) called when we evaluate self ** other
__and__(self, other) called when we evaluate self & other
__or__(self, other) called when we evaluate self | other
__xor__(self, other) called when we evaluate self ˆ other

__lshift__(self, other) called when we evaluate self « other
__rshift__(self, other) called when we evaluate self » other

__neg__(self) called when we evaluate -self
__pos__(self) called when we evaluate +self
__abs__(self) called when we evaluate abs(self)

__invert__(self) called when we evaluate ˜self
__round__(self, ndigits) called when we evaluate round(self)

__floor__(self) called when we evaluate math.floor(self)
__ceil__(self) called when we evaluate math.ceil(self)
__trunc__(self) called when we evaluate math.trunc(self)

Table 7: Methods for mathematical operations on objects.

Note that in the abstract algebraic sense, a + b is really just a binary operation and may not be
commutative. There are also reverse versions of the binary operations, e.g. __radd__, that are
called when the left operand doesn’t support the operation. There are also in-place versions like
__iadd__() for operations like +=.

2.2 Encapsulation

2.3 Inheritance and Method Resolution Order
Conceptually, we might think of certain types a subset of another type. Therefore, it makes sense to design
some hierarchy of these types where children can extend the functionality of their parents. This is the
conceptual idea of inheritance, which is a convenient way of designing code. In fact, if we had infinite coding
power where we don’t care about maintainability or the DRY (don’t repeat yourself) principle, then you
wouldn’t need inheritance.

Definition 2.9 (Class Inheritance)

A child class can inherit the attributes and methods of the parent class, and in general should extend
the functionality of the base class. Here is the minimal example.

1 class P:
2 ...
3 class B(A):
4 ...

(a) Inheritance with 1 parent class and 1 child class.

1 class P1: ...
2 class P2: ...
3 class P3: ...
4 class C(P1, P2, P3): ...

(b) Multiple inheritance with 3 parent and 1 child class.

Figure 2

8/ 44

Python Muchang Bahng Fall 2024

A more directly practical advantage of coding is that we can take advantage of the method resolution order
(MRO). Let’s introduce what this is slowly with a sequence of examples.

Example 2.2 (Methods of Parent are Accessible from Child)

Consider the two classes.

1 class Animal:
2 def __init__(self, name):
3 self.name = name
4

5 def speak(self):
6 print("Rah") # generic animal sound
7

8 class Dog(Animal):
9 ...

The only way Dog is connected to Animal is that it is declared as a subclass of Animal. It may not
look like Dog even has a constructor method, but in fact we can access both the __init__ and speak
methods!

1 >>> x = Dog("wolfy")
2 >>> x.speak()
3 "Rah"

So we have found out that subclasses can access parent class methods by default. But what if we have
multiple parent classes?

Example 2.3 (Method Resolution with Multiple Parent Classes)

Say that we have the same Animal class as defined above, but with the following hierarchy.

1 class Animal:
2 def __init__(self, name):
3 print("Animal constructor called.")
4 self.name = name
5

6 def speak(self):
7 return f"{self.name} makes a sound"
8

9 class Flyer(Animal):
10 def __init__(self, name):
11 print("Flyer constructor called")
12

13 class Swimmer(Animal):
14 def __init__(self, name):
15 print("Swimmer constructor called")

(a)

1 class Duck1(Flyer, Swimmer):
2 ...
3

4 class Duck2(Swimmer, Flyer):
5 ...
6

7 class Duck3(Flyer, Swimmer):
8 def __init__(self, name):
9 print("Duck constructor called")

(b)

Figure 3

Interesting, so it seems like if the child class supports its own constructor, then it will call its own
constructor, and if not, then it will look at the constructors of the parent classes, in the order in
which they were specified when defining the child class.

9/ 44

Python Muchang Bahng Fall 2024

1 >>> Duck1("duck1")
2 Flyer constructor called
3 >>> Duck2("duck2")
4 Swimmer constructor called
5 >>> Duck3("duck3")
6 Duck constructor called

So when a subclass is instantiated, the child class somehow knows where to look first for an implementation of
a method to call, then next, then next, etc. This ordering is extremely useful, though can be a double-edged
sword.

Definition 2.10 (Method Resolution Order)

The method resolution order (MRO) of a given class C is a sequence of classes that Python looks
through to find an implementation of any method.

1. It is a tuple that can be retrieved with C.__mro__ (this is a class method).
2. The actual way that the MRO is computed is with the C3 Algorithm, starting from Python 2.3.

Example 2.4 (MROs of Ducks)

The MROs of the Duck classes confirms our suspicion. Generally, we go from the most specific class
to the broadest class, which is always object in Python.

1 >>> print(Duck1.__mro__)
2 (<class ’__main__.Duck1’>, <class ’__main__.Flyer’>, <class ’__main__.Swimmer’>, <class

’__main__.Animal’>, <class ’object’>)
3

4 >>> print(Duck2.__mro__)
5 (<class ’__main__.Duck2’>, <class ’__main__.Swimmer’>, <class ’__main__.Flyer’>, <class

’__main__.Animal’>, <class ’object’>)
6

7 >>> print(Duck3.__mro__)
8 (<class ’__main__.Duck3’>, <class ’__main__.Flyer’>, <class ’__main__.Swimmer’>, <class

’__main__.Animal’>, <class ’object’>)

In most cases, when you are trying to call a method from a parent class, you are most likely trying to find
the next class in the MRO that implements this method, which may not be the direct parent.1. So rather
than explicitly hard-coding something like this

1 class P:
2 def method(self):
3 ...
4

5 class C(P):
6 def method(self):
7 P.method(self)
8 ...

You might have heard that you should use something called super().

1https://stackoverflow.com/questions/222877/what-does-super-do-in-python-difference-between-super-init-and-expl

10/ 44

https://docs.python.org/3/howto/mro.html
https://stackoverflow.com/questions/222877/what-does-super-do-in-python-difference-between-super-init-and-expl

Python Muchang Bahng Fall 2024

Definition 2.11 (Superclass)

The superclass S with respect to a method m of a class C is the next class in the MRO that
actually implements the method m. This can be gotten by calling super().a

The MRO is useful when calling methods not explicitly defined in our child class (but defined in some parent
class), but ultimately, the whole point of having child classes is so that we can extend our parent classes.
For example, the first thing we must always do with an object is to instantiate it—through the constructor.
There are three general ways that we can implement the constructor of child class C with parent class P.

1. Do not define the constructor on C. Then, the MRO will just call the constructor of the parent class.

1 class P:
2 def __init__(self, name):
3 self.name = name

(a)

1 class C(P):
2 ...
3 .

(b)

Figure 4

2. Define the constructor on C, but do not call the parent’s constructor. This allows you to completely
override the parent constructor, but this is a bad idea for two reasons. First, if you are really just
re-implementing the same thing that the parent constructor has done, then you are better off doing (3).
If you truly need to override the whole parent constructor, then perhaps you are not truly extending
the parent class, and class inheritance is not the right approach.

1 class P:
2 def __init__(self, name):
3 self.name = name
4 .

(a)

1 class C(P):
2 def __init__(self, name, breed):
3 self.name = name
4 self.breed = breed

(b)

Figure 5

3. Define the constructor on C. In the child constructor, call the parent’s constructor to set up all of the
parent’s attributes, and then add your own or do some postprocessing after.

1 class P:
2 def __init__(self, name):
3 self.name = name
4 .

(a)

1 class C(P):
2 def __init__(self, name, breed):
3 super().__init__(name)
4 self.breed = breed

(b)

Figure 6

It’s clear what the best choice is. Since we generally want to retain the class attributes (hence call parent
constructor) and extend them (hence explicitly define the child constructor), we should by default opt for
the third choice.

aNote that unlike other sources, I distinguish the superclass and the parent class. The superclass is with respect to a method,
and the parent class does not need to specify a method.

11/ 44

Python Muchang Bahng Fall 2024

Theorem 2.2 (Heuristic)

In the beginning of your child constructor, you should almost always call super().__init__(*args).

You might also notice that not implementing a constructor method at all is equivalent to just implementing
a constructor method with only super().__init__().2. However, this is still bad for maintainability, and
can be especially dangerous if there are keyword arguments that are passed on.

For the constructor, we’ve seen that we must always define __init__() and have it call the super’s con-
structor. This generally comes from the fact that the attributes of a child class should be a strict superset
of those of parent classes. For methods, we may either want a method m() of a child class to call super’s
method as well, along with doing additional things, or we might want to completely override it. Consider
the animal class again.

1 class Animal:
2 def __init__(self, name):
3 self.name = name
4

5 def speak(self):
6 return f"Rahhh" # generic animal sound

Overriding and extending methods is straightforward.

1 class Dog(Animal):
2 def speak(self):
3 return "woof"
4 .

(a) To override, just redefine it, and the MRO will view this
implementation first.

1 class Dog(Animal):
2 def speak(self):
3 return super().speak() + " said the

dog."

(b) To extend it, have it call the super’s method first, and
then do whatever you want after.

Figure 7

Deleting any parent attribute or method is not a good idea and goes against the whole purpose of inheritance.
If it must be done, here are the best methods I know.

Theorem 2.3 (Deleting Attribute Belonging to Parent in Child)

You can delete an attribute from the child class by calling delattr(ChildClass, "attribute").

1 class P:
2 def __init__(self, name):
3 self.name = name
4

5 class C(P):
6 def __init__(self, name):
7 super().__init__(self, name)
8 delattr(C, "name")

2https://stackoverflow.com/questions/61174178/why-is-python-super-used-in-the-childs-init-method

12/ 44

https://stackoverflow.com/questions/61174178/why-is-python-super-used-in-the-childs-init-method

Python Muchang Bahng Fall 2024

Theorem 2.4 (Deleting Method Belong to Parent in Child)

You cannot delete a method that exists in the parent class from the child class, since the MRO will
just be invoked. The best you can do is override it to throw an exception.

Example 2.5 (Modifying Attributes in Child Class)

We begin with an Animal class.

1 class Animal:
2 def __init__(self, name):
3 self.name = name
4

5 def speak(self):
6 return f"Rahhh" # generic animal sound

Figure 8

There is a Dog class that we would like to inherit from Animal. Let’s go through a few ways we can
design the attributes of the child class.

1 class Dog(Animal):
2 def __init__(self, name):
3 super().__init__(name)
4 .

(a) Nothing is added. Since called the parent construc-
tor, we still have access to the name attribute and speak
method.

1 class Dog(Animal):
2 def __init__(self, name, breed):
3 super().__init__(name)
4 self.breed = breed

(b) We just want to add a new attribute called breed.
Since called the parent constructor, we still have access
to the name attribute and speak method.

1 class Dog(Animal):
2 def __init__(self, id):
3 self.id = id

(c) You don’t even call the parent constructor, so you
lose access to name. However, you still have access to the
speak() method. This is not recommended.

1 class Dog(Animal):
2 def __init__(self, name, breed):
3 super().__init__(name)
4 print(self.name)
5 self.name = f"{name}_{breed}"

(d) Say you want to override the name so that the breed
is also included in it.

Figure 9

2.4 Interfaces and Abstract Base Classes
Note that inheritance does two things. First, it allows us to reuse code since a child class inherits at-
tributes/methods from a superclass. Second, we can extend or override parent functionality, which allows
us to use different implementations of the same method. The fancy sounding term “polymorphism” is just
a colloqial buzzword that refers to being able to treat objects of different types in the same way, mostly
through calling a method with the same name.

13/ 44

Python Muchang Bahng Fall 2024

Definition 2.12 (Polymorphism)

Polymorphism is the ability of objects of different types to be treated as instances of the same type
through a common interface. It comes in many forms, including

1. Subtype/Inclusion Polymorphism. Basically what we did with inheritance.
2. Parameteric Polymorphism. Allows function or data type to be written generically, so that it

can handle values uniformly without depending on their type.
3. Overriding.
4. Overloading. Taking the

With inheritance, we can create hierarchies of classes where child classes extend or override parent function-
ality. However, we are still short

At this point, we have defined the class hierarchy by taking the class names (more specifically, the fully
qualified class name (FQCN)) and explicitly defining a parent-child relationship (e.g. Dog(Animal)). As
stated in PEP-3119, in the domain of OOP, the uage patterns of interacting with an object can be divided
into two basic categories.

1. Invocation. Interacting with an object by invoking its methods.

2. Inspection. The ability for external code (outside of the object’s methods) to examine the type or
properties of that object, and make decisions on how to treat that object based on that information.

Both usage patterns

2.5 Interfaces and Abstract Base Classes
Apparently need to know for PEP 3119.

But classes are limited? So we want to use interfaces (duck typing).

PEP 3141 gives a hierarchy of the numbers.

Definition 2.13 (Numeric ABCs)

The numbers module contains them.
1. numbers.Number
2. numbers.Complex
3. numbers.Real
4. numbers.Rational
5. numbers.Integral

2.6 Type Hints
Type Hints - PEP 484 (3.5)

2.7 Protocols
Protocols - PEP 544 (3.7)

2.8 Type Checking

Question 2.1 (To Do)

Move some of these to general language notes.

14/ 44

https://peps.python.org/pep-3119/

Python Muchang Bahng Fall 2024

Definition 2.14 (Type Checking)

Type checking is the process of verifying that the types of values in a program are used consistently
and correctly according to the language’s type system rules. These include:

1. Operations are valid for their operand types
2. Function/method calls match their signatures
3. Assignments are type-compatible (though this isn’t necessary in Python)

The implementation of type checking differs for every language, and they generally fall into 3 different
philosophies.

Definition 2.15 (Nominal Typing)

Nominal typing is a static typing system that determines that two types are equal/compatible if
their fully qualified class names (FQCN) are equal.

1 struct Cat {
2 std::string name;
3 int age;
4 };
5

6 void printCat(const Cat& c) {
7 std::cout << "Cat: " << c.name << ",

age " << c.age << "\n";
8 }

1 struct Dog {
2 std::string name;
3 int age;
4 };
5

6 void printDog(const Dog& d) {
7 std::cout << "Dog: " << d.name << ",

age " << d.age << "\n";
8 }

1 int main() {
2 Cat kitty{"Whiskers", 3};
3 Dog pup{"Buddy", 5};
4

5 printCat(kitty); // works
6 printDog(pup); // works
7

8 // printCat(pup); // error: cannot convert Dog to Cat (nominal typing)
9

10 return 0;
11 }

Figure 10: C++ uses aspects of nominal typing.

Definition 2.16 (Structural Typing)

Structural typing is a static typing system that determines that two types are equal/compatible if
their structures (e.g. the attributes and methods it supports) are equal. The class name is immaterial.

15/ 44

Python Muchang Bahng Fall 2024

1 type Cat = {
2 name: string;
3 age: number;
4 };
5

6 function printCat(c: Cat) {
7 console.log(‘Cat: ${c.name}, age

${c.age}‘);
8 }

1 type Dog = {
2 name: string;
3 age: number;
4 };
5

6 function printDog(d: Dog) {
7 console.log(‘Dog: ${d.name}, age

${d.age}‘);
8 }

1 const kitty: Cat = { name: "Whiskers", age: 3 };
2 const pup: Dog = { name: "Buddy", age: 5 };
3

4 printCat(kitty); // works
5 printDog(pup); // works
6 printCat(pup); // also works (structural typing!)

Figure 11: Typescript uses aspects of structural typing.

Definition 2.17 (Duck Typing)

Duck typing is a dynamic typing system that determines that two types are equal/compatible is
the accessed structure (e.g. used attributes or called methods) are equal. The class name and the
unused properties are immaterial.a

1 class Cat:
2 def __init__(self, name, age):
3 self.name = name
4 self.age = age
5

6 def meow(self):
7 print("meow")
8

9 def print_cat(c):
10 print(f"Cat: {c.name}, age {c.age}")

1 class Dog:
2 def __init__(self, name, age):
3 self.name = name
4 self.age = age
5

6 def bark(self):
7 print("woof")
8

9 def print_dog(d):
10 print(f"Dog: {d.name}, age {d.age}")

1 kitty = Cat("Whiskers", 3)
2 pup = Dog("Buddy", 5)
3

4 print_cat(kitty) # works
5 print_dog(pup) # works
6 print_cat(pup) # also works though structures are different
7 pup.bark(), kitty.meow() # works
8 pup.meow() # Error: ’Dog’ object has no attribute ’meow’

Figure 12: Python uses duck typing: any object with the right attributes can be passed.

Duck typing and structural typing are similar (and often confused) but distinct, and the preference for one
over the other is controversial. The big difference is that duck typing is “looser” in that type checking happens
at runtime, whether an object has the required methods/properties when they are actually used.

aIf it walks like a duck and quacks like a duck, then it must be a duck.

16/ 44

Python Muchang Bahng Fall 2024

We will start by going through all the types in Python.

2.9 Metaclasses
Note that for every class, there are specific properties (in the colloquial sense) that it satisfies, e.g. it has an
MRO accessible through __mro__, etc. If we wanted to change this behavior, for example

1. add attributes or methods automatically,

2. enforce certain rules

then we would want to work with something that controls classes, in the same way that classes control
objects. This is where metaclasses come in.

2.10 Factories

17/ 44

Python Muchang Bahng Fall 2024

3 Primitives

3.1 String Manipulation

Definition 3.1 (Checking Alphanumeric)

Method
str.isalnum() Return True is all chars in are alphanumeric and

there is at least 1 char.
str.isalpha() Return True if all characters in string are alphanu-

meric and there is at least 1 char.

Table 8

You probably used the str.strip() method. However, you can have more control over this.

Definition 3.2 (Strip, Prefix, and Suffix)

Method
str.lstrip(chars=None) Returns copy of string with leading characters (default ascii space)

removed.
str.rstrip(chars=None) Returns copy of string with trailing characters (default ascii space)

removed.
str.strip(chars=None) Returns copy of string with both leading and trailing characters

removed.
str.removeprefix(prefix) Returns a string with the prefix removed (if it exists).
str.removesuffix(suffix) Returns a string with the suffix removed (if it exists).
str.startswith(prefix) Return True if starts with prefix, else False
str.endswith(prefix) Return True if ends with prefix, else False

Table 9: Note that stripping, which targets all combinations defined in chars, is more aggressive than removing
prefix.

Definition 3.3 (Justify and Filling)

Method
str.ljust(width, fillchar=’ ’) Returns the string left justified in a string of length

width with padding fillchar.
str.rjust(width, fillchar=’ ’) Returns the string right justified in a string of length

width with padding fillchar.
str.zfill(width) Returns copy of string left-filled with "0" digits to

make a string of length width. Accounts for negative
numbers.

Table 10: Note that stripping, which targets all combinations defined in chars, is more aggressive than
removing prefix.

1 >>> "hello world".ljust(20)
2 ’hello world ’

18/ 44

Python Muchang Bahng Fall 2024

3 >>> "hello world".rjust(20)
4 ’ hello world’
5 >>> "42".zfill(5)
6 ’00042’
7 >>> "-42".zfill(5)
8 ’-0042’

Definition 3.4 (Find, Index, and Replace)

Method
str.find(sub) Return the lowest index in string where substring

sub is found. Returns -1 if not found.
str.index(sub) Like str.find(sub), but raises ValueError when

substring is not found.
str.replace(old, new) Return a copy of string with all occurrences of sub-

string old replaced by new.
str.translate() Replace all occurrences of characters in string with

a translation table.

Definition 3.5 (Split and Partition)

Method
str.split(sep=None) Return a list of words in the string, using sep as

delimiter string.
str.splitlines(sep=None) Like str.split() but we account for all newline

characters (not only just \n).
str.partition(sep) Split the string at the first occurrence of sep, and

return a 3-tuple.
str.rpartition(sep) Split the string at last occurrence of sep, return a

3-tuple.

3.2 Typecasting
Let’s talk about typecasting between these primitives. Note that converting strings to ints is pretty ambigu-
ous.

Function Input Output Notes
int.to_bytes() int bytes Specify the length arg to prevent overflow.

classmethod int.from_bytes() bytes int
str.encode() str bytes Usually we use encoding=’utf-8’.
byte.decode() bytes str Usually we use ’utf-8’.

str() int str

Now if you want to convert this to a fixed length, then you can simply use the built-in hash() function.
Ints, strings, and bytes are all immutable and thus hashable.

19/ 44

Python Muchang Bahng Fall 2024

4 Data Structure

4.1 Lists
Lists are implemented as an array of pointers, which can point to any object in memory which is why Python
lists can be dynamically allocated. We should be familiar with the general operations we can do with a list,
which are implemented as dunder methods.

Definition 4.1 (Length)

The list.__len__() method returns the length of a list, which is stored as metadata and is thus
O(1) retrieval time. It is invoked by len(list) <-> list.__len__().

Definition 4.2 (Set Item, Get Item, Del Item)

The following three methods are getter, setter, and delete functions on the list[T] array given the
index.

1. The __getitem__(i) -> T returns the value of the index of the list. Since we can do pointer
arithmetic on the array, which is again just 8 byte pointers, we essentially have O(1) retrieval
time. It is invoked by list[i] <-> list.__getitem__(i).

2. The __setitem__(i, val) -> None returns None and sets the value of the index. It is invoked
by list[i] = val <-> list.__setitem__(i, val).

3. The __delitem__(i) -> None deletes the value at that index. It is invoked by del list[i]
<-> list.__delitem__(i).

The next few definitions are not dunder methods, but are important.

Definition 4.3 (Append, Insert, Pop)

List.append(val) is amortized O(1) but is quite slow if we are inserting into the middle with
List.insert(i, val). List.pop() is great for removing from the back of the list, with O(1), but
not so great for removing from the front, where all the elements have to be shifted O(n). Dynamically
resizing the array, where all the elements of the previous array gets copied over to a larger array, is
slightly different. For example, in an old implementation of Python, the new size is implemented
to be new_size + new_size » 3 + (new_size < 9 ? 3 : 6), which approximately doubles the
size (like Java, which exactly doubles the list size), giving us amortized O(1).

Definition 4.4 (Extend)

Definition 4.5 (Sort)

List slicing is quite slow since we are copying the references to every element in the list. Note that the values
are not copied themselves, but we are creating an array of new pointers.

Slicing can be done past last index. Slicing creates a copy of the sublist.

Definition 4.6 (Queues)

A collections.deque (double ended queue) is implemented as a doubly linked list.

20/ 44

Python Muchang Bahng Fall 2024

4.2 Hash Maps
In general, a hashmap can be implemented in the following ways. We take an object and hash its value,
giving us another memory address. This intuitively implies that this object is immutable, since changing
the object will lead to a different memory address. A convenient way to bypass this is to convert lists into
tuples.3 The hash function may map two different values to the same memory address, so we can deal with
collisions in different ways.4

1. Linked List. The hashed address actually is a linked list, and every time we add to it we append to
the linked list.

2. Probing. If we have two objects x1 and x2 which both map to the same y = h(x1) = h(x2), then we
can predefine another function f that will act on h(x2) when it sees that h(x1) is already occupied,
effectively mapping it to f(h(x2)). Two common ones is f(x) = x + 1, which maps it to the next
address, called linear probing, or we can scale it in different ways, e.g. quadratic probing.

3. Double Hashing, Open Addressing. We can hash the hash differently, effectively doing (h1(x) + i ·
h2(x))modS, and keep incrementing i from 0 to whenever it sees a new spot.

Definition 4.7 (Python Dictionaries)

Python does indeed implement dictionaries as hash maps/tables and uses open addressing to handle
collisions, meaning that it can only store one and only one entry. Python’s hash table is also a
contiguous block of memory, so you can actually do O(1) lookup by index as well, though the indices
aren’t stored.

1 -+-----------------+
2 0| <hash|key|value>|
3 -+-----------------+
4 1| ... |
5 -+-----------------+
6 .| ... |
7 -+-----------------+
8 i| ... |
9 -+-----------------+

10 .| ... |
11 -+-----------------+
12 n| ... |
13 -+-----------------+

Figure 13: Logical model of Python Hash table. It consists of the keys, the hash of the keys, and the values
that are stored in the hashed memory address. The indices are shown on the left, but they are not stored
along with the table.

When a new dict is initialized, it starts with 8 slots.
1. When adding entries to the table, we take the key k, hash it to h, and we do an additional mask

operation i = mask(key) & mask, where mask = PyDictMINSIZE - 1 (in CPython).
2. If the slot is empty, the entry is added to the slot. If the slot is occupied, CPython (and PyPy)

compares the hash and the key (with ==, not is) of the entry in the slot against what we are
inserting. If both match, it thinks the entry already exists and uses open addressing to move
onto the next entry.

3. The dict will be resized if it is 2/3 full to avoid slowing down lookups.

3However, there are languages where you can hash mutable objects. Again, this is an implementation detail.
4Good visuals here: https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/.

21/ 44

https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/

Python Muchang Bahng Fall 2024

It is well known that the keys and hash tables are not guaranteed to be in sorted order, and this is true in
general. However, in Python it is different.

Theorem 4.1 ()

From Python 3.7+ (for all implementations) and CPython 3.6+, dicts preserve insertion order, so
calling dict.keys() will return keys in insertion order

Example 4.1 (Back to References)

As a review, when we iterate over a dict with an enhanced for loop, we are just calling next on the
keys or values that may be a copy by value or a copy by reference.

1 # y is copied by value so incrementing
2 # it rebinds it
3 >>> x = {"a" : 1, "b" : 2, "c" : 3}
4 >>> for k in x:
5 ... y = x[k]
6 ... y += 1
7 ...
8 >>> x
9 {’a’: 1, ’b’: 2, ’c’: 3}

1 # v is passed by value, so incrementing
2 # it rebinds it
3 >>> x = {"a" : 1, "b" : 2, "c" : 3}
4 >>> for v in x.values():
5 ... v += 1
6 ...
7 >>> x
8 {’a’: 1, ’b’: 2, ’c’: 3}
9 .

We should also be familiar with some of the dunder methods.

Definition 4.8 (Get)

There are two ways to access from a dictionary.
1. dict[key] retrieves the value and throws a KeyNotFoundError if a key does not exist.
2. dict.get(key, def) retrieves the value and will return def if the key does not exist.

Definition 4.9 (Items)

Given a dictionary dict, we can run dict.items() to get a view of the dictionary. Since this is a
view, it does not copy the entire dictionary, and is presented as a list of tuples. However, this is not
an iterator either. T

Let’s look through the different dict-like data structures.

Definition 4.10 (Defaultdict)

A nice trick is to initialize a collections.defaultdict, which is a subclass of Dict that allows you
to use dict[key] and automatically initializes the value to some default value if the key does not
exist. It is initialized in the following ways.

1. defaultdict(int)
2. defaultdict(dict: Dict)
3. defaultdict(log: Function, dict) runs the function log every time a new key is added.

Definition 4.11 (Counter)

collections.Counter is good for finding the count of elements and does not require you to initialize
the count to 0 before incrementing it.

22/ 44

Python Muchang Bahng Fall 2024

1 data = [1, 1, 2, 3]
2 counter = {}
3 for d in data:
4 if d not in counter:
5 counter[d] = 0
6 counter[d] += 1
7 {1: 2, 2: 1, 3: 1}

1 from collections import Counter
2 data = [1, 1, 2, 3]
3 counter = Counter()
4 for d in data:
5 counter[d] += 1
6 Counter({1: 2, 2: 1, 3: 1})
7 .

4.3 Heaps

23/ 44

Python Muchang Bahng Fall 2024

5 Names and Values
There are a lot of parallel characteristics between python variable assignment and C++ pointers. When we
assign a variable to an object in python, what we are doing under the hood is creating the value/object in
the heap memory (hence we use malloc rather than initializing on the stack) and initializing a pointer to
point to that place in memory.

The left hand side is called a name, or a variable, and the right hand side is called the value. We say
the name references, is assigned, or is bound to the value. In fact, this name is really just a pointer to the
memory location of where the value is stored, and we can access this using the built-in id function.

1 # Python
2 x = 4
3 print(x) # 4
4 print(id(x)) # 4382741696
5 .
6 .

1 # C
2 int* x_ = malloc(sizeof(int));
3 *x_ = 4;
4 int** x = &x_;
5 printf("%d\n", **x); // 4
6 printf("%p\n", *x); // 0x600003ff4000

Figure 14: Referencing an int variable in Python and C. I realize that this isn’t completely equivalent since the C
code uses a pointer to a pointer, but it helps explain other things a bit easier so bear with me.

1 # Python
2 y = [1, 2, 3]
3 print(y) # [1, 2, 3]
4 print(id(y)) # 4314417472
5 .
6 .
7 .
8 .

1 # C
2 int* x_ = malloc(sizeof(int) * 3);
3 x_[0] = 1; x_[1] = 2; x_[2] = 3;
4 int** x = &x_;
5 for (int i = 0; i < 3; ++i) {
6 printf("%d ", *(*x+i)); // 1 2 3
7 }
8 printf("\n%p", *x); // 0x6000011cc040

Figure 15: Referencing a list in Python and C.

5.1 Mutating vs Rebinding
So far so good. But what if we wanted to change x or y? This is where we have to be careful about when
defining change.

1. We can change by taking the value that the name references/points to and mutate it. Types of
values where we can do this are called mutable types, which have methods that allow this change (e.g.
__setitem__ or append for lists). In this case, the memory address it points to should stay the same.

2. We can change by creating a new value/object and changing the name to point to this new object.
If no other variables points to the original object, then the memory is automatically freed. This is
how immutable types are changed, and the memory address it points to should be different. What
immutable really means is that you cannot change the value that the pointer is pointing to without
changing the actual memory location.

So which one is it that Python does? The answer is: it depends.5

5For more information, look at https://nedbatchelder.com/text/names.html.

24/ 44

https://nedbatchelder.com/text/names.html

Python Muchang Bahng Fall 2024

Example 5.1 (Pass By Reference vs By Value)

There are two ways a programmer can interpret the following iconic example.

1 x = 4
2 y = x
3 print(x, y) # obviously prints 4, 4
4 y = 5
5 print(x, y) # what about this?

1. Passing By Reference. The first interpretation is that by setting y = 5, we are modifying the
value that y points to be 5. Since the pointer x also points to the same memory address pointed
by y, then x also should equal 5.

2. Passing By Value. By setting y = 5, we create a new int object, reassign the pointer y to the
new object. Therefore x still points to 4 and y now points to 5.

1 // Pass by Reference
2 int* x_ = malloc(sizeof(int));
3 *x_ = 4;
4 int** x = &x_;
5 int** y = &x_;
6 printf("%d, %d\n", **x, **y); // 4, 4
7

8 **y = 5;
9 printf("%d, %d\n", **x, **y); // 5, 5

10 .
11 .

1 // Pass by Value
2 int* x_ = malloc(sizeof(int));
3 *x_ = 4;
4 int** x = &x_;
5 int** y = &x_;
6 printf("%d, %d\n", **x, **y); // 4, 4
7

8 int *y_ = malloc(sizeof(int));
9 *y_ = 5;

10 y = &y_;
11 printf("%d, %d\n", **x, **y); // 4, 5

Though Python does not technically use references vs values, this analogy is helpful to think about.

Seeing as how an integer is immutable and a list is mutable, let’s look at how it affects them.

1 x = 4
2 print(x, id(x)) # 4 4374664384
3 x = x + 1
4 print(x, id(x)) # 5 4374664416

1 y = [1, 2]
2 print(y, id(y)) # [1, 2] 4340042048
3 y.append(3)
4 print(y, id(y)) # [1, 2, 3] 4340042048

As we see, we rebind for immutable types, which changes the pointing memory address, and mutate for
mutable types, which doesn’t change the address. Therefore, if an object is mutable, then we can mutate it.

Example 5.2 (Warning)

This is very subtle and implementation specific. For immutable types, we are pretty much guaranteed
rebinding, but for mutable types, we may not be so sure.

1. If we instantiate two lists and concatenate them using + into a list with a new name, we call
the __add__ method, which creates a new list object and binds it to that new list.

1 y = [1, 2]
2 z = [3]
3 print(y, id(y)) # [1, 2] 4380248384
4 print(z, id(z)) # [3] 4380250176
5 a = z + y
6 print(a, id(a)) # [1, 2, 3] 4380551424
7

8 a[1] = 4
9 print(a) # [3, 4, 2]

25/ 44

Python Muchang Bahng Fall 2024

10 print(y) # [1, 2]
11 print(z) # [3]

2. If we instantiate two lists and extend them using +=, then we call the __extend__ method,
which extends z with a copy of y. Note that z[1:] and y are two different lists objects in
memory, not the same reference.

1 y = [1, 2]
2 z = [3]
3 print(y, id(y)) # [1, 2] 4380248384
4 print(z, id(z)) # [3] 4380250176
5 z += y
6 print(z, id(z)) # [3, 1, 2] 4380250176
7

8 z[2] = 9
9 print(y) # [1, 2]

10 print(z) # [3, 1, 9]

3. Just to see an example of an immutable type, even using the iadd method does not keep its
original memory address. The entire thing is always allocated to new memory.

1 x = "Hello "
2 print(id(x)) # 4382416384
3 print(x) # Hello
4 x += "World"
5 print(id(x)) # 4382723056
6 print(x) # Hello World

This explains a lot of the weird phenomena, and it is extremely important to know whether a variable is
copied by reference or by value, since you’ll be able to predict the behavior on one variable if you modify
the other one. The common immutable types in Python are string, int, float.

Example 5.3 ()

To drive the point home, take a look at this. T

1 # Pass by value
2 x = 4
3 y = x
4 # Points to same address
5 print(id(x)) # 4382741696
6 print(id(y)) # 4382741696
7 x += 1
8 # Now it doesn’t
9 print(x) # 5

10 print(y) # 4

1 # Pass by reference
2 x = []
3 y = x
4 # Points to same address
5 print(id(x)) # 4383459648
6 print(id(y)) # 4383459648
7 x.append(1)
8 # Still points to same address
9 print(x) # [1]

10 print(y) # [1]

Example 5.4 (Common Traps)

To initialize a list of zeros, we can just do

1 >>> x = [0] * 5
2 >>> x[0] = 1

26/ 44

Python Muchang Bahng Fall 2024

3 >>> x
4 [1, 0, 0, 0, 0]

This is all good since primitive types are immutable, so modifying one really just rebinds it to another
value and doesn’t affect the others. However, if we are initializing a list of lists, then we get something
different.

1 >>> x = [[]] * 5
2 >>> print(x)
3 [[], [], [], [], []]
4 >>> x[0].append(1)
5 >>> x
6 [[1], [1], [1], [1], [1]]

This is because we are instantiating 5 names that all point to the same empty list. Modifying one
really is an act of mutating, leading to the changes persisting across all names. This is because the
inner list is multiplied and therefore copied by reference. This means that all the lists are simply
pointing to the same object in memory, and modifying one modifies all.

5.2 Assignments are Everywhere
Let’s look at a few more examples where assignment are, starting with enhanced for loops.

Theorem 5.1 (Assignments in Enhanced For Loops)

Enhanced for loops of form for elem in x is really an assignment of elem to each element of x. All
of the following are assignments.

1 for elem in ...
2 [... for elem in ...]
3 (... for elem in ...)
4 {... for elem in ...}

Take a look at this anomaly.

1 x = [1, 2, 3]
2 for elem in x:
3 elem += 1
4 print(x) # [1, 2, 3]

With the above theorem, the problem is clear. In the first iteration, we have elem = 1 and x[0] = 1. elem
has been incremented with iadd and therefore is rebound to 2, but this does not affect x[0], leading to no
changes. Note that if the elements were mutable, then we can make these changes persist.

1 x = [[1], [2], [3]]
2 for elem in x:
3 elem[0] += 1
4 print(x) # [[2], [3], [4]]

In here, elem and x[0] are bound to [1] and have the same memory address. I then access the memory
address of the first element of elem and rebind it to its increment. While the 1 changes to a 2, and elem[0]
points to a different memory address, the memory address of elem[0] itself does not change! Therefore, we
have effectively changed the value of the element and have basically mutated the array using the setitem

27/ 44

Python Muchang Bahng Fall 2024

dunder method.

This also persists in functions as well.

Theorem 5.2 (Assignments in Functions)

Arguments in functions are also assigned, in local scope of course.

Compare these two snippets.

1 def augment_twice(a_list, val):
2 a_list.append(val)
3 a_list.append(val)
4

5 nums = [1, 2, 3]
6 augment_twice(nums, 4)
7 print(nums) # [1, 2, 3, 4, 4]

1 def augment_twice_bad(a_list, val):
2 a_list = a_list + [val, val]
3

4 nums = [1, 2, 3]
5 augment_twice_bad(nums, 4)
6 print(nums) # [1, 2, 3]
7 .

1. In the LHS, nums is bound to [1, 2, 3]. In the function scope, a_list is also bound to the same
list. We augment 4 twice, which mutates the object, and upon returning, the name a_list is removed.
However, the changes persist and is seen by nums.

2. In the RHS, nums is also bound to [1, 2, 3]. In the function, a_list is being rebound since we use
the add method, effectively creating a new list in memory. Now the two variables point to different
objects with different memory addresses, and when the function returns, the new list is deleted. Note
that this could be avoided if we use the iadd dunder method, which leads to the memory address being
preserved.

5.3 Object Caching
In general, if we initialize two variables to be the same value, they do not point to the same memory address.

1 # Example of when two variables are
2 # initialized to be the same value, but
3 # do not point to the same memory
4 x = 1000
5 y = 1000
6 print(id(x)) # 4385025360
7 print(id(y)) # 4385026288
8 .
9 .

10 .

1 int* x_ = malloc(sizeof(int));
2 *x_ = 1000;
3 int** x = &x_;
4

5 int* y_ = malloc(sizeof(int));
6 *y_ = 1000;
7 int** y = &y_;
8

9 printf("%p\n", *x); 0x600001be8040
10 printf("%p\n", *y); 0x600001be8050

However, we can initialize y to be equal to x, which tells it to point to the same memory address as x is,
thus having the same id.

1 x = 1000
2 y = x
3 print(id(x)) # 4303203888
4 print(id(y)) # 4303203888
5 .
6 .
7 .
8 .

1 int* x_ = malloc(sizeof(int));
2 *x_ = 1000;
3 int** x = &x_;
4

5 int** y = &x_;
6

7 printf("%p\n", *x); 0x600002368040
8 printf("%p\n", *y); 0x600002368040

This does not change for mutable types either.

28/ 44

Python Muchang Bahng Fall 2024

1 x = []
2 print(id(x)) # 4378741056
3 x = []
4 print(id(x)) # 4378742848

Usually, just setting the values equal does not have it point to the same memory address, but for integers
[-5, 256], Python caches these numbers so that even if we initialize two numbers with the same integer
value, they will always point to the same address.

1 # Don’t need to set y = x
2 x = 200
3 y = 200
4 print(id(x)) # 4314934592
5 print(id(y)) # 4314934592

This is a CPython-specific fact that you should be aware of.

5.4 Default Arguments are Evaluated when Function is Defined
We are used to writing functions with default arguments. An important implementation detail is that
default arguments are evaluated when a function is defined, not when it is called. Consider the following
buggy example.

1 def stuff(x = []):
2 x.append(3)
3 print(x)
4

5 stuff() # [3]
6 stuff() # [3, 3]

There are two unexpected errors with this:

1. We would expect the second call to stuff to print [3].

2. The list that x references to should be garbage collected (more on this later) when the name has been
deleted after the function returned, but it did not.

We will address this first problem. It turns out that the default argument [] is created in memory and every
call with the default argument assigns x to this same list object in the same address. That is, no new lists
are created.

This is of course not a problem if default arguments are immutable types likes integers. Even though the
default argument is bound to the same object in memory for all calls, the value cannot be modified since
you can only rebind it to another object, so it will not contaminate other calls.

5.5 Item Assignment with Walrus Operator
Avoids Repeated Computation

29/ 44

Python Muchang Bahng Fall 2024

6 Loops
Iterables, Iterators, Generators, zipping, range vs xrange. Range is an iterable, not iterator.

For loops and while loops are straightforward enough, but it’s important to know the difference between
them.

6.1 While Loops
In while loops, the condition is rechecked and thus any functions called during this is recomputed at each
loop, and so when deleting things from a list, the loop already accounts for the new length. However, a for
loop evaluates the length of the list only once and leads to index violation errors.

1 x = [1, 2, 3, 4]
2 print(x)
3 i = 0
4 while i < len(x):
5 print(len(x))
6 if x[i] == 2:
7 del x[i]
8 i += 1
9 print(x)

10

11 [1, 2, 3, 4]
12 4
13 4
14 3
15 [1, 3, 4]

1 x = [1, 2, 3, 4]
2 print(x)
3

4 for i in range(len(x)):
5 print(i, x[i])
6 if x[i] == 2:
7 del x[i]
8 print(x)
9

10 [1, 2, 3, 4]
11 0 1
12 1 2
13 2 4
14 IndexError: list index out of range
15 .

This can also be a problem when evaluating to a list where you may need to append more elements to it.
Here we use the previous initial list. We want to append 5 and 6 since 2 and 4 are even, but the extra 6
added will require us to add 7 as well. In a for loop, this also breaks down. The for loop only accounts up
to the length of the original list, which will end with 6 as the last element added. Whether you want the
condition to by dynamically evaluated at every loop depends on the problem.

1 x = [1, 2, 3, 4]
2 print(x)
3

4 i = 0
5 while i < len(x):
6 print(x[i])
7 if x[i] % 2 == 0:
8 x.append(max(x) + 1)
9 i += 1

10

11 print(x)
12

13 [1, 2, 3, 4]
14 [1, 2, 3, 4, 5, 6, 7]

1 x = [1, 2, 3, 4]
2 print(x)
3

4 for i in range(len(x)):
5 if x[i] % 2 == 0:
6 x.append(max(x) + 1)
7

8 print(x)
9

10 [1, 2, 3, 4]
11 [1, 2, 3, 4, 5, 6]
12 .
13 .
14 .

6.2 Iterators and Iterables
Great, so while loops are conceptually simple in that they simply recompute the condition at each loop. For
loops—on the other hand—behave quite differently.

30/ 44

Python Muchang Bahng Fall 2024

Definition 6.1 (Iterables and Iterators)

An iterator class is any class that implements a __next__() instance method that either returns
some value or raises a StopIteration. An iterable class is any class that implements a __iter__()
instance method returning an iterator object. When we use a for loop by saying for elem in
object: ...,

1. the object must be an iterable.
2. the for loop implicitly calls object.__iter__() before the loop starts to return an iterator

iter.
3. the loop will continue to call iter.__next__() and assign it to elem until a StopIteration is

raised.
The built-in iter() method calls __iter__() and next() calls __next__(). Therefore, the two
implementations of the for loop is exactly the same.

1 x = [1, 2, 3, 4]
2 for elem in x:
3 print(elem)
4 .
5 .
6 .
7 .
8 .

1 x = [1, 2, 3, 4]
2 x_ = iter(x)
3 while True:
4 try:
5 item = next(x_)
6 except StopIteration:
7 break
8 print(item)

Therefore, we are really just creating an iterator object around the list and doing a while loop. So a
for loop is really just a while loop in the backend!

Everything that you can call a for loop on is an iterator.

1 In [1]: iter("hello")
2 Out[1]: <str_ascii_iterator at 0x1051d4910>
3

4 In [2]: iter([1, 2, 3])
5 Out[2]: <list_iterator at 0x1051fbb80>
6

7 In [3]: iter(range(4))
8 Out[3]: <range_iterator at 0x10528d6e0>
9

10 In [4]: iter({"a" : 1, "b" : 2})
11 Out[4]: <dict_keyiterator at 0x10519f6f0>

A common mistake to confuse iterables with iterators! Note that lists and ranges are not iterators! They
are iterables, so you must call iter() on them before calling next().

1 TypeError Traceback (most recent call last)
2 Cell In[5], line 1
3 ----> 1 next([1, 2, 3])
4

5 TypeError: ’list’ object is not an iterator
6

7 In [6]: next(range(4))
8 --
9 TypeError Traceback (most recent call last)

10 Cell In[6], line 1
11 ----> 1 next(range(4))
12

13 TypeError: ’range’ object is not an iterator

31/ 44

Python Muchang Bahng Fall 2024

Now let’s implement our own class. There are two ways that we can do this: implement the iterator and
iterable in two separate classes, or have 1 class support both __iter__() and __next__() methods to make
it both an iterator and iterable.

Theorem 6.1 (Separate Implementations of Iterator and Iterable)

Observe that the state of the StudentIter created by each of the two for loops are independent with
their own states. Therefore, each of the two x that we iterate over are two distinct StudentIter
object, and so we can hit all 4× 4 combinations.

1 class Student:
2

3 def __init__(self):
4 ...
5

6 def __iter__(self) -> "StudentIter":
7 """A reusable iterator object"""
8 return StudentIter(self)
9

10 class StudentIter:
11

12 def __init__(self, student: Student):
13 self.student = student
14 self.i = -1
15

16 def __next__(self):
17 self.i += 1
18 if self.i > 3:
19 raise StopIteration
20 return self.i

1 In [14]: for i in x:
2 ...: for j in x:
3 ...: print(i, j)
4 ...:
5 0 0
6 0 1
7 0 2
8 0 3
9 1 0

10 1 1
11 1 2
12 1 3
13 2 0
14 2 1
15 2 2
16 2 3
17 3 0
18 3 1
19 3 2
20 3 3

Theorem 6.2 (One Class as Iterator and Iterable)

In this case, the state of the next value returned by __next__() is stored in the Student object, and
so x is the one Student object.

1 class Student:
2

3 def __init__(self):
4 self.i = -1
5

6 def __iter__(self):
7 "Nonreusable iterator object"
8 return self
9

10 def __next__(self):
11 self.i += 1
12 if self.i > 3:
13 raise StopIteration
14 return self.i

1 In [13]: x = Student()
2 In [14]: for i in x:
3 ...: for j in x:
4 ...: print(i, j)
5 ...:
6 0 1
7 0 2
8 0 3
9 .

10 .
11 .
12 .
13 .
14 .

32/ 44

Python Muchang Bahng Fall 2024

Example 6.1 (Common Trap)

Look at the following code

1 >>> x = [1, 2, 3, 4]
2 >>> for elem in x:
3 ... elem += 1
4 ...
5 >>> x
6 [1, 2, 3, 4]

This is clearly not our intended behavior. This is because in the backend, the elem is really being
returned by calling next() on the iterator object. The type being returned is an int, a primitive
type, and therefore it is passed by value. Even though elem and x[i] points to the same memory
address, once we reassign elem += 1, elem just gets reassigned to another number, which does not
affect x[i]. Note that this does not work as well since elem is just being copied by value and not by
reference, and again further changes to elem will decouple it from x[i].

1 >>> x = [1, 2, 3, 4]
2 >>> for i, elem in enumerate(x):
3 ... elem = x[i]
4 ... elem += 1
5 ...
6 >>> x
7 [1, 2, 3, 4]

To actually fix this behavior, we must make sure to call the __setitem__(i, val) method, which
can be done as such.

1 >>> x = [1, 2, 3, 4]
2 >>> for i in range(len(x)):
3 ... x[i] += 1
4 ...
5 >>> x
6 [2, 3, 4, 5]

Note that if we had nonprimitive types in the list, then the iterator will copy by reference, and we
don’t have this problem.

1 >>> x = [[1], [2], [3]]
2 >>> for elem in x:
3 ... elem.append(4)
4 ...
5 >>> x
6 [[1, 4], [2, 4], [3, 4]]

Another fact about range is that it is lazy, meaning that to save memory, calling range(100) does not
generate a list of 100 elements. The iterator really evaluates the next number on demand, which adds
runtime overhead but saves memory.

6.3 Generators
With iterators, we can cleverly keep track of states to design a custom behavior of looping, and as we have
seen with range objects, we can also reduce memory by using lazy evaluation. One disadvantage is that
there is relatively a lot of boilerplate code to design such an iterator. This is where generators come in.

33/ 44

Python Muchang Bahng Fall 2024

Definition 6.2 (Generator)

A generator function is a function that returns a both an iterable and iterator object (so has its
own __iter__() and __next__() method with the yield keyword). The following are equivalent.

1 # generator function
2 def make_counter(max):
3 count = 1
4 while count <= max:
5 yield count
6 count += 1
7

8 counter = make_counter(5)
9 .

10 .

1 class Counter:
2 def __init__(self, max):
3 self.max = max
4 self.count = 0
5

6 def __iter__(self):
7 return self
8

9 def __next__(self):
10 if self.count < self.max:
11 self.count += 1
12 return self.count
13 else:
14 raise StopIteration
15

16 counter = Counter(5)

By default, you should always try to use generators over iterators, and change to the latter if either

1. the state you are maintaining over the loop is complex, or

2. the loop needs to be reusable.

34/ 44

Python Muchang Bahng Fall 2024

7 Function Closures and Variable Scopes
Therefore, this can lead to buggy behavior when using mutable types where it may be passed by reference.

Nonlocal and global keywords.

35/ 44

Python Muchang Bahng Fall 2024

8 Composing Classes
If you find yourself nesting built-in types, this is prob an indicator to compose classes. @dataclass.dataclass
operator to define simple data structures.

36/ 44

Python Muchang Bahng Fall 2024

9 Decorators
Note that in Python, functions are first-class citizens, which means three things:

1. They can be treated as objects.

1 def shout(text):
2 return text.upper()
3

4 print(shout(’Hello’)) # HELLO
5 yell = shout
6 print(yell(’Hello’)) # HELLO

2. They can be passed into another function as an argument.

1 def shout(text):
2 return text.upper()
3

4 def whisper(text):
5 return text.lower()
6

7 def greet(func):
8 greeting = func("Hi, How are You.")
9 print (greeting)

10

11 greet(shout) # HI, HOW ARE YOU.
12 greet(whisper) # hi, how are you.

3. They can be returned by another function.

1 def create_adder(x):
2 def adder(y):
3 return x+y
4

5 return adder
6

7 add_15 = create_adder(15)
8 print(add_15(10)) # 25

Say that you have a function f that does something. I want to modify the behavior so that I do something
either before of after f is called automatically, but I don’t want to manually add code into the function body.
What I can do is simply define another function wrapper and call f inside it.

1 def f():
2 print("Hello world")
3

4 def wrapper():
5 print("started")
6 f()
7 print("ended")
8

9 wrapper() # "started\n Hello world\n ended"

Great, we can do this for one function. But what if there were thousands of functions I want to do this for?
Rather than creating a wrapper function for each function, I can make a third function called decorator
that takes in the original function f and outputs the wrapper function.

37/ 44

Python Muchang Bahng Fall 2024

1 def decorator(f):
2 def wrapper():
3 print("started")
4 f()
5 print("ended")
6

7 return wrapper
8

9 def f():
10 print("Hello world")
11

12 wrapper = decorator(f)
13 wrapper() # "started\n Hello world\n ended"
14

15 decorator(f) # <function decorator.<locals>.wrapper at 0x100b38e00>
16 decorator(f)() # "started\n Hello world\n ended"

This way, I can modify any function I want with this behavior, and is known as function aliasing. This is
essentially what a decorator is.

Definition 9.1 (Decorators)

Decorators are used to modify the behavior of your functions without changing its actual code, used
with the operator. The two are equivalent.

1 def decorator(f):
2 def wrapper():
3 print("started")
4 f()
5 print("ended")
6

7 return wrapper
8

9 def f():
10 print("Hello world")
11

12 f = decorator(f)
13 f() # "started\n Hello world\n ended"

1 def decorator(f):
2 def wrapper():
3 print("started")
4 f()
5 print("ended")
6

7 return wrapper
8

9 @decorator
10 def f():
11 print("Hello world")
12

13 f() # "started\n Hello world\n ended"

This means that every time I call the function f, it really calls the function decorator with f passed
into it as an argument. With functions that have arguments, the wrapper function should also have
the same arguments. Generically, we can just use the args and kwargs arguments to unpack these
variables so that wrapper’s arguments always matches those of f’s arguments, but we can modify
these arguments for extra functionality as well.

38/ 44

Python Muchang Bahng Fall 2024

1 # generic args and kwargs
2 def decorator(f):
3 def wrapper(*args, **kwargs):
4 print("started")
5 f(*args, **kwargs)
6 print("ended")
7

8 return wrapper
9

10 @decorator
11 def f(string):
12 print(string)
13

14 f("Hello World")
15 # started
16 # Hello World
17 # ended

1 # custom arguments
2 def decorator(f):
3 def wrapper(string, start_msg):
4 print(start_msg)
5 f(string)
6 print("ended")
7

8 return wrapper
9

10 @decorator
11 def f(string):
12 print(string)
13

14 f("Hello World", "time to go")
15 # time to go
16 # Hello World
17 # ended

If we want to get the return values of this function, we can store the return value in temporary
variable tmp, run whatever code after the function f, and finally return tmp in wrapper.

1 def decorator(f):
2 def wrapper(*args, **kwargs):
3 print("started")
4 tmp = f(*args, **kwargs)
5 print("ended")
6 return tmp
7

8 return wrapper
9

10 @decorator
11 def f(string):
12 return string + "!"
13

14 print(f("Hello World"))
15 # started
16 # ended
17 # Hello World!

Example 9.1 (Measuring Total and CPU Runtime)

If we want to find the runtime of a function, we can do this easily.

1 import time
2

3 def runtime(f):
4 def wrapper(*args, **kwargs):
5 start = time.time()
6 product = f(*args, **kwargs)
7 end = time.time()
8 print(f"Took {end - start} s")
9 return product

10 return wrapper
11

39/ 44

Python Muchang Bahng Fall 2024

12 @runtime
13 def dot(list1, list2):
14 res = 0
15 for x, y in zip(list1, list2):
16 res += x * y
17 return res
18

19 x = [1, 2, 3]
20 y = [2, 2, 3]
21 result = dot(x, y) # Took 3.814697265625e-06 s
22 print(result) # 15

However, this is not accurate as the OS will switch between different processes. Therefore, the process
time is more accurate.

1 import numpy as np
2 import time
3

4 def cpu_usage(f):
5 def wrapper(*args, **kwargs):
6 start_cpu = time.process_time()
7 result = f(*args, **kwargs)
8 end_cpu = time.process_time()
9 print(f"CPU time: {end_cpu - start_cpu:.6f} seconds")

10 return result
11 return wrapper
12

13 @cpu_usage
14 def matrix_mult(a, b):
15 return np.matmul(a, b)
16

17 x = np.random.randn(2000, 2000)
18

19 matrix_mult(x, x) # CPU time: 0.772730 seconds

Example 9.2 (Memory Usage)

We can measure memory usage with the psutil library.

1 import numpy as np
2 import psutil, os
3

4 def memory_usage(f):
5 def wrapper(*args, **kwargs):
6 process = psutil.Process(os.getpid())
7 mem_before = process.memory_info().rss
8 result = f(*args, **kwargs)
9 mem_after = process.memory_info().rss

10 print(f"Memory usage: {(mem_after - mem_before) / 1024 / 1024:.2f} MB")
11 return result
12 return wrapper
13

14 @memory_usage
15 def matrix_mult(a, b):
16 return np.matmul(a, b)

40/ 44

Python Muchang Bahng Fall 2024

17

18 x = np.random.randn(2000, 2000)
19 matrix_mult(x, x) # Memory usage: 46.81 MB

Example 9.3 (Measuring Function Call Count)

To measure how many times a function has been called, we can use the decorator.

1 def call_counter(f):
2 def wrapper(*args, **kwargs):
3 wrapper.count += 1
4 print(f"Function ’{f.__name__}’ called {wrapper.count} times")
5 return f(*args, **kwargs)
6 wrapper.count = 0
7 return wrapper
8

9 @call_counter
10 def factorial(x):
11 if x == 1:
12 return 1
13 return x * factorial(x - 1)
14

15 result = factorial(7)
16 # Function ’factorial’ called 1 times
17 # Function ’factorial’ called 2 times
18 # Function ’factorial’ called 3 times
19 # Function ’factorial’ called 4 times
20 # Function ’factorial’ called 5 times
21 # Function ’factorial’ called 6 times
22 # Function ’factorial’ called 7 times
23 print(result)
24 # 5040

functools.wraps.

41/ 44

Python Muchang Bahng Fall 2024

10 Raising Exceptions
Many beginners prefer to return None, but you should really be raising exceptions.

42/ 44

Python Muchang Bahng Fall 2024

11 Package Management

43/ 44

Python Muchang Bahng Fall 2024

12 Inspect
inspect is a module that allows you to get live information about live objects such as modules, classes, and
functions.

Definition 12.1 (getsource)

The getsource method allows you to see the text of live objects.

1 >>> import inspect
2 >>> backbone_module = construct_backbone(’resnet50[pretraining=inaturalist]’)
3 >>> model = backbone_module.embedded_model
4 >>> print(inspect.getsource(model.forward))
5 def forward(self, x):
6 x = self.conv1(x)
7 x = self.bn1(x)
8 x = self.relu(x)
9 x = self.maxpool(x)

10

11 x = self.layer1(x)
12 x = self.layer2(x)
13 x = self.layer3(x)
14 x = self.layer4(x)
15

16 return x
17

18 >>> print(inspect.getsource(model.__class__))
19 class ResNet_features(nn.Module):
20 """
21 the convolutional layers of ResNet
22 the average pooling and final fully convolutional layer is removed
23 """
24

25 def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
26 super(ResNet_features, self).__init__()
27 ...
28 ...

Figure 16: Say that you have some torch model that is either inaccessible or is hidden away through so many
imports that you have a hard time accessing it. Rather than going through several files and having to parse
which methods are relevant, is overwritten, or called, you can just inspect the methods and classes directly.

44/ 44

	Lexical Analysis
	Types
	Dunder Methods
	Encapsulation
	Inheritance and Method Resolution Order
	Interfaces and Abstract Base Classes
	Interfaces and Abstract Base Classes
	Type Hints
	Protocols
	Type Checking
	Metaclasses
	Factories

	Primitives
	String Manipulation
	Typecasting

	Data Structure
	Lists
	Hash Maps
	Heaps

	Names and Values
	Mutating vs Rebinding
	Assignments are Everywhere
	Object Caching
	Default Arguments are Evaluated when Function is Defined
	Item Assignment with Walrus Operator

	Loops
	While Loops
	Iterators and Iterables
	Generators

	Function Closures and Variable Scopes
	Composing Classes
	Decorators
	Raising Exceptions
	Package Management
	Inspect

